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We introduce the syntax, semantics, and an axiom system for a PDL-based extension of

the logic for order of magnitude qualitative reasoning, developed in order to deal with the
concept of qualitative velocity, which together with qualitative distance and orientation,

are important notions in order to represent spatial reasoning for moving objects, such as

robots. The main advantages of using a PDL-based approach are, on the one hand, all
the well-known advantages of using logic in AI, and, on the other hand, the possibility of

constructing complex relations from simpler ones, the flexibility for using different levels

of granularity, its possible extension by adding other spatial components, and the use of
a language close to programming languages.
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1. Introduction

Qualitative reasoning, QR, tries to simulate the way humans think in almost all
situations. For example, we do not need to know the exact value of velocity, dis-
tance, position of our car in order to park it when we are so lucky to find a parking
spot in the city center. A form of QR is order-of-magnitude reasoning, where the
quantitative information is substituted by a finite number of qualitative classes,
for example: zero, small, medium, and large; moreover, some relations between the
qualitative classes, such as negligibility, closeness . . . , may be defined 1,2. The level
of granularity, that is, the number of qualitative classes used, depends on the prob-
lem in question. Recent applications of order-of-magnitude reasoning can be seen,
for example, in 3,4.
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The use of logic in QR, as in other areas of AI, improves the capability of formal
representation of real world problems and provides insights into their most suitable
solving methods. Some ideas arisen from logic, such as theorem-proving and model-
construction techniques are used in AI 5. As an example, in 6 three uses of logic
in AI are considered: as a tool of analysis, as a basis for knowledge representation,
and as a programming language. There are several applications of logics for QR,
7,8, many of them in spatial reasoning. As examples of logics for order of magnitude
reasoning, see 9,10; a theorem prover for one of these logics can be seen in 11, which
has been implemented in 12.

Propositional Dynamic Logic, PDL, provides the possibility of constructing com-
plex relations from simpler ones and the use of a language very close to programming
languages. Some recent applications of PDL in AI can be seen in 13,14,15. In addi-
tion, PDL is a decidable logic 16 whereas, for example, first-order logic is not. In our
approach, we extend PDL with a finite number of constants in order to represent
the qualitative classes, for this reason, it is a special kind of Hybrid Logic 17,18.

The concepts of qualitative velocity 19,20,21, together with qualitative distance
and orientation, are very important in order to represent spatial reasoning for mov-
ing objects, such as robots. Several papers have been published in this line (see, for
example 22,23,24,25) which try to make progress in the development of qualitative
kinematics models, as given in 26,27,28. The problem of the relative movement of one
physical object with respect to another can been treated by the Region Connection
Calculus 29 and the Qualitative Trajectory Calculus 30. However, as far as we know,
there is no work which proposes a logic framework to manage qualitative velocity.
From a programming point of view, ReadyLog 31,32 has been successfully applied for
controlling soccer robots in RoboCup competitions 33. ReadyLog is an extension of
GoLog 34, based on the situation calculus 35, a first-order logic for reasoning about
actions and their effects in a dynamically changing world. However, as said above,
in our approach with PDL, we integrate the qualitative classes in our language and,
moreover, we have the possibility of constructing complex programs from simpler
ones, by using composition, union, etc. As in 19, we consider qualitative velocity
of an object B with respect to another object A, represented by two components:
module and orientation, each one given by a qualitative class. If we consider the
velocity of B with respect to A, and the velocity of C with respect to B, then the
composition of these two velocities consists of obtaining the velocity of C with re-
spect to A. For example, if (Q, l) represents a velocity of B with respect to A, which
is quick towards the left, and (N, r) is a velocity of C with respect to B, which is
normal towards the right, then its composition is the velocity of C with respect to
A, that could be either (Q, l) or (N, l), that is, a quick or normal velocity towards
the left. The results of these compositions could depend on the specific problem we
are dealing with. In the following section, we make some common-sense assumptions
about these compositions (denoted by P1-P6), as a way of example. From now on,
for representing a velocity, we will give its module and direction by omitting, for
simplicity, the reference to the objects A,B,C, etc. whenever this information is
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clear from the context.

In this paper, we present the syntax, semantics and an axiom system for an
extension of PDL for order of magnitude qualitative reasoning to deal with the
concept of qualitative velocity. We study the decidability of the satisfiability problem
and the soundness and completeness of the proposed logic. The main advantages
of this approach are, on the one hand, all the advantages of using logic in AI
commented above, and, on the other hand, the possibility of constructing complex
relations from simpler ones, the flexibility for using different levels of granularity, its
possible extension by adding other spatial components, and the use of a language
close to programming languages. We consider also an extension of our approach to
fuzzy qualitative reasoning 24,36,37, by introducing qualitative classes as four-tuple
fuzzy numbers, thus we could use fuzzy arithmetic operations in order to get the
results of the composition of velocities.

The paper is organized as follows. In Section 2, the syntax and semantics of
the proposed logic is introduced, and explained on the basis of some examples.
In Section 3, we give an example of axiom system for our logic and we discuss
completeness and the decidability of the problem of satisfiability. In Section 4, an
extension of our approach by considering fuzzy qualitative velocities is presented;
finally, some conclusions and future works are discussed in Section 5.

2. Syntax and Semantics

To begin with, let us consider the following example. The sets L1 = {zero (Z),
slow (S), normal (N), quick (Q)}, and L2 = {front-left (fl), straight-front (sf),
front-right (fr), left (l), none (n), right (r), back-left (bl), straight-back (sb), back-
right (br)}, represent, respectively, the qualitative velocities (its module) and the
orientations. Therefore, a pair (S,bl) may represent a slow velocity towards the
back-left orientation.

In order to introduce the language of our logic, we consider a set of formulas
Φ and a set of programs Π, which are defined recursively on disjoint sets Φ0 and
Π0, respectively. Φ0 is called the set of atomic formulas which can be thought of as
abstractions of properties of states. Similarly, Π0 is called the set of atomic programs
which are intended to represent basic instructions.

Formulas:

• Φ0 = V∪C, where V is a denumerable set consisting of propositional variables
and C = L1 × · · · × Lk, where L1, . . . , Lk are intended to represent finite sets
of labels.

• If ϕ and ψ are formulas and a is a program, then ϕ→ ψ (propositional implica-
tion), ⊥ (propositional falsity) and [a]ϕ (program necessity) are also formulas.
As usual, ∨ and ∧ represent logical disjunction and conjunction, respectively;
whereas 〈a〉 represents program possibility.
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Notice that, as the elements of C have k components, we could consider different
spatial components, such as position, distance, cardinal directions, etc. In the pre-
vious example and from now, we will consider for simplicity only two components
of velocity: module and orientation (i.e. C = L1 × L2), but this approach can be
extended.

Programs:

• Π0 = {⊗? | ? ∈ C}, a set of specific programs.
• If a and b are programs and ϕ is a formula, then (a; b) (“do a followed by b”), a∪b

(“do either a or b, nondeterministically”), a∗ (“repeat a a nondeterministically
chosen finite number of times”) and ϕ? (“proceed if ϕ is true, else fail”) are
also programs.

Example 1. We can consider the program (S, bl)? in order to represent the intuitive
meaning of being a slow velocity towards the back-left orientation; (S, bl)?∪ (Q, r)?
means, being either a slow velocity towards the back-left orientation, or a quick
velocity towards the right orientation. The intuitive meaning of program ⊗(S,bl)
is to compose a slow velocity towards the back-left orientation with the current
state, ⊗∗(S,bl) represents the composition a finite number of times of a slow velocity

towards the back-left orientation, and ⊗(S,bl);⊗(N,sb) means to compose a slow
velocity towards the back-left orientation followed by the composition of a normal
velocity towards the straight back orientation.

We now define the semantics of our logic. A modelM is a tuple (W1×· · ·×Wk,m)
where each Wi is a non-empty set divided into |Li| qualitative classes,a being |Li| the
number of elements of the set of labels Li defined above. By abuse of notation, we
will use the same symbols to represent the qualitative classes and its corresponding
formulas. On the other hand, m is a meaning function such that m(p) ⊆ W , for
every propositional variable, m(?) = ?, for every ? ∈ C and m(a) ⊆W ×W , for all
atomic program a. Moreover, if ϕ and ψ are formulas and a, b are programs, then
we have the following:

• m(ϕ→ ψ) = (W rm(ϕ)) ∪m(ψ)
• m(⊥) = ∅
• m([a]ϕ) = {w ∈W : for all v ∈W, if (w, v) ∈ m(a) then v ∈ m(ϕ)}
• m(a ∪ b) = m(a) ∪m(b)
• m(a; b) = m(a);m(b)
• m(a∗) = m(a)∗ (reflexive and transitive closure of relation m(a)).
• m(ϕ?) = {(w,w) : w ∈ m(ϕ)}

Given a model M = (W,m), a formula ϕ is true in u ∈ W whenever we have
that u ∈ m(ϕ). We say that ϕ is satisfiable if there exists u ∈ W such as ϕ is true

aIn order to simplify the notation, from now on, we will use W instead of W1 × · · · ×Wk.
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in u. Moreover, ϕ is valid in a model M = (W,m) if ϕ is true in all u ∈W , that is,
if m(ϕ) = W . Finally, ϕ is valid if ϕ is valid in all models.

The informal meaning of some formulas is given below. The states u ∈ W

referred to, are to be understood as objects affected by some form of qualitative
velocity. With this idea in mind, when we say that u is a slow velocity towards
some orientation, we are abusing notation to refer to an object which is moving at
a “slow velocity towards some orientation” with respect to another object. Let ϕ
be any propositional formula, then:

• 〈(S, bl)?〉ϕ is true in u iff u is a slow velocity towards the back-left orientation,
and ϕ is true in u.

• 〈(S, bl)? ∪ (Q, r)?〉ϕ is true in u iff u is either a slow velocity towards the back-
left orientation or a quick velocity towards the right orientation, and ϕ is true
in u.

• [⊗(Q,r)]ϕ is true in u iff for every velocity u′ obtained by composing u with a
quick velocity towards the right orientation, ϕ is true in u′.

• [⊗∗(Q,r)]ϕ is true in u iff for every velocity u′ obtained by the repetition of the
composition of u with a quick velocity towards the right orientation a nonde-
terministically chosen finite number of times, ϕ is true in u′.

• [⊗(S,bl);⊗(N,sb)]ϕ is true in u iff for every velocity u′ obtained by composing
u with a slow velocity towards the back left orientation, followed by a normal
velocity towards the straight back orientation, ϕ is true in u′.

• (Q, r) → [⊗(S,bl)]
(
(N, br) ∨ (Q, r)

)
means that, if the current velocity is quick

towards the right orientation then, for every value obtained by composing it
with a slow velocity towards the back-left orientation, we have either a normal
velocity towards the back-right orientation or a quick velocity towards the right
orientation.

• [((Z, n)?;⊗(S,r))∗;¬(Z, n)?]¬(Z, n) says that while the velocity is zero with no
orientation, it has to be composed with a small velocity towards the right.

• (Q, sb) → [(⊗(Q,sf); (¬(N, sf)?;⊗(Q,sf))∗; (N, sf)?](N, sf) if the velocity is quick
towards the straight back, repeat the composition with a quick velocity towards
the straight front until the velocity is normal towards the straight front.

Observe that, in the last two formulas, we use the advantages of PDL for expressing
programming commands such as while . . . do and repeat . . . until.

We can construct the desired logic depending on the granularity and the spe-
cific properties required. For simplicity in the presentation, let us consider a simple
case in which the set of qualitative velocities is L1 = {z, v1, v2, v3}, where z, v1, v2, v3

represent zero, slow, normal and quick, respectively; and the set of qualitative orien-
tations is L2 = {n, o1, o2, o3, o4}, representing, respectively, none, front, right, back,
and left orientations.

Remark 1. In the presentation of the following properties, we have to take into
account the specific framework we are working in. We are considering just four
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qualitative classes for the module of the velocities, and five qualitative classes for
the orientation of the velocity. This means that we have to somehow paraphrase
the physical properties in terms of the qualitative framework stated in the previous
paragraph, i.e., the properties are given for qualitative classes and can be changed
according to the assumptions of the problem under study.

Assume that the following properties are required for the composition of quali-
tative velocities.

P1 the composition of a zero velocity with any other velocity and orientation, gives
as a result the latter velocity and orientation, that is, ⊗(z,n) plays the role of
the neutral element for the composition of velocities.

P2 the composition of two velocities with the same module but with opposite
orientations, is the zero velocity.

P3 the composition of two velocities with the same module but with perpendicular
orientations, will be a velocity with the same module, towards any of both
orientations.

P4 the composition of two different velocities with perpendicular orientation, will
be the maximum of both velocities, with the orientation of the maximum ve-
locity.

P5 the composition of two different velocities with the same orientation will be,
either the maximum of both velocities, or even a velocity greater than this one,
with the same orientation.

P6 the composition of two different velocities with opposite orientation, will be
either the maximum of both velocities or even a velocity smaller than this one,
with the orientation of the maximum velocity.

The previous properties can be expressed semantically as follows. Given a model
(W,m), for every v, v′, vr, vs, vp, vq ∈ L1, o, o′, oj, oj+1, oj+2 ∈ L2, we have:

(1) m(⊗(v,o);⊗(z,n)) = m(⊗(v,o))
(2) m(⊗(v,oj);⊗(v,oj+2)) = m(⊗(z,n)), j = 1, 2.
(3) m(⊗(v,oj+1))(m(v, oj)) ⊆ m(v, oj) ∪m(v, oj+1), j = 1, 2, 3.
(4) m(⊗(vs,oj+1))(m(vr, oj)) ⊆ m(vs, oj+1), j = 1, 2, 3 and r < s.
(5) m(⊗(vs,o))(m(vr, o)) ⊆ m(vs, o) ∪m(v3, o), being r < s, and s = 2, 3.
(6) m(⊗(vs,oj+2))(m(vr, oj)) ⊆ m(vs, oj+2)∪m(vq, oj+2), being j = 1, 2; r < s, s = 2, 3;

and q = s− 1.

As an example of 6, if (vr, oj) =(slow, front), and (vs, oj+2)=(quick, back), then
its composition will be either (quick, back), or (normal, back), being normal the
qualitative class immediately smaller than quick.

Example 2. Let us consider the case study of ball interception of simulated soccer
agents, presented in 21. Suppose that the ball is located at a point B and is moving
with a velocity (vb, ob) and the robot is at point R and it is not moving at this instant
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B

R

(vc, oc)

(vb, ob)

OK

Fig. 1. Catching a ball when the robot is not moving

B

R

(vr, or)
(vc, oc)

(vb, ob)

OK

Fig. 2. Catching a ball when the robot is moving

(see Figure 1). Suppose also that the robot can calculate the qualitative velocity
needed to catch the ball at the current instant and position and this velocity is
(vc, oc). A simple vectorial argument leads us to the fact that the composition of
both velocities has to be the velocity needed to catch the ball. This condition can be
expressed in our language by the formula (z, n)→ [⊗(vc,oc);⊗(vb,ob)]OK, where (z, n)
means that the robot is not moving at this instant, and OK means that the velocity
of the robot is the correct one in order to catch the ball. This situation can be
checked as the robot is moving towards the ball and has to be corrected if it is not
OK. In the case that the robot is also moving with velocity (vr, or) (see Figure 2),
the desired velocity in order to capture the ball is the composition of this velocity
with (vr,−or), (vc, oc) and (vb, ob), where −or means the opposite orientation to or.
As a consequence, the formula (vr, or) → [⊗(vr,−or);⊗(vc,oc);⊗(vb,ob)]OK represents
the fact that the robot is moving at the desired velocity and orientation. If the
previous formula is not true, the velocity (either its module, or its orientation, or
both) has to be corrected. Using again the expressiveness of PDL, we can represent
the correction of the velocity (if needed) as follows: Let us suppose that the previous
formula is not true. This means that the velocity has to be corrected. For simplicity,
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let us suppose that the current velocity is (v, oj−1), instead of (v, oj), that is, the
robot is moving towards a orientation which is on the left to the desired one. In this
case, the correction can be expressed by the following formula:

(v, oj−1)→ [(⊗(s,oj+1); (¬(vr, or)?; (⊗(s,or+1))
∗; (v, oj)?](v, oj)

which means that if the orientation of velocity is to the left of the desired one, repeat
the composition with a slow velocity towards the right of the desired direction until
the velocity is the correct one.

From a syntactical point of view, the conditions reflecting the required properties
have to be included as axioms of our system. This situation is considered in the
following section.

3. The axiom system QV

We introduce an axiom system, called QV, in order to deal with the required proper-
ties P1-P6 presented in the previous section. Let us consider the following specific
axioms.

Specific axiom schemata:

For every v, v′, vr, vs, vp, vq ∈ L1, o, o′, oj, oj+1, oj+2 ∈ L2:

S1 [⊗(v,o);⊗(z,n)]ϕ↔ [⊗(v,o)]ϕ
S2 [⊗(v,oj);⊗(v,oj+2)]ϕ↔ [⊗(z,n)]ϕ, j = 1, 2.
S3 (v, oj)→ [⊗(v,oj+1)]

(
(v, oj) ∨ (v, oj+1)

)
, j = 1, 2, 3.

S4 (vr, oj)→ [⊗(vs,oj+1)](vs, oj+1), j = 1, 2, 3 and r < s.
S5 (vr, o)→ [⊗(vs,o)](vs, o) ∨ (v3, o), being r < s, and s = 2, 3.
S6 (vr, oj) → [⊗(vs,oj+2)]

(
(vs, oj+2) ∨ (vq, oj+2)

)
, being j = 1, 2; r < s, s = 2, 3; and

q = s− 1.

QE
∨

(v,o)∈L1×L2
(v, o)

QU ?→ ¬# for every ? ∈ L1 × L2 and # ∈ L1 × L2 − {?}

The previous axioms have the following intuitive meaning:

• S1-S6 reflect the properties P1-P6 assumed above.
• QE and QU mean the existence and uniqueness of the qualitative classes,

respectively.

The rest of axioms are those specific to PDL.

Axiom schemata for PDL:

A1 All instances of tautologies of the propositional calculus.
A2 [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ)
A3 [a](ϕ ∧ ψ)→ ([a]ϕ ∧ [a]ψ)
A4 [a ∪ b]ϕ→ ([a]ϕ ∨ [b]ϕ)



May 10, 2010 14:5 WSPC/INSTRUCTION FILE BuMuOjPDLQV

9

A5 [a; b]ϕ→ [a][b]ϕ
A6 [ϕ?]ψ → (ϕ→ ψ)
A7 (ϕ ∧ [a][a∗]ϕ)→ [a∗]ϕ
A8 (ϕ ∧ [a∗](ϕ→ [a]ϕ))→ [a∗]ϕ (induction axiom)

Inference Rules:
(MP) ϕ,ϕ→ ψ ` ψ (Modus Ponens) (G) ϕ ` [a]ϕ (generalization)

In order to prove the soundness of our system, we give the following result.

Lemma 1. All the axioms of QV are valid formulas and all the inference rules
preserve validity.

Proof. As a way of example, we prove the validity of axiom S4 of QV, that is,
(vr, oj) → [⊗(vs,oj+1)](vs, oj+1), j = 1, 2, 3 and r < s. We must prove that, for every
model M = (W,m), we have that m((vr, oj)) ⊆ m([⊗(vs,oj+1)](vs, oj+1)) holds. If
w ∈ m((vr, oj)), then, by definition, w ∈ (vr, oj). Let w′ ∈W be such that (w,w′) ∈
m(⊗(vs,oj+1)), this means that w′ ∈ m(⊗(vs,oj+1))(m((vr, oj))) b. Now, we use the
semantic condition for property P4, given above:

(4) m(⊗(vs,oj+1))(m(vr, oj)) ⊆ m(vs, oj+1), j = 1, 2, 3 and r < s

Thus, we obtain that w′ ∈ m(vs, oj+1), that is, w ∈ m([⊗(vs,oj+1)](vs, oj+1)).

As a consequence, we have the soundness of our system as follows.

Theorem 1. For every formula ϕ, if ϕ is a theorem then ϕ is a valid formula.

The decidability of the satisfiability problem and the completeness proof for this
logic can be obtained following the line used in 10.

For decidability, the small model property has to be proved. This property says
that if a formula ϕ is satisfiable, then it is satisfied in a model with no more than 2|ϕ|

elements, where |ϕ| is the number of symbols of ϕ. This result can be obtained by the
technique of filtrations used in modal logic. However, while in modal logic it is used
the concept of subformula, in PDL we have to rely on the Fisher-Lander Closure.
First of all, we define the following two functions by simultaneous induction, being
Φ the set of formulas, Π the set of programs of our logic and ϕ,ψ ∈ Φ, a, b ∈ Π:

FL : Φ→ 2Φ; FL� : {[a]ϕ | a ∈ Π, ϕ ∈ Φ} → 2Φ

(a) FL(p) = {p}, for every propositional variable p.
(b) FL(?) = ?, for all ? ∈ C.
(c) FL(ϕ→ ψ) = {ϕ→ ψ} ∪ FL(ϕ) ∪ FL(ψ)

bRecall that if R is a relation defined in a set W , and X ⊆W , then:

R(X) = {w ∈W | there exists x ∈ X such that (x, w) ∈ R}



May 10, 2010 14:5 WSPC/INSTRUCTION FILE BuMuOjPDLQV

10

(d) FL(⊥) = {⊥}
(e) FL([a]ϕ) = FL�([a]ϕ) ∪ FL(ϕ)
(f) FL�([a]ϕ) = {[a]ϕ}, being a an atomic program.
(g) FL�([a ∪ b]ϕ) = {[a ∪ b]ϕ} ∪ FL�([a]ϕ) ∪ FL�([b]ϕ)
(h) FL�([a; b]ϕ) = {[a; b]ϕ} ∪ FL�([a][b]ϕ) ∪ FL�([b]ϕ)
(i) FL�([a∗]ϕ) = {[a∗]ϕ} ∪ FL�([a][a∗]ϕ)
(j) FL�([ψ?]ϕ) = {[ψ?]ϕ} ∪ FL(ψ)

FL(ϕ) is called the Fisher-Lander closure of formula ϕ.

The following result provides upper bounds for the number of elements of FL(ϕ),
denoted also by |FL(ϕ)|, in terms of |ϕ|. It is proved by simultaneous induction
following the ideas presented in 16, taking into account our specific definition of
FL(?) = ?, for all ? ∈ C, in the basis case of this induction.

Lemma 2.

(a) For any formula ϕ, |FL(ϕ)| ≤ |ϕ|.
(b) For any formula [a]ϕ, |FL�([a]ϕ)| ≤ |a|, being |a| the number of symbols of

program a.

We now define the concept of filtration. First of all, given a formula ϕ and a
model (W,m), we define the following equivalence relation on W :

u ≡ v def⇐⇒ ∀ψ ∈ FL(ϕ)[u ∈ m(ψ) iff v ∈ m(ψ)]

The filtration structure (W,m) of (W,m) by FL(ϕ) is defined on the quotient
set W = W/ ≡, and the qualitative classes in W are defined by ? = {u | u ∈ ?}, for
every ? ∈ C. Furthermore, the map m is defined as follows:

(1) m(p) = {u | u ∈ m(p)}, for every propositional variable p.
(2) m(?) = m(?) = ?, for all ? ∈ C.
(3) m(a) = {(u, v) | ∃u′ ∈ u and ∃v′ ∈ v such that (u′, v′) ∈ m(a)}, for every

atomic program a.

m is extended by recursion to compound propositions and programs as described
previously in the definition of model.

The following two lemmas are crucial in this section and can be proved again
following the ideas presented in 16. To do this, we have to take into account two
facts: first, our definition of Fisher-Lander closure includes the qualitative classes;
second, the properties (1)–(6) required to our models for atomic programs, such as
m(⊗(v,o);⊗(z,n)) = m(⊗(v,o)) , are maintained in the filtration structure, as a direct
consequence of our previous definitions.

Lemma 3. (W,m) is a finite model.

Now, the Filtration Lemma is as follows.
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Lemma 4. Let (W,m) be a model and (W,m) defined from a formula ϕ as above.
Consider u, v ∈W , then:

(1) For all ψ ∈ FL(ϕ), u ∈ m(ψ) iff u ∈ m(ψ).
(2) For all [a]ψ ∈ FL(ϕ),

(a) if (u, v) ∈ m(a) then (u, v) ∈ m(a);
(b) if (u, v) ∈ m(a) and u ∈ m([a]ψ), then v ∈ m(ψ).

As a consequence or the previous lemmas, we can give the following result, called
the Small Model Theorem.

Theorem 2. Let ϕ a satisfiable formula, then ϕ is satisfied in a model with no
more than 2|ϕ| states.

Proof. If ϕ is satisfiable, then there exists a model (W,m) and u ∈ W such that
u ∈ m(ϕ). Let us consider FL(ϕ) the Fisher-Lander closure of ϕ and the filtration
model (W,m) of (W,m) by FL(ϕ) defined previously. From Lemma 3, (W,m) is
a finite model and by Lemma 4 (Filtration Lemma), we have that u ∈ m(ϕ). As
a consequence, ϕ is satisfied in a finite model. Moreover, W has no more elements
than the truth assignments to formulas in FL(ϕ), which by Lemma 2 is at most
2|ϕ|.

In order to get the completeness of our system, that is, every valid formula
is a theorem, we construct a nonstandard model from maximal consistent sets of
formulas and we use a filtration for nonstandard models to collapse it to a finite
standard model.

A nonstandard model is any structure N = (N,mN ) such as it is a model in
the sense of Section 2 in every respect, except that, for every program a, mN (a∗)
needs not be the reflexive and transitive closure of mN (a), but only a reflexive and
transitive relation which contains mN (a). Given a nonstandard model (N,mN )
and a formula ϕ, we can construct the filtration model (N,mN ) as above, and the
Filtration Lemma (Lemma 4) also holds in this case.

As stated before, to obtain completeness, we define a nonstandard model
(N,mN ) as follows: N contains all the maximal consistent sets of formulas of our
logic and mN is defined, for every formula ϕ and every program a, by:

mN (ϕ) = {u | ϕ ∈ u}; mN (a) = {(u, v) | for all ϕ, if [a]ϕ ∈ u then ϕ ∈ v}

Using the previous definition, all the properties for nonstandard models are satisfied,
even the ones for our specific atomic programs, as we can see in the following result.

Lemma 5. (N,mN ) verifies all the required properties for non-standard models.

Proof. As a way of example, let us prove property (4) of models, that is:

mN (⊗(vs,oj+1))(mN (vr, oj)) ⊆ mN (vs, oj+1), j = 1, 2, 3 and r < s
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If u ∈ mN (⊗(vs,oj+1))(mN (vr, oj)), this means that there exists u′ ∈ mN (vr, oj),
such that (u′, u) ∈ mN (⊗(vs,oj+1)), that is, (vr, oj) ∈ u′. By the above definition of
mN (⊗(vs,oj+1)), for all formula ϕ, [⊗(vs,oj+1)]ϕ ∈ u′ implies ϕ ∈ u. Now, (vr, oj) ∈ u′
implies, by axiom S4, that [⊗(vs,oj+1)](vs, oj+1) ∈ u′. As a consequence, (vs, oj+1) ∈ u,
which proves that u ∈ mN (vs, oj+1).

Now, we can give the following completeness result.

Theorem 3. For every formula ϕ, if ϕ is valid then ϕ is a theorem.

Proof. We need to prove that if ϕ is consistent, then it is satisfied. If ϕ is consistent,
it is contained in a maximal consistent set u, which is a state of the nonstandard
model constructed above. By the Filtration Lemma for nonstandard models, ϕ is
satisfied in the state u of the filtration model (N,mN ).

4. Towards fuzzy qualitative reasoning

In this section, we introduce some ideas about how our approach could be extended
to fuzzy qualitative reasoning, in the line of 37,38. As velocity and orientation are
given by qualitative classes, we consider fuzzy qualitative spaces in order to rep-
resent them in fuzzy qualitative polar coordinates, as given in 38, and we translate
them to fuzzy qualitative Cartesian coordinates. Then, we apply fuzzy arithmetic
operations 37 in order to obtain the composition of the velocity. First, we consider
fuzzy numbers in order to represent the qualitative classes of velocity and orienta-
tion. We use the membership distribution of a normal fuzzy number given by the
4-tuple [a, b, τ, β], where a ≤ b and a × b ≥ 0. In our case, the values of a and b

would represent the milestones which determine each qualitative class. For example,
if we consider for the module of the velocity the qualitative classes z, v1, v2, v3, (zero,
slow, normal and quick) and its values are normalised to the numeric range [0, 1],
then they could be represented as follows:

z = [0, 0, 0, 0]; v1 = [0, 0.2, 0, 0.2]; v2 = [0.4, 0.7, 0.1, 0.2]; v3 = [0.9, 1, 0.1, 0]

Similarly, we could give a representation for the qualitative classes which represent
the orientation. Now, we follow the ideas about fuzzy qualitative trigonometry pre-
sented in 38. For simplicity we consider now seven qualitative classes n, fl, l, bl, fr, r,
and br to represent, respectively, the none, front-left, left, back-left, front-right, right
and back-right orientations. These classes could be represented by fuzzy 4-tuples as
follows.

n = [0, 0, 0, 0];

fl = [0,
π

4
, 0.1, 0.1]; l = [

π

4
+ 0.1,

3π
4

+ 0.1, 0.1, 0.1]; bl = [
3π
4

+ 0.2, π, 0.1, 0];

fr = [−π
4
, 0, 0.1, 0.1]; r = [−3π

4
− 0.1,−π

4
− 0.1, 0.1, 0.1]; br = [−π,−3π

4
− 0.2, 0, 0.1]
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Fig. 3. The fuzzy qualitative classes for orientation

As stated above, the composition of velocities can be obtained from fuzzy quali-
tative Cartesian coordinates by means of fuzzy arithmetic operations. We have each
velocity given by its fuzzy qualitative polar coordinates [[r1, r2, r3, r4][θ1, θ1, θ1, θ1]],
where [r1, r2, r3, r4] represents the fuzzy qualitative velocity (its module) and
[θ1, θ1, θ1, θ1] the fuzzy qualitative orientation. We could obtain first their fuzzy
Cartesian coordinates (for more details, see 38), and then use the fuzzy definition
of sum (that is, [a, b, τ, β] + [c, d, γ, δ] = [a+ c, b+ d, τ + γ, β + δ]) and other fuzzy
arithmetic operations, to obtain the desired composition of these velocities. In the
previous step, we have to take into account that these velocities could not be given
with respect to the same reference system, because, as stated in the introduction,
we are considering composition of a velocity of B with respect to A and a velocity
of C with respect to B, in order to obtain the velocity of C with respect to A. Thus,
we could obtain the required properties for the composition of velocities (similar to
our properties P1-P6), but in this case these properties are obtained from fuzzy
qualitative operations. These properties should have to be expressed as axioms for
the new logic constructed for this approach, in a similar way as done in the pre-
vious sections. We believe that this approach would give more expressiveness and
could be more appropriate when the granularity increases and could be extended
following the ideas presented in 24 .

5. Conclusions and future work

A PDL-based extension of the logics for order of magnitude qualitative reasoning
has been presented in order to deal with qualitative velocity. We have exploited
the expressiveness of PDL not only for dealing with the qualitative composition of
velocities with any orientation, but also for using programming commands, such as
while . . . do and repeat . . . until. An axiom system for a simple case has been defined,
which may be extended depending on the application required. The formulas which
syntactically express the needed properties have been included in the axiom system.
The completeness and decidability of the satisfiability problem of the given logic
has been discussed. Moreover, an extension of this logic approach by using fuzzy
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qualitative reasoning is proposed.
As future work, we consider to exploit the advantages of the fuzzy qualitative

approach and the study of completeness and decidability for the proposed extension.
Moreover, we will extend this approach to 3D, as in 20, and we will consider other
spatial components, such as position, distance, cardinal direction, etc. Last, but not
least, we have planned the design of a theorem prover for this logic, in the line of 39.
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10. A. Burrieza, E. Muñoz Velasco and M. Ojeda-Aciego, “Closeness and distance in order
of magnitude qualitative reasoning via PDL,” Lecture Notes in Artificial Intelligence
5988 (2010) 71–80.
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