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We present a qualitative movement control system based on Pro-
positional Dynamic Logic (PDL). Firstly, we obtain an stable
qualitative representation by means of hysteresis loops. Second,
we build the qualitative movement control system, in order to
represent relative movement of an object with respect to another,
that is capable to perform qualitative composition of qualitative
relations. Third, we express the control rules of the system by
using PDL. Finally, we implement the framework in Robotic
Operating System (ROS) and test it with the computer simula-
tor STAGE, which indicate possibility to use our system in real
world applications.
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1 INTRODUCTION

Qualitative Reasoning (QR) [6] is an area of AI where the reasoning task with
concepts represented usually by numbers (such as velocity, orientation, dis-
tance) is performed by using qualitative values (small, medium, large, close,
distant, etc.) instead of the exact values. In fact, humans perform the majority
of their tasks without knowing the exact values of velocity, distance, angles,
etc. For instance, when you are driving a car, you do not need to know the
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exact value of your velocity, distance to the other cars, etc. Instead, you use
rules such as: if you are approaching fast the car in front of you and the car
is very close to you, you have to slow down. Qualitative data are simpler
and easier to obtain and transmit. This is crucial in cases where an immedi-
ate decision needs to be made, such as in movement control systems, which
are designed to control vehicles or robotic manipulators – see, e.g., [5]. In
this context, QR has been applied to Qualitative Spatial Reasoning, which is
focused on representing and reasoning with spatial entities (topology, orienta-
tion, shape, size, distance, etc.) with use of qualitative techniques. Qualitative
Spatial Reasoning has numerous applications, such as [10, 11].

The use of logic in AI, (and, in particular in QR) may improve the ca-
pability of formal representation of real world problems, and provides an
interesting point of view in order to face different reasoning tasks. More-
over, logic-ideas as theorem-proving and model-construction techniques are
present in AI. For this reason, we will use the Propositional Dynamic Logic
(PDL) for dealing with movements presented in [13] and exploit specifically
two of these advantages: on the one hand, its expressivity, that will allow us to
consider the special relations in order to control the movement; on the other
hand, its capability to reason, in order to obtain new information by using the
composition of movements.

When we consider movement control systems (for instance, for a robot or
a car), the information gathered by sensors can be noisy or inaccurate due to
external factors such as bad weather conditions, low quality of the sensors,
etc. Additionally, sometimes spatial reasoning needs to be performed using
incomplete data and intuitive information. In general, this information is easy
to understand for humans but not for machines. For instance, when a human
being is catching a ball, there is a lot of intuitive and incomplete information
about the position, velocity and direction of the ball, which is very difficult
and slow to process for one machine.

In this paper, we present an approach for obtaining a stable qualitative
representations (Section 2) which is particularly important when the system
is dealing with noisy data. Our method uses the hysteresis system which over-
comes the problem of fast changes of the qualitative representation. We com-
pare this method with the basic approach for qualitative representation, i.e.,
using non-overlapping intervals. Based on the hysteresis system, we build a
module for relative qualitative movement representation (Section 3.1) based
on the one introduced in [13], which may be treated as a generalization of
the approaches for relative movement presented in [4,12,17]. Afterwards, we
consider the qualitative composition of movements (Section 3.2) by means
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of the composition tables, which is the basic reasoning method in Qualitative
Spatial Reasoning [3]. We construct a table-based control system which, as
we show, is expressible in the Propositional Dynamic Logic presented in [13]
(Section 3.4). We describe also the implementation of the approach in Robotic
Operating System (ROS) [14] (Section 4), which is currently one of the most
popular open source frameworks for robot software. Moreover, we present
two applications of the approach, namely for a task of following another ob-
ject and for avoiding collisions and discuss the corresponding experiments
performed in robotic simulator STAGE [7] (Section 4), and we finish the pa-
per with some conclusions and prospects of future work (Section 5).

2 QUALITATIVE VALUES

Movement control systems often use qualitative values while reasoning, e.g.,
about a distance between objects or their velocity. For instance, in order to
avoid a collision it might be enough to know if the obstacle is close or far
away, whereas information about an exact distance might not be needed. One
of the most common methods to represent qualitative values is constituted by
means of non-overlapping subintervals [6]. However, such method is affected
by small changes of the underlying quantitative values in borderline cases
(i.e., when a quantitative value is on the border between two qualitative val-
ues). We present the method of non-overlapping subintervals and a hysteresis
system in order to avoid these changes in the border of the subintervals.

2.1 Non-overlapping Subintervals
The method consists of dividing the continuous scale of values into a finite
number of non-overlapping subintervals, where each subinterval is denoted
by its two boundary values (also called distinguishing values or landmark val-
ues), i.e., the beginning of the subinterval and its end. As depicted in Figure 1,
we can represent the subintervals by means of a function that assigns values
from the continuous scale of values (x) to qualitative values (q0, q1, q2, q3).
The function presented in the figure translates values from the subinterval
[0, x1) to a qualitative value q0, the ones from [x1, x2) to a qualitative value
q2, etc. Usually the subintervals cover the whole scale which means that the
set of qualitative values becomes jointly exhaustive and pairwise disjoint. As
a result, every value from the continuous scale belongs to exactly one quality.
The above property enables to use algorithms that reason by exclusion which
implies that powerful programming methods can be performed.
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Figure 1: Non-overlapping subintervals as a function from continuous scale
to qualitative values.

2.2 Hysteresis System
In order to obtain a stable qualitative representation, we present a novel method
based on a nonlinear system with hysteresis loops? . The aim of the approach
is to obtain a representation which lacks of frequent changes even if the input
contains noisy quantitative data. Our solution is to extend the non-overlapping
subintervals approach with hysteresis loops located on the borders of the
subintervals as depicted in Figure 2. To be more precise, we introduce sharp
hysteresis loops which enable to distinguish the borderline value between
qualitative values in case of increasing (denoted by xi+) and decreasing (de-
noted by xi−) quantitative values. As a result, the number of hysteresis loops
is always equal to the number of qualitative values decreased by 1.
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Figure 2: Hysteresis method for translating quantitative data into qualitative
values.

As an example, let us consider the translation system presented in Figure 2.
There are 4 qualitative values, namely q0, q1, q2, q3. The nonlinear system
consists of 3 hysteresis located on the borders of qualitative class, i.e., be-

? For an exhaustive analysis of hysteresis loops and nonlinear systems in general see [9].

4



tween q0 and q1, between q1 and q2, etc. We describe now how the system
prevents from frequent changes of qualitative values. Consider noisy data that
need to be mapped into qualitative values. We compare a result of using
(a) non-overlapping subintervals translation function from Figure 1 and (b)
hysteresis method from Figure 2. Assume that xi from the non-overlapping
subintervals approach equals xi+ from hysteresis approach.

(a) If the starting quantitative value is 0, then the starting qualitative value
is q0. Afterwards the quantitative value continuously increases up to a
value of xi which is when the qualitative values changes from q0 to
q1. Then (e.g., because of noisy data), the measured quantitative value
slightly decreases below xi increases above xi, and so on. As a conse-
quence, the qualitative value changes between q0 and q1 which in turn
may lead to unwanted behaviour of the system using such a represen-
tation.

(b) Again, the qualitative value equals q0. Afterwards the quantitative value
continuously increases, becomes x1− then increases even more, up to
x1+ = xi which is when the qualitative values changes to q1. To this
point there is no difference between (a) and (b). However later on the
noisy part of data occurs. Although the quantitative value decreases
below x1+ the qualitative values does not change (it would change only
if the quantitative value becomes less then x1−). As a result the noise
does not lead to frequent changes of the qualitative representation, as
in case of (a).

The most straight forward way of establishing hysteresis is such that

(xi+ − xi−) > noiseavr,

where noiseavr is the average value of the noise – may be computed, e.g.,
from previously gathered data or inferred from quality of sensor. On the other
hand, the narrower the hysteresis, the more granulated will be the representa-
tion. Hence, the most desirable system is constructed with a hysteresis width
only slightly bigger than the noiseavr.

In some qualitative reasoning systems [6, 13], there are additional lim-
itations on the length of qualitative values, e.g., in [13] it is needed that
every next qualitative value (more precisely a subinterval corresponding to
that qualitative value) is at least twice longer than the previous one. In other
words, 2 ·xi+ ≤ x(i+1)+. Such a restriction decreases the number of possible
outcomes of summing qualitative values – for instance adding values from
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q0 and q1 cannot result in q3. Then in order to obtain desirable properties of
the reasoning system, the width of the hysteresis should also fulfil a similar
condition, i.e., 2 · (xi+ − xi−) ≤ (x(i+1)+ − x(i+1)−). We exploit the same
restrictions in our approach.

3 QUALITATIVE MOVEMENT CONTROL SYSTEM

Common methods for robot motion planing in dynamic environment are based
on computation of Velocity Obstacle (VO) [2, 16], i.e., a set of robot veloc-
ities resulting in potential collisions and select robot velocity that is outside
VO. As a result, a first order method based on current position and velocity
of the robot or a second order method that takes into account the current ve-
locity and path curvature of the moving obstacle [16] are constructed. Even
more complex systems are obtained by further modifications, for instance, by
means of Kalman-based observer for estimating the obstacles velocities [2].

In what follows, we present a qualitative table-based controlling approach
which is much simpler and human-like than mentioned systems for robot mo-
tion planing. The approach uses the above introduced hysteresis system for
translating quantitative information into qualitative values. Afterwards, we
explain how to infer new information about the movement by means of com-
position tables. Then, we describe a control movement approach which is
expressible in the PDL introduced in [13].

3.1 Movement Representation
In this section, we explain how the movement is represented in our approach.
We will use the ideas presented in [13], where the movement of an object
with respect to another† is given by a tuple of qualitative values which repre-
sent, respectively, absolute velocity, absolute orientation (of the movement),
relative direction of movement, allowed directions of movement and relative
position. This set of parameters enables us to express a number of complex
scenarios – see [13]. Formally, the movement of one object with respect to
another is represented by a tuple (x1, . . . , x7) ∈ L, where L = L1×· · ·×L7

is described in Table 1.
It is worth mentioning that the movement representation enables us to

capture uncertainty of information, e.g. the following velocity description
x2 = {v1, v2} has an intuitive meaning that the velocity is slow or normal. As
an example of movement representation let us consider the tuple presented

† The objects may be moving as well as static (obstacles).
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Table 1: Description of the tuple L used in PDLF
M movement representation.

Description
L1 = A×A states that the tuple describes movement of the first

object of the L1 ordered pair with respect to the sec-
ond one, where A = {A1, . . . ,An} is a set of all ob-
jects

L2 = 2{vo,v1,v2,v3} first object absolute velocity (zero vo, slow v1, nor-
mal v2, quick v3)

L3 = 2{oo,o1,o2,o3,o4} absolute orientation of the first object’s movement
(unknown oo, North o1, South o2, East o3, West o4)

L4 = 2{0,−,+} × 2{0,−,+} relative movement direction which consists of the
first object movement relative to second object (sta-
ble 0, moving towards +, moving away from −) and
analogously second object movement with respect to
the first one

L5 = 2{oo,o1,o2,o3,o4} allowed absolute orientations of first object move-
ment (unknown oo, North o1, South o2, East o3, West
o3)

L6 = 2{o1,o2} × 2{d0,d1,d2,d3} latitude position of first object with respect to the
second one which consists of orientation (North o1,
South o2) and distance (zero d0, close d1, normal d2,
distant d3)

L7 = 2{o3,o4} × 2{d0,d1,d2,d3} longitude position of first object with respect to the
second one which consists of orientation (East o3,
West o4) and distance (zero d0, close d1, normal d2,
distant d3)

by:‡

Ai,Aj; v2v3; o3; +−; o1o3; o1, d1d2; o3, d2.

This tuple represents a movement of an object Ai with respect to Aj; Ai has
a normal or quick velocity, v2v3; and east orientation of movement o3; Ai is
moving away from Aj, +, and Aj is moving towards Ai, −; Ai possible ori-
entations of movement are north or east, o1o3; Ai is to the north at a close or
normal distance with respect to Aj, o1, d1d2 (qualitative latitude); and Ai is to
the east at a normal distance with respect to Aj, o3, d2 (qualitative longitude).
Notice that there is a difference between the real orientation (direction) of the
movement of the first object (represented by L3) and the allowed orientations

‡ Henceforth, for a better reading, we eliminate the curly brackets in the sets and the paren-
thesis in the tuples, and we use semicolon “; ” to separate two consecutive components of the
movement.
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(directions) of this movement (given by L5). For instance, when a car is mov-
ing North on a highway, its real orientation L3 is North (o1), while its allowed
directions may be North, East and West (o1o3o4) in order to allow the car to
change lanes, but it is not allowed move South (o2), because it may cause an
accident.

3.2 Composition Tables
Composition tables constitute the most common method for obtaining new in-
formation in Qualitative Spatial Reasoning [3] . In our system (see Table 2),
we consider the composition of movements, i.e., given the movement descrip-
tion of an object Ai with respect to Aj and a description of Aj movement with
respect to Ak, we will infer movement description of Ai with respect to Ak.

Notice that, in the last row and column of the Table 2, for the composition
of two movements with the same orientation or in the latitude (or, similarly
longitude) and distances ds and du, will be a movement with the same ori-
entation or, and the distance obtained as the qualitative sum of ds and du,
which is the maximum of these two qualitative values, i.e., dmax{s,u}. This is
a specific choice in our system, motivated for the applications we have taken
into consideration so far (presented in Section 4), but could be changed easily
for other applications. The method provides “safe” reasoning (the smallest
possible distance between object and obstacle is always taken into account).
Notice that such a behavior is highly desirable when safety is considered as
the most important goal, e.g., in the collision avoidance system that will be
introduced in what follows.

Table 2: Composition table for qualitative latitude (longitude), where r ∈
{1, 2, 3, 4} and s, u ∈ {0, 1, 2, 3}.

PPPPPPPPAiAj

AjAk or, d0 or, du

or, d0 or, d0 or, du
or, ds or, ds or, dmax{s,u}

3.3 Table-based Decision
We introduce a movement control system which is able to modify the veloc-
ity and orientation of the object’s movement, in order to achieve the desired
goal (mainly collision avoidance). We focus on the modification of velocity,
because of the applications presented in the next section. However, the same
ideas can be applied to control the orientation of the movement.
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The change of the velocity of object Ai (denoted by vAi) is determined by
the distance and the velocity difference between the Ai and the closest obsta-
cle. We make use of the PDL introduced in [13] and introduce three relations
(called programs in the context of PDL) for modifying the velocity denoted
by Dec, Inc and Man, meaning decreasing, increasing and maintaining the
velocity, respectively. The table-based control system is presented in Table 3,
where d denotes qualitative distance between the object and the closest ob-
stacle, whereas dv stands for the qualitative velocity difference between the
object and the closest obstacle.

Table 3: The movement control rules.

H
HHH

HHd

dv
v−3 v−2 v−1 v0 v1 v2 v3

d0 Man Man Dec Dec Dec Dec Dec

d1 Inc Man Man Dec Dec Dec Dec

d2 Inc Inc Man Man Man Dec Dec

d3 Inc Inc Inc Inc Inc Inc Inc

The velocity difference dv can take seven qualitative values, namely: v−3,
v−2, v−1 ,v0, v1, v2, v3, meaning zero, slow, normal and quick, with positive
and negative values. The table is interpreted as a set of so called ”if–then”
rules in order to decide which program needs to be used, given the values of
v and dv. For instance, the element of the second row and seventh column
can be interpreted as follows: if the object and the obstacle are close and the
object is moving much faster than the obstacle, then decrease the velocity of
the object, that is:

”If d = d1 and dv = v3 then use the program Dec”.

The intuitive meaning of all control rules from the Table 3 can be explained
in the following general way:

• if the controlled object moves much faster than the obstacle or the dis-
tance between them is small, then the controlled object should decrease
its velocity (Dec),

• if the controlled object moves much slower than the obstacle or the
distance between them is big, then the controlled object should increase
its velocity (Inc),
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• otherwise maintain the velocity of the controlled object (Man).

The movement control system enables to maintain a safe distance between
the controlled object and the obstacle. Therefore, it may be used in such ap-
plications as avoiding collisions with obstacles or following another object,
as we will see in section 4. The rules presented in the Table 3 are based on
these applications however, they can be easily adapted to other applications
related to controlling movements.

3.4 Using Logic in our system
Firstly, we present the Syntax and Semantics logic used in our approach, that
is, the PDL for movements presented in [13].

The PDL for movements
The language of logic consists of a set of formulas Φ and a set of programs
Π, which are defined recursively on disjoint sets Φ0 and Π0, respectively. Φ0

is called the set of atomic formulas which can be thought of as abstractions of
properties of states. Similarly, Π0 is called the set of atomic programs which
are intended to represent basic instructions:

• Φ0 = V ∪ L, where V is a denumerable set consisting of propositional
variables and L = L1 × · · · × L7, intended to represent atomic labels.

• If ϕ and ψ are formulas and a is a program, then ϕ→ ψ (propositional
implication),⊥ (propositional falsity) and [a]ϕ (program necessity) are
also formulas. As usual, ∨ and ∧ represent logical disjunction and con-
junction, respectively; whereas 〈a〉 represents program possibility.

• The set Π0 of specific programs is defined as follows:

Π0 = {revx | x ∈ L} ∪ {⊗x,y | x, y ∈ L} ∪
∪ {Decsx, Mansx, Incsx | s ∈ {0, 1, 2, 3, 4}, x ∈ L}.

• If a and b are programs and ϕ is a formula, then (a; b) (“do a followed
by b"), a ∪ b (“do either a or b, nondeterministically"), a∗ (“repeat a a
nondeterministically chosen finite number of times") and ϕ? (“proceed
if ϕ is true, else fail") are also programs.

The intuitive meaning of programs revx is considered to be the reverse of
the movement x, that is, if x represents a movement of Ai with respect to
Aj, then revx is the movement of Aj with respect to Ai. In addition, ⊗x,y
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is compose the movement labeled by x, with the movement labeled by y.
Moreover, programs Decsx, Mansx, and Incsx for s ∈ {0, 1, 2, 3, 4} have the
intuitive meaning of modifying (increasing, maintaining, or decreasing) the
velocity of the movement labeled by x and change its orientation towards os,
for s = 1, 2, 3, 4 (to the North, South, East and West, resp.).

The semantics of the logic is defined as usual in PDL [1]. We focus only
in the definition of the specific programs Decsx, Mansx and Incsx, used in our
system. For every s ∈ {0, 1, 2, 3, 4}, and x = (x1; . . . ;x7) ∈ L:

• m(Decsx)(m(x)) ⊆ m(y), where¶ y = (y1; . . . ; y7) ∈ L, being y1 =

x1,

y2 =

{
vk1−1 . . . vkr−1 if x2 = vk1 . . . vkr , k1 > 0

v0vk1−1 . . . vkr−1 if x2 = v0vk1 . . . vkr
and y3 = os.

• m(Mansx)(m(x)) ⊆ m(y), where y = (y1; . . . ; y7), being y1 = x1,
y2 = x2 and y3 = os.

• m(Incsx)(m(x)) ⊆ m(y), where y = (y1; . . . ; y7), being y1 = x1,

y2 =

{
vk1+1 . . . vkr+1 if x2 = vk1 . . . vkr , kr < 3

vk1+1 . . . vkr+1v3 if x2 = vk1 . . . vkrv3
and y3 = os.

Notice that the previous definition formalizes the intuitive meaning of Decsx
as a binary relation such that u is related to v iff v gives the description of a
movement obtained by decreasing the velocity and modifying the orientation
towards os. Similarly for Mansx and Incsx.

Our specific system
In order to describe the collision avoidance procedure for an object Ai with
respect to an object Aj we distinguish the following states:

• “safe” – Ai can increase its velocity without danger of a collision with
Aj ;

• “stable” – Ai should maintain its velocity in order to keep a safe dis-
tance with respect to Aj ;

• “danger” – there is a danger of a collision with Aj , therefore Ai should
brake.

¶ Note that the left part of the inclusion represents a relation, m(Decsx), applied to a set, m(x),
with the usual meaning of the set of all the elements which are related to some element in m(x).
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Given objects Ai, Aj we denote:

ϕdm,vn = (A1, A2; dm; vn; l4; l5; l6; l7),

where m ∈ (0, 3), n ∈ (−3, 3) and l4, l5, l6, l7 are arbitrary values such that
l4 ∈ L4, l5 ∈ L5, l6 ∈ L6, l7 ∈ L7. Then we express the above mentioned
states by means of the following formulas, corresponding to procedure from
Table 3:

ϕsafe =(ϕd1,v−3
∨ ϕd2,v−3

∨ ϕd2,v−2
∨ ϕd3,v−3

∨ ϕd3,v−2
∨ ϕd3,v−1

∨ ϕd3,v−0
∨ ϕd3,v1 ∨ ϕd3,v2 ∨ ϕd3,v3);

ϕstable =(ϕd0,v−3 ∨ ϕd0,v−2 ∨ ϕd1,v−2 ∨ ϕd1,v−1 ∨ ϕd2,v−1 ∨ ϕd2,v0

∨ ϕd2,v1);

ϕdanger =(ϕd0,v−1 ∨ ϕd0,v0 ∨ ϕd0,v1 ∨ ϕd0,v2 ∨ ϕd0,v3 ∨ ϕd1,v0

∨ ϕd1,v1 ∨ ϕd1,v2 ∨ ϕd1,v3 ∨ ϕd2,v2 ∨ ϕd2,v3).

The language of PDL enables to express basic programming instructions [1],
e.g., “if – then” condition and “while” loop:

if ϕ then π1 else π2 =
(
(ϕ?;π1) ∪ (¬ϕ?;π2)

)
;

while ϕ do π =
(
(ϕ?;π);¬ϕ?

)
.

As a result we are able to express the movement control procedure§ as fol-
lows: (

ϕsafe?;
(
(ϕsafe?; Inc)∗;ϕstable?

))
∪
(
ϕstable?;

(
(ϕstable?;Man)∗;¬ϕstable?

))
∪
(
ϕdanger?;

(
(ϕdanger?;Dec)∗;ϕstable?

))
,

which intuitively means that if the state is “safe” then increase the velocity
until you obtain the “stable” state. If the state is “stable” then maintain the
current velocity until the state changes. Finally if the state is “danger” de-
crease the velocity until you obtain “stable” state.

Since language of our PDL for movements is expressive enough to de-
scribe our movement control approach and it is known [13] that this logic
is decidable and possesses a sound and complete axiomatization, there is a
possibility of tight integration of both approaches which is one of our future
plans.

§ For simplicity, we omit here the subscripts and superscripts from Inc, Man and Dec,
because they will be clear from the context in our scenarios.
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4 IMPLEMENTATION AND EXPERIMENTS

The approach is implemented in ROS, which is one of currently most popu-
lar open source frameworks for writing robot software [14], capable to con-
trol numerous robot platforms, such as: PR2, Robonaut 2, REEM, TurtleBot,
iRobot Roomba, Lego Mindstorm and many more. ROS enables us to use
the same implementation in real robots and perform tests by using simulators
such as STAGE – a 2D freeware robotic simulator [7], which provides a vir-
tual word where different mobile robots together with sensors and objects can
be simulated and visualized. Moreover, the implementation may be tested in
3D simulators, e.g., V-rep [15] (which we consider as a future work).

The implementation is divided into several separate modules, called nodes.
Every node gathers messages through input topics, processes data and sends
messages via output topics to other nodes. The constructed structure of nodes
and topics is presented in Figure 3, where the oval shapes denote nodes, while
the arrows represent topics.

• The /stageros node is the simulator node which publishes informa-
tion from simulated sensors.

• The node /qualitative_values translate quantitative data into
qualitative values as described in the Section 2.2.

• Then, the /composition node is used in order to infer new infor-
mation with the method introduced in Section 3.2.

• Afterwards, /control modifies the velocity of the object, depending
on its own velocity and the velocity and distance to the obstacle, as
described in the Section 3.3.

All this information is sent to the simulator. The whole process is in a loop
which repeats until the end of the simulation. The STAGE simulator displays
objects and informs about collision whenever it occurs.

In what follows, we present two scenarios, namely following an object and
collision avoidance. In both scenarios we will use the following notation, as
depicted in Figure 4.:

• Ai, Aj, Ak denote cars, whereas vAi
, vAj

, vAk
denote their velocities,

• drs denote the qualitative distance between vehicles Ar and As, where
r, s ∈ {i, j, k}.
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Figure 3: The program graph of our implementation.

Notice that dij and djk are obtained after translation of quantitative data from
sensors, as explained in Section 2.2. On the other hand, dik is not available
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-Ai

vAi

-� dij

-Aj

vAj

-� djk

-� dik

Ak

Figure 4: The scenario setup.

from sensors but inferred by means of the composition tables for distances
(Table 2). The movement of Ai is controlled using the information of the
distances and the difference of velocities vAi and vAj (Table 3) – we assume
that Ai has an access to such an information.

4.1 Experiment 1: Following an Object
In the first experiment, we consider only two of objects Ai and Aj, where Aj

is moving with a constant velocity and direction, whereas Ai has to follow Aj.
The cars behavior is presented in Figure 5 by means of 2 screenshots obtained
from the simulator. Notice, that since only qualitative values are used, the
exact distance between objects is unknown and as a result, it is impossible to
maintain an exact constant distance between the Ai and the Aj. The distance
between them increases and decreases during the simulation (see Figure 8a),
however, it always remains safe. Consequently, Ai follows Aj without having
a collision or letting Aj go too far from Ai.

Ai Aj

(a)

Ai Aj

(b)

Figure 5: Experiment 1: Following an object. The distance between Ai and Aj

constantly fluctuates from the situations presented in (a) and (b).

4.2 Experiment 2: Collision Avoidance
The second experiment models a more complex situation. A number of cars
are stuck in a traffic jam, whereas other cars are moving towards the same
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Ai Aj Ak

-�
dij

(a)

Ai Aj Ak

-�
dij

(b)

Ai Aj Ak

COLLISION

(c)

Figure 6: Experiment 2, test 1. Ai is unable to infer dik and, as a result a
collision occurs.

traffic jam and may not be able to stop in order to avoid a collision. Such a
situation is common on highways and leads to dangerous collisions of numer-
ous vehicles. The scenario consists of two moving vehicles, namely Ai and Aj

and cars stuck in a traffic jam with Ak being the last car in the traffic jam. To
make it more complicated, we assume also that Ai is a truck with long braking
distance. We assume that each vehicle has information about its distance to
the closest object in front of it. We will study how the information gathered
by Aj (namely, the djk distance) can be used by Ai to avoid the collision. We
perform two tests: in the first one, we assume that Ai does not have the in-
formation about the distance djk; while in the second test, this information
is available to Ai, so it can infer (by means of the composition table) its dis-
tance to the traffic jam djk. In the first test, we consider what happens if Aj

stops suddenly, while Ai cannot infer djk. In such a case the input values to
the movement control of Ai are: the qualitative distance dij between Ai and
Aj and the qualitative velocity difference dv between velocities of Ai and Aj.
In this case, Aj stops suddenly just before the traffic jam, while Ai, having a

16



longer braking distance, hits Aj and the collision occurs. The simulation of
the test 1 is presented in the Figure 6, with a collision occurring in frame (c).
In the second test, the distance value djk is sent from Aj to Ai. Since, Ai has an
access to dij and djk, it can infer dik (the composition Table 2). Afterwards,
the movement control module is used twice: (a) to maintain a safe distance
between Ai and Aj, and (b) to maintain a safe distance between Ai and Ak. Fi-
nally, the safer of two programs for movement control is chosen, i.e., the one
that leads to smaller velocity of Ai. In other words, Ai movement control per-
forms two tasks, namely (a) tries to avoid the collision with Aj using dij value
and (b) tries to avoid the collision with Ak using the inferred dik distance. The
task (b) may be also considered as a prediction of future Aj movement which
enables Ai to start braking earlier and avoiding the collision. The simulation
of the second test is presented in Figure 7.

Ai Aj Ak

-�
dik

(a)

Ai Aj Ak

-�
dik

(b)

Ai Aj Ak

STOP

(c)

Figure 7: Experiment 2, test 2. Ai is able to infer dik and as a result, it avoids
the collision.

The comparison of Ai speed in case of test 1 and test 2 is presented in
Table 4. In the first case, i.e., without access to djk, Ai deceleration time (293

ms) is not long enough to stop the vehicle, therefore a crash occurs. On the
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other hand, in the test 2, Ai begins deceleration much earlier which results in
longer deceleration time (472 ms) and collision avoidance.

Table 4: Comparison of deceleration with and without an access to djk.

Experiment deceleration time beginning of deceleration

Test 1: Collision Avoidance 293 ms 945 ms
without access to djk

Test 2: Collision Avoidance 472 ms 663 ms
with access to djk

A detailed comparison of the Ai velocity is presented in Figure 8b where the
thin line corresponds to the test 1 and the thick line corresponds to the test
2. In the test 2, Ai starts breaking earlier than in the test 1 which results in
collision avoidance. In fact the early breaking enables to obtain a “stable”
state, i.e., a state in which there is no danger of collision and no need to
change the velocity – it corresponds to the horizontal segment in the middle
of a velocity graph for test 2.
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Figure 8: Velocity of objectAi in Experiment 1 – following an object (a), and
Experiment 2 – collision avoidance (b).

5 CONCLUSIONS AND FUTURE WORK

We have presented a movement control system expressible in the logic de-
signed in [13]. Some of the advantages of this logic have been exploited in
order to represent the qualitative composition of movements, which enables
the control of movements, in particular for collision avoidance. On the other
hand, we have obtained stable qualitative values by considering hysteresis
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loops. Finally, we have implemented the system in ROS and tested it with
computer simulator STAGE. Two experiments have been performed related
to following an object and collision avoidance in traffic jam scenarios. The re-
sults confirm the possibility of using our system in practical applications, and
our approach is flexible enough in order to accomplish other tasks related to
movement of vehicles or robots. Since the movement control procedure is ex-
pressible in PDL, we consider a tight integration with logic as a future work,
by considering systems for model checking and satisfiability checkers, which
will allow us to reason in the system in a more general way. We also consider
temporal extensions of PDL, in the line of [8] and further experiments of the
obtained methods.
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