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An automatic theorem prover for a proof system in the style of dual tableaux for the relational
logic associated with modal logic K has been introduced. Although there are many well known
implementations of provers for modal logic, as far as we know, it is the first implementation
of a specific relational prover for a standard modal logic. There are two main contributions in
this paper. First, the implementation of new rules, called (k1) and (k2), which substitute the
classical relational rules for composition and negation of composition in order to guarantee
not only that every proof tree is finite but also to decrease the number of applied rules in dual
tableaux. Second, the implementation of an order of application of the rules which ensures
that the proof tree obtained is unique. As a consequence, we have implemented a decision
procedure for modal logic K. Moreover, this work would be the basis for successive extensions
of this logic, such as T, B and S4.
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1. Introduction

Implementation of theorem provers are required in many areas of computer science.
They are required for performing the four major reasoning tasks: verification of
validity, verification of entailment, model checking, and verification of satisfaction.
Relational proof systems in the style of Rasiowa-Sikorski, called dual tableaux, are
powerful tools for dealing with all these tasks. The system of the basic relational
logic provides the common relational core of all dual tableaux. Therefore, for each
particular theory we need only to expand the basic relational logic with specific
relational constants and/or operators satisfying the appropriate axioms, and then
we design specific rules corresponding to given properties of a logic and we adjoin
them to the core set of the rules. Dual tableau systems have been constructed for
many non-classical logics [6, 9, 11, 12, 16, 17, 25–27].

The election relational systems has many advantages [22]. Namely, it provides
a clear-cut method of generating proof rules from the semantics and the resulting
deduction system is well suited for automated deduction purposes. Moreover, it
provides a standard and intuitively simple way of proving completeness and it
enables an almost automatic way of transforming a complete dual tableau proof tree
into a complete Gentzen calculus proof tree. Furthermore, for each particular theory
we need only to expand the basic relational logic with specific relational constants
and/or operators satisfying the appropriate axioms, then we design specific rules
corresponding to given properties of a logic and we adjoin them to the core set of
the rules.
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In this paper, we introduce an automatic theorem prover, called RePMLK , for
a relational proof system in the style of dual tableaux for the relational logic asso-
ciated with standard modal logic K, given in [15]. As far as we know, it is the first
implementation of a relational theorem prover for a standard modal logic. However,
there are some related works in this subject. For example, an implementation of
the proof system for the classical relational logic is described in [8] which could be
used for modal logic, but as it considers the classical relational rules, it is not well
suited for modal logic K. On the other hand, in [20] there have been proved many
theorems of relational algebras. In [10], an implementation of translation proce-
dures from non-classical logics to relational logic is presented. Moreover, in [7, 14]
there are implementations of relational logics for order of magnitude reasoning.

Many provers have been designed which can deal with modal logic. Very opti-
mised ones like MSPASS [9] and FaCT [8]; generic logical frameworks like Isabelle
[29]; and some offer users the possibility to create a new prover, like LWB [19],
LoTReC [13] LeanTAP [5] and TWB [2]. As said in [3], although efficiency is an
important aspect, depending on the intended application, other qualities can be as
important, such as portability, construction of counter-models, user-friendliness, or
small size. In this line, RePMLK has been developed in Prolog and tries to take
advantage of the powerful capabilities of this language: fast prototyped, modular,
and extensible to other modal logics. In fact, our prover could be useful for educa-
tional applications, i.e. where their purpose is as tools to teach theory proof. For
example, by using its trace mode, it explains step by step the full process of the
proof, indeed, it is very intuitive to see in every step which rule has been applied
and how it works. Furthermore, there is an option which asks the user what rule
should be applied in each step.

Our aim is to design a prover which applies the relational rules in a predefined
order, without using any external strategy such as backtracking, loop-checking, etc.
For example, in the case of general tableaux, if the current node is composed by
♦a∧♦b∧�¬b. Then choosing ♦a first will erroneously lead to an open tableau. But
choosing ♦b first will give a closed tableau. The tableaux prover will backtrack over
the choices of ♦-formulas to avoid this problem. In our case, in a similar situation
(see example 3.2 below) we will obtain directly a closed tree because our rules
consider all the choices of ♦-formulas in the same step, that is, we could say that
our prover makes a breadth-first search. As we only apply the rules of the dual
tableaux, the soundness and completeness of our dual tableaux, proved in [15], is
also the soundness and completeness of our implementation.

There are two main contributions in this paper. First, the implementation of
new rules, called (k1) and (k2), which substitute the classical relational rules for
composition and negation of composition in order to guarantee not only that ev-
ery proof tree is finite but also to decrease the number of applied rules in dual
tableaux. This improvement comes from the fact that the classical relational rule
for composition may be applied infinitely many times if a formula with composi-
tion appears in a branch, and the negation of composition rule introduces a new
variable in each step [8]; our rules not introduce branching and their application for
sets of formulas with many compositions and negation of composition at least may
contribute to decrease the length of the proof. Second, the definition of an order
of application of the rules which ensures that the proof tree obtained is unique. As
a consequence of both contributions, we can say that RePMLK is an implementa-
tion of a decision procedure for modal logic K. Moreover, this work would be the
basis for successive extensions of modal logic K, such as T, B and S4, where we will
have to modifiy/substitute the rules (k1) and (k2) for suitable ones for each type
of logic. Finally, the dual-tableau presented is somewhat close to labelled tableau
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[23], to sequent calculi [24] and to PDL [1]. However, as far a we know, our rules
(k1) and (k2) have not any similar in these approaches.

The paper is organized as follows. In section 2, we present the relational proof
system for modal logic K. In section 3, we present the prover RePMLK on the
basis of some examples. Finally, some conclusions and prospects of future work are
presented in section 4.

2. Relational proof system for modal logic K

In this section, we sketch the construction of a relational proof system in the style
of dual tableaux for the relational logic associated with standard modal logic K,
presented in [15].

First of all, we define the relational logic, RLK, appropriate for expressing for-
mulas of the modal logic K. The language of the relational logic RLK consists of
the symbols from the following pairwise disjoint sets: OV = {z0, z1, . . .}, a count-
able infinite set of object variables; RV = {S1, S2, . . . }, a countable infinite set
of relational variables; {R}, the set consisting of the relational constant R repre-
senting the accessibility relation from K-models; {−,∪,∩, ; }, the set of relational
operations.

The set of relational terms, RT, is the smallest set which includes RV and satisfies:
If P,Q ∈ RT, then −P, P ∪ Q,P ∩ Q, (R;P ) ∈ RT. RLK-formulas are of the form
ziTzj , where zi, zj are object variables and T is any relational term.

An RLK-model is a structureM = (U,R,m), where U is a non-empty set, R is a
binary relation on U , and m is a meaning function satisfying: m(S) = X×U , where
X ⊆ U , for every relational variable S; m(R) = R, i.e., R is the interpretation of the
relational constant R; m extends to all the compound relational terms as follows:
m(−P ) = (U ×U)−m(P ); m(P ∪Q) = m(P )∪m(Q); m(P ∩Q) = m(P )∩m(Q);
m(R;P ) = {(x, y) ∈ U × U : ∃z ∈ U ((x, z) ∈ R ∧ (z, y) ∈ m(P ))}. Let M =
(U,R,m) be an RLK-model. A valuation in M is any function v : OV→ U .

An RLK-formula ziTzj is satisfied in an RLK-modelM by a valuation v,M, v |=
ziTzj whenever (v(zi), v(zj)) ∈ m(T ). A formula is true in M whenever it is sat-
isfied by all the valuations in M, and it is RLK-valid whenever it is true in all
RLK-models.

The translation of K-formulas into relational terms starts with a one-to-one
assignment of relational variables to the propositional variables, denoted by τ ′.
Then the translation τ of formulas is defined inductively as follows: τ(p) = τ ′(p),
for any propositional variable p ∈ V; τ(¬ϕ) = −τ(ϕ); τ(ϕ ∨ ψ) = τ(ϕ) ∪ τ(ψ);
τ(ϕ∧ψ) = τ(ϕ)∩ τ(ψ); τ(〈R〉ϕ) = (R; τ(ϕ)). The desired result of preservation of
validity via translation of formulas of modal logic into relational terms is as follows.

Theorem 2.1 : For every K-formula ϕ, ϕ is K-valid iff z1τ(ϕ)z0 is RLK-valid.

We present now the relational proof system for our logic given in [15]. First of all,
we introduce an order of relational terms and relational formulas which will be
useful in the rest of the paper. We define the length of a relational term T , l(T ),
given by: l(S) = 0, for every relational variable S; l(−T ) = l(T ) + 1; l(T#T ′) =
l(T )+ l(T ′)+1, for # ∈ {∪,∩} and l(R;T ) = l(T )+1. For i = 0, 1 and a relational

term T , we define: −iT
def=

{
T, if i = 0
−T, if i = 1 .

The type of a relational term is defined as follows. If a relational term is of
the form −iSj , for i = 0, 1 and for some relational variable Sj , then it is said of
type (−iS). If a relational term is of the form −−T , for some relational term T ,
then it is said to be of type (−). A relational term is said to be of type (−i#),
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# ∈ {∪,∩}, (resp. (−i; )) whenever it is of the form −i(P#Q) (resp. −i(R;P )),
for some relational terms P and Q. We define a strict linear order < on a finite set
of types as follows: (S) < (−S) < (−) < (∪) < (−∩) < (∩) < (−∪) < (; ) < (−; ).
The type of a relational term T is denoted by t(T ).

Now, we define inductively an ordering < on the set of all relational terms, RT.
We say that T < T ′ if and only if either of the following possibilities holds:

(1) t(T ) < t(T ′), or
(2) T and T ′ are of the same type and l(T ) < l(T ′), or
(3) T and T ′ are of the same type and of the same length and satisfy either of

the following: j < k, if T = −iSj and T ′−iSk, for some relational variables Sj , Sk

and i = 0, 1; or P < P ′, if T = −−P and T ′ = −−P ′ or T = −i(R;P ) and
T ′ = −i(R;P ′), for some relational terms P and P ′ and i = 0, 1; or P < P ′ or both
P = P ′ and Q < Q′, if T = −i(P#Q) and T ′ = −i(P ′#Q′), for some relational
terms P, P ′, Q,Q′, i = 0, 1, and # ∈ {∪,∩}.

We extend the ordering < to all RLK-formulas as follows: zk1Tzk2 < zl1T
′zl2

whenever either of the following conditions is satisfied: k1 < l1; or k1 = l1 and
T < T ′; or k1 = l1 and T = T ′ and k2 < l2.

Let X be a finite set of RLK-formulas, let # ∈ {∪,∩}, and let i = 0, 1. A formula
ϕ of type (−i#) (resp. (−i; )) is said to be minimal with respect to X and (−i#)
(resp. (−i; )) whenever for every formula ψ ∈ X of the same type as ϕ, ϕ < ψ.
Similarly, a formula ϕ of type (−) is said to be minimal with respect to X and (−)
whenever for every formula ψ ∈ X of type (−), ϕ < ψ.

Relational proof systems are determined by the axiomatic sets of formulas and
rules which apply to finite sets of relational formulas. The rules have the following
general form: (∗)

X ∪Ψ

X ∪ Φ
or (∗∗)

X ∪Ψ

X ∪ Φ1 |X ∪ Φ2
, where X, Ψ, Φ, Φ1, Φ2 are finite non-empty

sets of formulas such that X ∩Ψ = ∅. A rule of the form (**) is a branching rule. In
a rule, the set above the line is referred to as its premise and the set(s) below the
line is (are) its conclusion(s). A rule of the form (∗) (resp. (∗∗)) is applicable to a
finite set Y if and only if Y = X ∪Ψ and Φ 6⊆ Y (resp. Φ1 6⊆ Y or Φ2 6⊆ Y ), that is
an application of a rule must introduce a new formula. A new variable is a variable
which appears in the conclusion of one rule but does not appear in its premise.

Decomposition rules of RLK-dual tableau are (∪), (∩), (−∪), (−∩), (−), (k1),
and (k2) of the following forms:

For every k ≥ 1 and for all relational terms P and Q,

(∪)
X ∪ {zk(P ∪Q)z0}
X ∪ {zkPz0, zkQz0}

(∩)
X ∪ {zk(P ∩Q)z0}

X ∪ {zkPz0} |X ∪ {zkQz0}
(−)

X ∪ {zk−−Pz0}
X ∪ {zkPz0}

(−∪)
X ∪ {zk−(P ∪Q)z0}

X ∪ {zk−Pz0} |X ∪ {zk−Qz0}
(−∩)

X ∪ {zk−(P ∩Q)z0}
X ∪ {zk−Pz0, zk−Qz0}

For all k, l,m ≥ 1 and for all relational terms Pi, Qj , 1 ≤ i ≤ j, 1 ≤ j ≤ m,

(k1)
X ∪ {zk−(R; Q1)z0, . . . , zk−(R; Qm)z0}
X ∪ {zk1−Q1z0, . . . , zk1+(m−1)−Qmz0}

(k2)
X ∪ {zk(R; Pi)z0}i∈{1,...,l} ∪ {zk−(R; Q1)z0, . . . , zk−(R; Qm)z0}

X ∪ {zk1Piz0, . . . , zk1+(m−1)Piz0}i∈{1,...,l} ∪ {zk1−Q1z0, . . . , zk1+(m−1)−Qmz0}

provided that zk(R; T )z0 6∈ X and zk−(R; T ′)z0 6∈ X for all terms T and T ′ and k < k1 and k1 is the

minimum natural number such that zk1 is a new variable.

The specific rule of RLK-dual tableau is of the form: For all k ≥ 1, j ≥ 0 and for
every relational variable S, (right)

X ∪ {zkSzj}
X ∪ {zkSzl, zkSzj}

provided that l is the minimum natural

number such that zl occurs in X ∪ {zkSzj} and l 6= j and zkSzl 6∈ X.
Notice that rules (k1) and (k2) have been presented separately only for clarity. If

we admit that some of the sets of formulas can be empty, rule (k1) could be elimi-
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nated. In this case, we should say what sets in the premise and in the conclusion of
(k2) could be empty. On the other hand, rule (right) has been introduced in order
to ensure the completeness of our prover. For details, see proof of Proposition 2.5
in [15].We could reduce the number of rules if we use only formulas in negation
normal form, as in [5]. However, we give this more general approach in order to be
able to extend our prover for logics which might not have involutive negation in a
future work.

A finite set of RLK-formulas is said to be an RLK-axiomatic set whenever it is a
superset of {zkPzj , zk−Pzj}, for some object variables zk, zj and for some relational
term P . Let z1Tz0 be an RLK-formula.

An RLK-proof tree of z1Tz0 is a tree with the following properties: the formula
z1Tz0 is at the root of this tree; each node except the root is obtained by an
application of a rule to its predecessor node; the rules are applied with the following
ordering: (−), (∪), (−∩), (∩), (−∪), (right), (k1), and (k2); a node does not have
successors whenever its set of formulas is an RLK-axiomatic set or none of the
rules is applicable to its set of formulas. A branch of an RLK-proof tree is closed
whenever it contains a node with an RLK-axiomatic set of formulas. An RLK-proof
tree is closed if and only if all of its branches are closed. An RLK-formula z1Tz0 is
RLK-provable whenever there is a closed RLK-proof tree of it, which is then referred
to as its RLK-proof.

The following result ensures the equivalence between validity of a K-formula and
provability in our relational system.

Theorem 2.2 : (Relational Soundness and Completeness of K) For every
K-formula ϕ, we have that ϕ is K-valid iff z1τ(ϕ)z0 is RLK-provable.

It is easy to prove that our system terminates, because the maximal modal degree
always decreases after application of rules (k1) and (k2). Moreover, it is a decision
procedure because the order of application of the rules ensures that the proof tree
for every formula is unique. For details, see [15].

3. The implementation of RePMLK

In the previous section, we have presented a new proof system based on relational
dual tableaux for modal logic K. The decision procedure developed in the theoreti-
cal framework has improved the rules and the engine of the prover, and the result is
a new ATP, called RePMLK

1. In this section, we summarize how RePMLK works
in three levels: representation of the formulas, rules of the new proof system, and
significant enhancements in the engine of the prover. From now on, we will work
with the relational translation modal formulas as explained in the previous section.
A formula is represented as the Prolog fact: rel([1], T, z1, z0). In node [1] it stores
the formula z1Tz0.
Prolog knows the leaf in which it must apply any rule, because the predicate
leaves([[1,...,1],..., [1,...,k]]) stores the leaves that the tool must close.
Prolog will try to satisfy the relations in the leaf nodes. If the tool can close all
the leaves in the tree, then formula is valid. As said above, rules of RLK have the
following general form:

(∗)
X ∪Ψ

X ∪ Φ
or (∗∗)

X ∪Ψ

X ∪ Φ1 |X ∪ Φ2

1The full implementation (developed in SWI-Prolog Version 5.6.33 for Windows and Mac platforms) is
available from the address http://files.getdropbox.com/u/1639661/Klogicv2.zip where can be seen outputs
for different formulas introduced to the prover.
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(Before) [1]

[. . . ]

[i1,i2,. . . ,ik]

X

. . .

. . .

[1]

[. . . ]

[i1,i2,. . . ,ik]

[i1,i2,. . . ,ik,1]

X \ Φ ∪ Φ1

[i1,i2,. . . ,ik,2]

X \ Φ ∪ Φ2

. . .

. . .

(After)

Figure 1. Division of a leaf of the tree.

Now, we explain how our prover works when (∗∗) is applicable to a set of formulas
Y = X∪Ψ, the case of (∗) is similar. If Y appears in the leaf [i1, i2, . . . , ik], the sys-
tem divides this leaf in 2 new leaves, labeled as [i1, i2, . . . , ik, 1] and [i1, i2, . . . , ik, 2]
by copying X ∪Φ1 to the node [i1, i2, . . . , ik, 1], and X ∪Φ2 to the node [i1, i2, . . . ,
ik, 2] (see Figure 1).
We have translated the rules for RLK to clauses in Prolog1 and now, we outline the
implementation of the powerful new rules (k1) and (k2). These rules are related
to the composition and opposite composition relations. The predicate k1 or k2

will call the (k1) rule when in a set of formulas, there is an opposite composition
formula with any variables but none composition formula with a similar pattern of
variables. And if both patterns exist then the (k2) rule will be called.

k1_or_k2(IdLeaf,rel(Leaf,opp(comp(r,Q)),Zk, Z0)):-
\+rel(IdLeaf,comp(r,_),Zk, Z0),
k1(IdLeaf,rel(IdLeaf,opp(comp(r,Q)),Zk, Z0)),!.

k1_or_k2(IdLeaf,rel(IdLeaf,opp(comp(r,Q)),Zk, Z0)):-
rel(IdLeaf,comp(r,_),Zk, Z0),
k2(IdLeaf,rel(IdLeaf,opp(comp(r,Q)),Zk, Z0)),!.

When Prolog tries to apply the (k1) rule in the leaf selected by the en-
gine (depth first search), it checks if in IdLeaf leaf any formula matches
with rel(IdLeaf,opp(comp(r,Q)),Zk,Z0) and in the same IdLeaf leaf that none
formula matches with rel(IdLeaf,comp(r, ), Zk, Z0). Then Prolog searches a
list of formulas ListRels using allOppCompRels predicate, with the pattern
rel(IdLeaf,opp(comp(r,Qi)),Zk,Z0) (i = 1 . . . n) for the instantiated variables
Zk,Z0. If this rule has not been applied previously in IdLeaf for these vari-
ables (rule used), then the list of formulas rel(IdLeaf,opp(Qi)),Zki,Z0) (being
Zki new variables) are deduced and stored in ListRelsDeduced using add relsK1
predicate. Also, the order of the formulas of the IdLeaf leaf is held using
actualize list rels ordered that insert the deduced formulas in the adequate
place, and ListRelsDeduced formulas are added to node IdLeaf with the predicate
called add list of relations.
k1(IdLeaf,rel(IdLeaf,opp(comp(r,Q)),Zk, Z0)):-

\+rel(IdLeaf,comp(r,_),Zk, Z0),
allOppCompRels(rel(IdLeaf,opp(comp(r,Q)),Zk, Z0), ListRels),

\+rule_used(Leaf,k1, ListRels),!,
add_relsK1(ListRels,ListRelsDeduced),
write_rule(’k1 ’, ListRels, ListRelsDeduced),
actualize_list_rels_ordered(IdLeaf,ListRelsDeduced),
add_list_of_relations(ListRelsDeduced),!.

Now, we focus our attention in the rule (k2). When Prolog matches any formula
in IdLeaf leaf with rel(IdLeaf,opp(comp(r,Q)), Zk, Z0) and any formula with
rel(IdLeaf, comp(r,P) ,Zk,Z0), (k2) decomposition rule can be applied. Then
Prolog searches a list of formulas ListOppcomRels with the pattern rel(IdLeaf,

opp(comp(r,Qi)), Zk,Z0) (i = 1 . . .m) using allOppCompRels predicate, and a
list of formulas ListComRels with the pattern rel(Leaf, comp(r, Pj), Zk, Z0)

1In [14], an explanation of the common rules for modal logics (union, intersection, etc.) is available.
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(j = 1 . . . n) using allCompRels predicate. Finally, if this rule has not been ap-
plied in the node IdLeaf, then the list of formulas with rel(IdLeaf,Pj, Zki,Z0)

and rel(IdLeaf, opp(Qi), Zki,Z0) (ListRelsDeduced) are deduced where Zki

are new variables using add relsK2 predicate. In the same way that (k1) rule,
ListRelsDeduced formulas are added to node IdLeaf and the order of the relations
of the IdLeaf leaf is held using actualize list rels ordered.

k2(Leaf,rel(IdLeaf,opp(comp(r,Q)), Zk, Z0)):-
rel(IdLeaf,comp(r,P), Zk, Z0),
allOppCompRels(rel(IdLeaf,opp(comp(r,Q)), Zk, Z0), ListOppcomRels),
allCompRels(rel(IdLeaf,comp(r,P), Zk, Z0), ListComRels),
append(ListOppcomRels, ListComRels,ListRelsK),
\+rule_used(IdLeaf,k2, ListRelsK),
add_relsK2(ListOppcomRels, ListComRels,ListRelsDeduced),
write_rule(’k2 ’, ListRelsK, ListRelsDeduced),
actualize_list_rels_ordered(IdLeaf,ListRelsDeduced),
add_list_of_relations(ListRelsDeduced),!.

The next problem is how RePMLK selects the adequate rule for the list of rela-
tional formulas in a leaf of the tree. We implement the ordering defined in section
2 as follows. First, we define the length of a relational term using lengthGreater,

lengthEqual, lengthRel predicates:

lengthGreater(T1,T2):-
lengthRel(T1,Length1),
lengthRel(T2,Length2),
Length1 > Length2,!.

lengthEqual(T1,T2):-
lengthRel(T1,Length1),
lengthRel(T2,Length2),
Length1 = Length2,!.

lengthRel(rel(_, Term,_,_),0):-
atom(Term),!.

...
lengthRel(rel(_,inter(P,Q),_,_),Length2):-

lengthRel(rel(_,P,_,_),Lengthp),
lengthRel(rel(_,Q,_,_),Lengthq),
Length1 is Lengthp+Lengthq,
Length2 is Length1+1,!.

lengthRel(rel(_,comp(r, T),_,_),Length1):-
lengthRel(rel(_, T,_,_),Length),
Length1 is Length+1,!.

Then, as we have described in section 2, the strict linear order < on a finite set of
types is defined by the typeGreater, typeEqual, linearorderTypes predicates as
follows:

typeGreater(Term1, Term2):-
linearorderTypes(Term1,NumTerm1),
linearorderTypes(Term2,NumTerm2),

NumTerm1 > NumTerm2,!.
typeEqual(X,H):-

linearorderTypes(Term1,NumTerm1),
linearorderTypes(Term2,NumTerm2),

NumTerm1=NumTerm2,!.

linearorderTypes(rel(_,Term,_,_),1):-
atomic(Term).

...
linearorderTypes(rel(_,inter(_,_),_,_),8).
linearorderTypes(rel(_,comp(_,_),_,_),9).
linearorderTypes(

rel(_,opp(comp(_,_)),_,_),10).

And now, we implement the ordering < on the set of all relational terms given
above, by using the relationalTermGreather predicate. A relational term is greater
than another one, if the type of the first one is greater than the type of the second
one; or they have the same type, and the length of the first one is greater than the
length of the second one; or they have the same type and the same length, and
the relational variables of the first one are greater than relational variables of the
second one (in terms of the lexicographic order).

We extend this order to all relational formulas by using the
relationalFormGreather predicate as follows. A formula is greater than an-
other one if the first variable of this formula is greater than the first variable of the
second formula; or both formulas have the same first variable and the relational
term of the first one is greater than the relational term of the second one; or the
first variable and the relational term are equal and the second variable of the first
formula is greater than the second variable of the second formula.

relationalTermGreather(rel(Leaf,R1,Zi1,Zj1), rel(Leaf,R2,Zi2,Zj2)):-
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typeGreater(rel(Leaf,R1,Zi1,Zj1), rel(Leaf,R2,Zi2,Zj2)),!.
relationalTermGreather(rel(Leaf,R1,Zi1,Zj1), rel(Leaf,R2,Zi2,Zj2)):-

typeEqual(rel(Leaf,R1,Zi1,Zj1), rel(Leaf,R2,Zi2,Zj2)),
lengthGreater(rel(Leaf,R1,Zi1,Zj1), rel(Leaf,R2,Zi2,Zj2)),!.

relationalTermGreather(rel(Leaf,R1,Zi1,Zj1), rel(Leaf,R2,Zi2,Zj2)):-
typeEqual(rel(Leaf,R1,Zi1,Zj1), rel(Leaf,R2,Zi2,Zj2)),
lengthEqual(rel(Leaf,R1,Zi1,Zj1), rel(Leaf,R2,Zi2,Zj2)),
relationalvariableGreather(rel(Leaf,R1,Zi1,Zj1), rel(Leaf,R2,Zi2,Zj2)),!.

relationalvariableGreather(rel(Leaf,R1,Zi1,Zj1), rel(Leaf,R2,Zi2,Zj2)):-
rel(Leaf,R1,Zi1,Zj1) @> rel(Leaf,R2,Zi2,Zj2).

relationalFormGreather(rel(Leaf,_,Zi1,_), rel(Leaf,_,Zi2,_)):- compare(>,Zi1,Zi2),!.
relationalFormGreather(rel(Leaf,R1,Zi,Zj1), rel(Leaf,R2,Zi,Zj2)):-

relationalTermGreather(rel(Leaf,R1,Zi,Zj1), rel(Leaf,R2,Zi,Zj2)),!.
relationalFormGreather(rel(Leaf,_,Zi,Zj1), rel(Leaf,_,Zi,Zj2)):- compare(>,Zj1,Zj2),!.

To obtain a sort of the list of the relations of a leaf, we use the classical quick sort
algorithm which uses the ordering defined previously. The list of relations ordered
(LRO) is stored in rels2List fact.

order_List_Rels(Leaf):-
initializeList(rels2List(Leaf,_)),
rels2list(Leaf),
retract(rels2List(Leaf, LR)),
relationalQuick_sort(LR,LRO),
asserta(rels2List(Leaf, LRO)).

relationalQuick_sort(List,S):-
q_sort(List,[],S),!.

q_sort([],A,A).
q_sort([H|T],A,S):-

pivoting(H,T,L1,L2),
q_sort(L1,A,S1),q_sort(L2,[H|S1],S).

pivoting(_,[],[],[]).
pivoting(H,[X|T],[X|L],G):-

relationalFormGreather(X,H),
pivoting(H,T,L,G).

pivoting(H,[X|T],L,[X|G]):-
\+relationalFormGreather(X,H),
pivoting(H,T,L,G).

Now, we show the engine of RePMLK . The main predicate in the inference engine
is rlk proof tree that is executed recursively until all the leaves are closed. This
predicate calls to execute rules guided by order which sorts the formulas of the
first leaf and applies the rules using this ordering. If a rule add new formulas to a
leaf, the engine of the prover adds these relations in the adequate position in order
to preserve the ordering defined previously.

rlk_proof_tree:-
leaves(L),

\+is_list_null(L),
execute_rules_guided_by_order,!.

rlk_proof_tree:-
write(’ VALID. All leaves closed’).

execute_rules_guided_by_order:-
first_leaf([FirstLeaf]),
order_List_Rels(FirstLeaf),
apply_rules_in_order(FirstLeaf),!,
press_a_key,!,
rlk_proof_tree.

execute_rules_guided_by_order:-
rlk_proof_tree.

apply_rules_in_order(FirstLeaf):-
rels2List(FirstLeaf,[]),!.

apply_rules_in_order(FirstLeaf):-
rels2List(FirstLeaf,[FirstRel|_]),
linearorderTypes(FirstRel,Num),
apply_one_rule(FirstLeaf,FirstRel,Num),!,
apply_rules_in_order(FirstLeaf),!.

apply_one_rule(FirstLeaf,FirstRel,2):-
not2(FirstLeaf,FirstRel)->axiomatic_set,!.

...
apply_one_rule(FirstLeaf,FirstRel,10):-
k2(FirstLeaf,FirstRel)->axiomatic_set,!.

While the tree has opened leaves, rlk proof tree is recursively called. If all leaves
are closed, then the system informs to the user that the proof is finished and it is
possible to trace (used rules predicate) what rules have been applied. The engine
of RePMLK uses the mechanism of pattern machine of Prolog to detect if exists
an axiomatic set in any leaf of the tree. In this case, it deletes the corresponding
leaf and informs to the user.

axiomatic_set:-
rel(NumLeaf,R,Zi,Zj),rel(NumLeaf,opp(R),Zi,Zj),
remove_leaf(NumLeaf,[rel(NumLeaf,R,Zi,Zj),rel(NumLeaf,opp(R),Zi,Zj)]),!.

Example 3.1 In this example, the modal formula ♦p → �(�¬q ∨ ♦q) stored in
’twb3.pl’ is satisfied by RePMLK with the Prolog predicates:

? toReom(’twb3.pl’,’reomtwb3.pl’),
run(’reomtwb3.pl’,’logreomtwb3.txt’).
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The predicate (toReom) translate the modal formula to a relational formula, then the predicate (prove)
call the inference engine of RePMLK . The following report in logreomtwb3.txt is returned:

Select:
-> 0 for trace mode and ouput by screen,
-> 1 for no trace mode and ouput by screen,
-> 2 for trace mode and ouput by file,
-> 3 for no trace mode and ouput by file,
-> 4 for configuration,
-> another character for full mode and output by file,

|: 2
::::: Input file: c:\myprograms\logickv2\axiomsreom\reomtwb3.pl
::::: Ejemplo 3 de twb
::::: http://twb.rsise.anu.edu.au/modal_logic_k_0
::::: Input en TWB: ~ ( <> p & [] ~ p )

formulaKLogic(not(and(diamond(p),square(not(p))))).

::::: Translated automatically to the following relational formula:

RELATIONS ORDERED IN LEAF [1]
rel([1], opp(inter(comp(r, p), opp(comp(r, opp(opp(p)))))), x, y)

[rel([1], opp(inter(comp(r, p), opp(comp(r, opp(opp(p)))))), x, y)]
____________________________________________________________ Opposite Intersection Rule
[rel([1], opp(comp(r, p)), x, y), rel([1], opp(opp(comp(r, opp(opp(p))))), x, y)]

RELATIONS ORDERED IN LEAF [1]
rel([1], opp(opp(comp(r, opp(opp(p))))), x, y)
rel([1], opp(comp(r, p)), x, y)

::::: NEXT STEP. Press Enter key to continue.

[rel([1], opp(opp(comp(r, opp(opp(p))))), x, y)]
_____________________________________ 2 Not Rule
[rel([1], comp(r, opp(opp(p))), x, y)]

RELATIONS ORDERED IN LEAF [1]
rel([1], comp(r, opp(opp(p))), x, y)
rel([1], opp(comp(r, p)), x, y)

::::: NEXT STEP. Press Enter key to continue.

[rel([1], opp(comp(r, p)), x, y), rel([1], comp(r, opp(opp(p))), x, y)]
____________________________________________________ k2 Rule
[rel([1], opp(p), a1, y), rel([1], opp(opp(p)), a1, y)]

RELATIONS ORDERED IN LEAF [1]
rel([1], opp(opp(p)), a1, y)
rel([1], opp(p), a1, y)

::::: Axiomatic set (close leaf): [1]
[rel([1], opp(opp(p)), a1, y), rel([1], opp(p), a1, y)]

::::: NEXT STEP. Press Enter key to continue.
::::: Variables used: [a1, x, y]
::::: VALID. Total Rules applications: 3

used_rules([1], notinter, [rel(opp(inter(comp(r, p), opp(comp(r, opp(opp(p)))))), x, y)])
used_rules([1], not2, [rel(opp(opp(comp(r, opp(opp(p))))))])
used_rules([1], k2, [rel(opp(comp(r, p)), x, y), rel(comp(r, opp(opp(p))), x, y)])

Notice that after the application of the k2 rule, the engine of RePMLK detects an axiomatic set and all the

leaves of the tree are finally closed. Then the formula is valid and a trace of the rules applied is returned.

Example 3.2 In this example, the modal formula (¬♦p ∧ ¬♦q ∧ ¬♦s ∧ ¬♦t) ∨
¬♦r ∨ ♦r is proved by RePMLK by applying only 3 rules, while other tableaux
based provers as Lotrec and TWB need to apply 17 and 18 rules, respectively. As
said previously, our rules take all the ♦-formulas in the same step.

formulaKLogic(or(or(not(diamond(u)), diamond(u)), and(not(diamond(p)), and(not(diamond(q)),
and(not(diamond(t)), not(diamond(t))))))).

::::: Translated automatically to the following relational formula:
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RELATIONS ORDERED IN LEAF [1]
rel([1], uni(uni(opp(comp(r, u)), comp(r, u)), inter(opp(comp(r, p)), inter(opp(comp(r, q)),

inter(opp(comp(r, t)), opp(comp(r, t)))))), x, y)

% - Rule applied

[rel([1], uni(uni(opp(comp(r, u)), comp(r, u)), inter(opp(comp(r, p)), inter(opp(comp(r, q)),
inter(opp(comp(r, t)), opp(comp(r, t)))))), x, y)]

______________________________________________________________ Union Rule
[rel([1], uni(opp(comp(r, u)), comp(r, u)), x, y), rel([1], inter(opp(comp(r, p)),

inter(opp(comp(r, q)), inter(opp(comp(r, t)), opp(comp(r, t))))), x, y)]

RELATIONS ORDERED IN LEAF [1]
rel([1], uni(opp(comp(r, u)), comp(r, u)), x, y)
rel([1], inter(opp(comp(r, p)), inter(opp(comp(r, q)), inter(opp(comp(r, t)),

opp(comp(r, t))))), x, y)

::::: NEXT STEP. Press Enter key to continue.

[rel([1], uni(opp(comp(r, u)), comp(r, u)), x, y)]
______________________________________________________________ Union Rule
[rel([1], opp(comp(r, u)), x, y), rel([1], comp(r, u), x, y)]

RELATIONS ORDERED IN LEAF [1]
rel([1], inter(opp(comp(r, p)), inter(opp(comp(r, q)), inter(opp(comp(r, t)),

opp(comp(r, t))))), x, y)
rel([1], opp(comp(r, u)), x, y)
rel([1], comp(r, u), x, y)

::::: NEXT STEP. Press Enter key to continue.

::::: Axiomatic set (close leaf): [1]
[rel([1], opp(comp(r, u)), x, y), rel([1], comp(r, u), x, y)]

::::: NEXT STEP. Press Enter key to continue.
::::: Variables used: [a1, x, y]
::::: VALID. Total Rules applications: 2

used_rules([1], union, [rel(uni(uni(opp(comp(r, u)), comp(r, u)), inter(opp(comp(r, p)),
inter(opp(comp(r, q)), inter(opp(comp(r, t)), opp(comp(r, t)))))), x, y)])

used_rules([1], union, [rel(uni(opp(comp(r, u)), comp(r, u)), x, y)])

Let us consider now Figure 2 where we show the result of a small comparative
of the number of rules applied by our prover, TWB 1 and Lotrec 2. The first 9
formulas are valid while the following 3 are non-valid. These 12 formulas have been
taken from the demo of TWB for logic K . Notice that RePMLK applies the lowest
number of rules in 6 of the 12 formulas.

4. Conclusions and Future Work

We presented an implementation in Prolog, called RePMLK , of a relational dual
tableau for modal logic K. The key steps of this work are: first, the implementation
of new rules (k1) and (k2) which guarantee that every proof tree is finite and
improves the efficiency of our prover; second, the implementation of an order of
application of rules that allows us to ensure that there is a unique proof tree for
every formula. As a consequence of both contributions, we have implemented a
decision procedure for our logic. RePMLK makes use of backtracking of Prolog,
matching mechanism for free variables, and of the logic programming techniques
in order to obtain an easy and modular prover. We remark that the results are

1http://twb.rsise.anu.edu.au/
2http://www.irit.fr/ACTIVITES/LILaC/Lotrec/
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Modal formula Lotrec TWB RePMLK Output
♦p→ ♦p 1 3 1 valid
♦p→ �(�¬q ∨ ♦q) 6 5 6 valid
¬(♦p ∧�¬p) 4 3 3 valid
¬(♦p ∧ ♦(♦q ∧ ¬♦q)) 4 5 3 valid
�(a→ b)→ (�a→ �b) 7 7 6 valid
(�(p0 ∧ p1)↔ (�p0 ∧�p1)) 19 18 15 valid
(♦(p0 ∨ p1)↔ (♦p0 ∨ ♦p1)) 16 18 11 valid
(¬�¬p0↔ ♦p0) 7 8 8 valid
(�p0→ ♦p0) ∧ (�p0→ ��p0)∧
∧(¬p0→ �♦¬p0)→ (�p0→ p0) 12 31 14 valid
�p1→ p1 1 1 2 not valid
�p1→ ��p1 6 3 6 not valid
¬�p1→ �¬�p1 4 3 6 not valid

Figure 2. Comparative of number of rules applied in provers for modal logic K.

promising. All the axioms and examples executed with RePMLK are proved in a
few steps and it works efficiently with the new rules (k1) and (k2).

It is easy to prove that the complexity of our prover is now suboptimal, because
our breadth-first search implies a big use of memory. However, we have planned
some strategies in order to improve it, such as the use of modal clauses [18] and the
modification of our rules in order to eliminate redundant repetitions. For example,
when we have formulas type ♦a,♦b,�♦c in the world i, we should create two new
worlds j and k such as a is true in j and b is true in k. However, it could be
unnecessary the repetition of ♦c in both worlds j, k. Other improvements could
come from exploiting Prolog’s built-in clause indexing scheme, as in [28].

We are working in a comparison of our implementation with other provers for
modal logic K in order to show how the prover scales as the problem size in-
creases (LWB benchmark - http://www.lwb.unibe.ch/). Moreover, we are study-
ing the extension of this prover to other modal logics as T and S4. The case
of T seems to be not very difficult. We are thinking to add a new rule such as

(k3)
X ∪ {zk(R; Pi)z0}i∈{1,...,l}

X ∪ {zk(R; Pi)z0}i∈{1,...,l} ∪ {zkPiz0}i∈{1,...,l}
, provided that zk(R;T )z0 6∈ X for

all terms T and always applied before (k1) and (k2). However, the case of S4 is
not straightforward if we want to maintain the advantages of not using external
strategies such as backtracking, loop checking, etc. Our idea is to modify/extend
the rules (k1) and (k2) in order to obtain it.

Furthermore, we are working in the improvement of our prover in other aspects,
many of them related to its user-friendliness, the construction of counter-models
and the possibility of create new logics, as in Lotrec. Last, but not least, we are
considering the possibility of using OCaml language instead of Prolog as in TWB,
because it allows much more advanced data-structures instead of naive lists and,
as said in [21], a desirable feature in theorem provers, to allow reuse of previously
proved theorems (abstraction).
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[17] Golińska-Pilarek, J.; Muñoz-Velasco, E.: Relational approach for a logic for order of magni-
tude qualitative reasoning with negligibility, non-closeness and distance. Logic Journal of IGPL
17(4):375-394, 2009.
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