Relational Dual Tableau Decision Procedure for
Modal Logic K *

Golinska-Pilarek, Joanna', Mufioz-Velasco, Emilio?
and Mora-Bonilla, Angel?
! Institute of Philosophy, University of Warsaw and
National Institute of Telecommunications, Poland.
j.golinska@uw.edu.pl
2 Dept. Applied Mathematics, University of Malaga, Mélaga, Spain.
{emilio, amora}@ctima.uma.es

January 2, 2011

Abstract

We present a dual tableau system, RLKC, which is itself a deterministic deci-
sion procedure verifying validity of K-formulas. The system is constructed
in the framework of the original methodology of relational proof systems,
determined only by axioms and inference rules, without any external tech-
niques. Furthermore, we describe an implementation of the system RLK in
Prolog, and we show some of its advantages.

Keywords: modal logic, dual tableau methods, decision procedures, rela-
tional proof systems

1 Introduction

Relational dual tableau systems are based on Rasiowa-Sikorski diagrams for first-
order logic [14]. The common language of most of relational dual tableaux is
the logic of binary relations which is a logical counterpart to the class RRA of
(representable) relation algebras introduced by Tarski [16]. The formulas of the
classical logic of binary relations are intended to represent statements saying that
two objects are related. Relations are specified in the form of relational terms.
Terms are built from relational variables and/or relational constants with relational
operations of union, intersection, complement, composition, and converse.
Relational dual tableaux are powerful tools for verification of validity as well
as for proving entailment, model checking (i.e., verification of truth of a statement

*This work is partially supported by the Spanish research projects TIN2009-14562-C05-01 and
P09-FQM-5233. The first author of the paper is partially supported by the Polish Ministry of Science
and Higher Education grant IP2010 010170.

in a particular fixed finite model), and satisfaction (i.e., verification that a statement
is satisfied by some fixed objects of a finite model). A comprehensive survey on ap-
plications of dual tableaux methodology to various theories and logics can be found
in [13]. Dual tableaux are deduction systems alternative to other formalisms such
as tableaux, Gentzen sequent calculi, resolution or Hilbert-style systems. A discus-
sion of relationships between dual tableaux and those systems is presented in [13].
The main advantage of relational methodology is the possibility of representation
within a uniform formalism the three basic components of formal systems: syn-
tax, semantics, and deduction apparatus. Hence, the relational approach provides
a general framework for representation, investigation, and implementation of the-
ories with different languages and/or semantics.

The last years, modal logics have become very popular and extremely useful
in many areas of computer science, thus many efforts have been made to design
effective and simple-to-use decision procedures for decidable modal logics. Modal
logics could be very helpful in modelling dynamic and reactive systems such as
bio-inspired systems and can be applied to soft-computing scenarios [3,4, 10, 15].
For example, some Description Logics are syntactic variants of modal logics and
have applications in bio-inspired systems [17], and Connectionist Logics [2] com-
bine the strengths of modal logics and neural networks. In this paper we focus
on logic K which is the minimal normal and decidable modal logic. We present
a relational proof system in dual tableau style for the logic K, we show its sound-
ness and completeness, and that it is itself a deterministic decision procedure for
K. Finally, we described its implementation in Prolog. In the literature decision
procedures for logic K have been intensively studied over the years [5,9]. The most
popular decision procedures for logic K are based on tableau systems. However,
the methodology of tableau systems does not provide any method for finding direct
proofs of valid formulas. Furthermore, the most of tableaux for modal logics pro-
vide algorithms deciding unsatisfiability, but they are nondeterministic in nature.
Thus, they use some heuristic techniques combined with intelligent backtracking,
backjumping or simplifications, but all these techniques are external to the tableau
itself. We present a dual tableau system, RLK, which is itself a decision procedure
verifying validity of K-formulas. The system is constructed in the framework of
the original methodology of relational proof systems, determined only by axioms
and inference rules, without any external techniques. In addition, the nice feature
of the system RLK is its uniqueness: it generates in a deterministic way only one
proof tree for a given formula. The system RLK presented in this paper deter-
mines an essential improvement of the system given in [7, 12]. In the construction
of the system RLK we use special dual clause representation of modal formulas
and we reduce the number of the rules, hence the system is more effective than the
system described in [7].

The paper is organized as follows. In Section 2, we present the relational for-
malization of modal logic K. In Section 3, we present RLK-dual tableau system,
its rules and axioms. Soundness and completeness of the system are studied in Sec-
tion 4. The implementation of the system is presented in Section 5. Final remarks

and prospects of future work are described in Section 6.

2 Relational formalization of logic K

In this section, we define the relational logic, RLk, appropriate for expressing K-
formulas in their dual clause representation. Recall that the vocabulary of language
of logic K consists of: the symbols from the set V = {p1, p2, ps, ...}, which is
an ordered countable infinite set of propositional variables indexed with natural
numbers; the classical propositional operations of negation — and conjunction A;
and the modal propositional operation ¢ called the possibility operation. The set
of K-formulas is the smallest set including the set of propositional variables and
closed with respect to all the propositional operations. We call formulas of the
form p or —p classical literals and we use letters like a, b, ¢ (possible with indices)
as their meta-representations. By —a we denote the formula —p if a = p, and p
if a = —p. A K-model is a structure M = (U, R, m) such that U is a non-empty
set (of states), R is a binary relation on U, m is the meaning function such that
m(p) C U, for every propositional variable p € V. The relation R is referred to
as the accessibility relation. The satisfaction relation is defined as usual in modal
logics. Thus, M, s = ¢ denotes the fact that a formula ¢ is satisfied in a model
M by a state s. A K-formula ¢ is said to be true in a K-model M = (U, R, m),
M = ¢, whenever for every s € U, M, s |= ¢, and it is K-valid whenever it is
true in all K-models.

Now, we introduce special dual clauses representing modal formulas. The re-
lational representation of modal formulas is a key tool in the construction of the
system presented in this paper. A simple dual clause is a K-formula either of the
form ai A ... A am, Qa A b, =Oa A b, or =Qa, where a, b, aq, ..., a,, are classical
literals and m > 1. Simple dual clauses of the form a; A ... A am, m > 2, Qa Ab,
=QaAb are referred to as conjunctive dual clauses. A dual clause is a K-formula of
the form O®¢, where ¢ a simple dual clause and s > 0. Although the vocabulary of
the K-language does not contain disjunction, we will consider the meta-disjunction
of dual clauses ¢1 V ...V ¢,. The meta-disjunction ¢; V ...V ¢, is said to be K-
valid if and only if for every K-model M = (U, R, m) and for every s € U there
exists i € {1,...,r} such that M, s = ¢;. The following result states that every
K-formula can be transformed into an equivalent meta-disjunction of dual clauses.
It is a dual form of the result from [11]. In fact, it can be proved that it is true for
any normal modal logic.

Theorem 1 For every K-formula ¢, there exists a finite set {¢1, ..., ¢, } of dual
clauses, such that p is K-valid if and only if the meta-disjunction o1V ...V ¢y is
K-valid. Moreover, the set {1, ..., ¢} can be obtained in quadratic time.

For a K-formula ¢, its corresponding meta-disjunction of dual clauses, ensured
by Theorem 1, is referred to as its dual clause representation and denoted by

form(p).

Now, we define the relational logic RLk. The vocabulary of the language of
RLk consists of the symbols from the following pairwise disjoint sets: OV =
{20, 21, . . .}, an ordered countable infinite set of object variables indexed with nat-
ural numbers; RV = {P;, P,, ...}, an ordered countable infinite set of relational
variables indexed with natural numbers; { R}, the set consisting of the relational
constant R representing the accessibility relation from K-models; and {—,N,; },
the set of relational operations, where — is the complement operation, N is the
intersection operation, and ; is the composition operation. The set of relational
terms is defined as follows. To begin with, the set of terms of the form P and
— P, for a relational variable P, is referred to as the set of relational literals. We
will use letters like A, B, C' (possible with indices) as their meta-representations.
By —A we denote the term —P if A = P, and P if A = —P. The set of
simple relational terms, SRT, is the smallest set which includes relational liter-
als and satisfies the following two conditions: if Aq,..., A,,, m > 1, are rela-
tional literals, then A1 N ... N A,, € SRT; and if A and B are relational literals,
(R;A)N B, —(R;A)N B, —(R;A) € SRT. Terms of the form Ay, ..., Ay,
m > 2, (R;A)N B, and —(R; A) N B are referred to as conjunctive terms. The
set of relational terms, RT, is the smallest set which includes simple relational
terms such that, if 7" € SRT, then R® ;T € RT, where R? ;T is defined as usual.
RLk-formulas are of the form z;7'zy, where z;, zg are object variables, ¢ > 1, and T’
is arelational term. A formula of the form z; Az, for a relational literal A, is called
a literal formula. A formula z;Tzy, where T' is a simple relational term (resp. a
conjunctive term) is referred to as a simple formula (resp. conjunctive formula).
An RLg-model is a structure M = (U, R, m), where U is a non-empty set, R is a
binary relation on U, and m is the meaning function such that: m(P) = X x U,
where X C U, for every relational variable P; m(R) = R, i.e., R is the inter-
pretation of the relational constant R; m extends to all the compound relational
terms as usual. Let M = (U, R, m) be an RLg-model. A valuation in M is any
function v: OV — U. An RlLg-formula z;T 2y is satisfied in an RLx-model M
by a valuation v, M, v |= z;Tzy whenever (v(z;),v(z9)) € m(T). A formula is
true in M whenever it is satisfied by all the valuations in M, and it is RLg-valid
whenever it is true in all RLk-models. A finite set of RLk-formulas {1, ..., ¢, }
is RLk-valid whenever for every RLk-model M and for every valuation v in M
there exists ¢ € {1,...,n} such that M, v = ;.

Now, we define the translation of K-dual clauses into relational terms. The
translation starts with a one-to-one assignment of relational variables to the propo-
sitional variables. More precisely, for every i > 1, we define 7/(p;) = P;. Then
the translation 7 of K-dual clauses is defined inductively as follows: 7(p) = 7/(p),
for any propositional variable p € V; 7(—¢) = —7(¢); 7(¢ A ¢') = () N 7(¢);
7(0¢) = (R;7(¢)). Clearly, the translation 7 is well defined, that is for every
K-dual clause ¢, there exists a relational term 7" such that 7(¢) = T'. Furthermore,
the translation 7 assigns to each K-dual clause a right ideal relation, i.e., a relation
which is of the form X x U, for some X C U. Therefore, if M,v |= 2Tz, for
some ¢ > 1 and a relational term 7, then for every x € U, (v(z;),z) € m(T).

4

Hence, the variable z(represents elements of the universe U. The following result
states the relationships between modal formulas and their relational representation.

Theorem 2 For all K-dual clauses ¢1,...,0r, 7> 1, 1 V...V ¢, is K-valid iff
{ZlT(¢1)Zo, ey ZlT((ﬁr)Zo} is RLK-Valid.

Given a K-formula ¢ such that form(¢) = ¢1 V...V ¢, r > 1, we define

its translation as 7(¢p) & {z17(¢1)z0,...,217(¢r)20}. Thus, the translation 7
transfers every K-formula into a finite set of RLk-formulas. Due to Theorem 1 and
Theorem 2, we get:

Theorem 3 For every K-formula o, ¢ is K-valid iff () is RLg-valid.

Now, we define a kind of lexicographical order on the set of all conjunctive terms.
Although there are many ways of defining an order on all terms, to get a determin-
istic dual tableau, we need only an order on conjunctive terms. Let terms A and B
be relational literals. Then A < B whenever either of the following holds: A = P;
and B = Pjandi < j,or A= FP,and B = —Pj,or A= —P;and B = —PF;
and 7 < j, where P;, P; are relational variables and ¢, j € N. Let m, k > 1 and let
Aq,..., Ay, B1,...,Bgberelational literals. Then A1N...NA,, < BiN...NBy
whenever either m < k (i.e., the length of A} N ... N A,, is less than the length
of By N...N Bg) or m = k and there exists ¢ € {1,...,m} such that A; < B;
and A; = Bj for all j < 4. For all relational literals A, B,C, and D, we define
(R;A)NB < (R;C)ND (resp. —(R; A)NB < —(R;C)ND)ifeither A < C
or A =C and B < D. Finally, let m > 1. For all relational literals A1,..., A,
A,B,C,and D, werequire A; N...N A, < (R;A)NB < —(R;C)ND. Now,
we extend the order < to all RLk-conjunctive formulas. We define: z;¢z0 < 2920
if and only if either ¢ < j, or i = j and ¢ <% . The following proposition is a
direct consequence of the above definition.

Proposition 4 The set of all RLg-conjunctive formulas is well ordered by <.

If X is a finite set of RLk-formulas, then an RLk-conjunctive formula z; ¢z is said
to be minimal with respect to X whenever z;¢pzg < 21z, for all RLk-conjunctive
formulas z;1z9 € X.

3 Relational dual tableau for modal logic K

In this section, we present a relational dual tableau, RLK, which can be used
for verification of validity of K-formulas in their dual clause representation. The
system RLK is determined by axiomatic sets of RLk-formulas and rules which
apply to finite sets of RLk-formulas. The axiomatic sets take the place of axioms.
A finite set of RLk-formulas is said to be RLk-axiomatic whenever it is a superset
of {z;Tzy, z;— Tz}, for some ¢ > 1 and RLk-term 7. Sets which are not axiomatic
are referred to as non-axiomatic. Clearly, every axiomatic set is RLk-valid.

Tr
Ly|... |0y
where I',T'y, ..., [',, n > 1, are finite non-empty sets of RLk-formulas. A rule of
the form (x) is applicable to a finite set Y if and only if Y = I" and there exists
i €{l,...,n}suchthatI'; # Y, that is, an application of a rule must introduce a
new formula. If n > 1, then a rule of the form (x) is an n-fold branching rule. In a
rule, the set above the line is referred to as its premise and the set(s) below the line
is (are) its conclusion(s). A variable z;, ¢ > 1, which appears in a conclusion of a
rule and does not appear in the premise, is called a new variable introduced by an
application of a rule. RL/-dual tableau consists of decomposition rules (M) and
(K') which are described below.

The rules of RLK-system have the following general form: (x)

For any finite set X of RLk-formulas, for every ¢ > 1, and for all formulas 1, ..., om, m > 2,
® XU{zi(p1iN...Npm)zo} zi(p1 N ... N m)zo is minimal

X U{zip1z0}|...| X U{zim=zo0} with respect to X
(K) XUK;UK> where X does not contain any conjunctive formula;

X UG UG2 K; and Gy, for i € {1, 2}, are defined as follows.

K & {zn—(R;Aj)z0}jeg,, where Ji = {0,...,m — 1} form > 1, A; are
relational literals for every j € Jp, and n > 1 is such that for every ¢ > 1 and for
all relational literals B, if z;—(R; B)zp € X, then i > n;

Ky o {zn(R% ;T})20}je,, Where Js is a finite (possibly empty) set of indices,
sj > 1, and T} are simple relational terms;

G1 = {zn,—A120, -, Zny+m—-1—Am—120}, where n; > 1 is the smallest index
such that object variable z,,, does not occur in the premise of the rule (K);

Gy = {an (stil ;Tj)z(% s 7zn1+m—1(st71 ;Tj)ZO}jEJz'

Given a finite set of RLg-formulas {z;T1z20,...,2Tn20}, i,n > 1, successive
applications of the rules result in a tree whose nodes consist of finite sets of RLk-
formulas. More precisely, an RLIC-proof tree of {z;T1zo, ...,z Tnz0} is a tree
such that: {z;T1z0,...,2Thzo0} is the root of the tree, each node except the root
is obtained by an application of a rule to its predecessor node, and a node does not
have successors whenever its set of formulas is RLk-axiomatic or none of the rules
applies to it. Observe that the rule (/) can be applied to a finite set of the form
X U K1 U K> only if the rule (N) cannot be applied to it. Thus, the algorithm for
applications of the rules is as follows: first, check whether the rule (N) applies to a
set, if not try to apply the rule (K). Furthermore, due to the order on formulas, on
each step of the construction of the tree, a formula (resp. formulas) to which the
rule (N) (resp. (K)) can be applied is uniquely determined. A branch of an RLK-
proof tree is closed if it contains a node with an RLk-axiomatic set of formulas.
An RLIC-proof tree is closed if and only if all of its branches are closed. A finite
set of RLk-formulas is RLKC-provable whenever there is a closed R L/IC-proof tree
of it, which is then referred to as its RLK-proof. Observe that every RLK-proof
tree is finite. Furthermore, the rules of R LK-dual tableau guarantee that:

Theorem 5 Let X = {z;T1z0,...,2Thz0}, fori,n > 1, be a finite set of RLk-
formulas. Then, the set X has exactly one finite RLIC-proof tree.

4 Soundness and completeness

In this section we study soundness and completeness of RLIC-system. A rule of

the form ﬁ is said to be RLk-correct whenever I' is RLk-valid if and
1] --- n

only if forevery i € {1,...,n} the set I'; is RLk-valid. In the proof of soundness,
we use the fact that the rules of RLK-dual tableau are RLk-correct, that is they
preserve and reflect validity of sets of its premise and conclusions:

Proposition 6 The RLk-axiomatic sets are RLk-valid and the RLk-rules are RLg-
correct.

The proof of the above proposition is omitted, because of the lack of space.

Theorem 7 (Soundness) Let ® = {z;T12,...,2Th20}, for i,n > 1, be a finite
set of RLg-formulas. Then, if ® is RLK-provable, then it is RLg-valid.

Proof Let ® = {z;T120,...,2Thz0}, i,n > 1, be a finite RLK-provable set of
formulas. Then, there exists an R L -proof tree of ® such that each of its branches
is closed, that is it ends with an RLk-valid set of formulas. Thus, by Proposition 6,
going from the bottom to the top of the tree, we conclude that ® is RLk-valid.

Theorem 8 (Completeness) Let & = {z;T1z29,...,2zThz0}, for i,n > 1, be a
finite set of RLk-formulas. Then, if ® is RLg-valid, then it is RLK-provable.

The proof of the above theorem follows from the proof of the analogous theorem
presented in [7]. Now, by Theorems 3, 7, and 8, we get:

Theorem 9 (Soundness and Completeness) For every K-formula ¢, o is K-valid
iff T(p) is RLIC-provable.

The above theorem and Theorem 5 imply:

Theorem 10 RLK is a sound and complete decision procedure for the logic K.

5 Implementation of the prover

In this section, we outline the new prover developed in Prolog based on the theoret-
ical foundations presented in this paper. A key point for improving the efficiency
of our prover is the management of the modal clauses. Then, we establish the al-
gorithm to translate modal formula to modal clauses, following the ideas presented
in [8]. After this, we translate the modal clauses to relational terms, as defined
above. We use p,q,... or =p,—q,... to be classical literals; a, b, ¢, etc. denote
classical literals; and v, to represent the non classical literals.

First, we translate the modal formulas to negative normal form, nnf, and then
the translation of a modal formula in nnf to modal clauses is obtained by the fol-

S

. i /_/H
lowing algorithm, where [1° represents [1. .. [].

Function m2c (¢)) Modal 2 Clauses

Output: set of modal clauses - translation of

begin
if 1) is modal clause then
return v
else
switch the value of 1 do
case [11 isO%[p1 A ... A]
return m2¢c(0° [¢1]), . .., m2c(O°%[pr])
case 2] ¥ is 0% [a, O()] or 0% [a, o(0)]
return (°[a, O(p)], m2c(0°T 1 [—p, m2c(p)])
or respectively

return 0°[a, o(p)], m2c(0°F 1 [—p, m2¢(p)])

case [31 v isO%[a1,...,ap, 1, .., 0k k>20r(k=1,Ah > 1)
Introduce k new primitive propositions: p1, . . . pg
return O%[a1,...,ap,pl, ..., pEl, m2c(O0°[=p1, p1]) ..., m2c(0°% [—pr, ¢r])

case [4] is O°[a, ¢ A (]
return m2c(0%[a, ¢]), m2c(0%[a, ¢])

end
end

end
Figure 1

Example The modal formula (I (p — ¢) — (Op — Og) is translated to relational
clauses as follows.

?- modal2clauses.

formulaKLogic (implication (square (implication(p, q)),
implication (square(p), square(q)))).

%$First, to modal clauses

rclause (square (1, or([not(p), gl))).

rclause (square(l, p)).

rclause (diamond (1, not(q))) .

%Second, modal clauses to relational clauses.

rel ([1], opp(comp(r, opp(q))), X, y).
rel([1], comp(r, opp(p)), %X, ¥).
rel([1], comp(r, inter([p, opp(a)])), %, y).

When the translation to relational clauses from modal clauses is obtained, the proof
process runs as follows. Prolog builds a tree representing the proof process. First,
it sorts the relations in the root node and applies a rule following the order defined
above. After the application of the rule, it checks if there is an axiomatic set in
any node of the tree. The process is repeated until either all nodes are closed, or
none of the rules is applicable. The formula is valid whenever all the nodes are
closed. A formula is represented as the Prolog fact: rel([1],T, z1, 29). In node
1, it stores the formula z;7zg. The rules of RLK are translated to clauses in
Prolog. We emphasize that the efficiency of the prover presented in this paper is
because we have an efficient set of input formulas that allow us to have only two
rules in the prover: (K') and intersection rules. The inference engine is executed
recursively until all the leaves are closed. The formulas are ordered and the rules
are applied. If a rule includes new formulas in a leaf, the engine of the prover adds
these relations in the adequate position in order to preserve the ordering defined
previously. The engine of the prover uses the mechanism of pattern machine of
Prolog to detect if exists an axiomatic set in any leaf of the tree. In this case, it
deletes the corresponding leaf and informs the user. Then, the prover detect if the
formula is valid or not valid.

Example The modal formula O (p — ¢) — (Op — Og) from the previous ex-
ample, is proved by RLI implementation by applying only 2 rules. Our previous

version RePM Ly applied 7 rules, and Lotrec and TWB applied 9 and 7 rules,
respectively [1,6,12].

[rel ([1], opp(comp(r, opp(d))), %X, ¥),
rel([1], comp(r, opp(p)), X, V)
rel ([1], comp(r, inter([p, opp(a)l)), %, y)I
K Rule

[rel([1], g, wl, y), rel([1l], opp(p), wl, y),
rel([1], inter([p, opp(q)]l), wl, y)]

[rel([1], inter([p, opp(q)]), wl, y)]
Intersection Rule
rel([1, 1], p, wl, y) | rel([l, 2], opp(q), wl, y)

::::: Axiomatic set (close leaf
[rel([1, 2], opp(a), wl, y), rel(
::::: Axiomatic set (close leaf

, 11, opp(p), wl, y), rel(l[
Variables used: [wl, x, V]

VALID.

Total Rules applications: 2

used_rules ([1], k, [rel(opp(comp(r, opp(d))), X, V), ---
used_rules ([1], inter, [rel([1l], inter([p, opp(a)]l), wl, y)I)

: (1, 2]
(1, 21, a, wi, y)l
.1

[1, 1]
» 11, pr oWl y)

Finally, consider Figure 2 where we show the result of a small comparative of
the number of rules applied by our prover RLIKC, Lotrec, TWB, and RePM L .
Observe that we improve the number the applied rules in all the cases.

Modal formula Lotrec | TWB | RePM Lk | RLK | Output
Op — Op 1 3 1 1 valid
Op — O(0-q V Oq) 6 5 6 2 valid
=(Op AO-p) 4 3 3 1 valid
=(Op A O(Qg A =0q)) 4 5 3 2 valid
O(a — b) — (Ha — Ob) 7 7 6 2 valid
(=0-p0 < Op0) 7 8 8 1 valid
Opl — pl 1 1 2 0 not valid
Opl — O0Op1 6 3 6 2 not valid
-pl — O-0pl 4 3 6 2 not valid

Figure 2: Comparative of number of rules applied in provers for modal logic K.
6 Conclusions and future works

We have presented a sound and complete dual tableau system, RLIC, which is it-
self a deterministic decision procedure for modal logic K. The system RLK does
not use any external technique such as backtracking, backjumping, etc. An ad-
vantage of general methodology of relational approach to deduction is modularity.
We expect similar modularity in the construction of relational decision procedures.
Thus, the system presented in the paper can be seen as the common core of all
relational decision procedures for modal logics. We are already working on exten-
sions of RLK-system in order to get decision procedures for other normal modal
logics, in particular for those in which the accessibility relation is assumed to be
reflexive or symmetric or transitive. It seems that reflexivity and transitivity case
can be solved within our approach. We implemented this system in Prolog and it
works very well with the formulas we have introduced. We are also working on an
user friendly front-end in order to improve its educational capabilities. Last, but
not least, we have planned an exhaustive comparison with the best know provers
for modal logic.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. Abate and R. Goré, The Tableau Workbench, Electronic Notes in Theoretical Computer
Science Vol. 231, 55-67 (2009).

A. d’Avila Garcez, L. C. Lamb and D. M. Gabbay. Connectionist modal logic: Rep- resenting
modalities in neuronal networks. Theoretical Computer Science, 371, 34-53, 2007.

E. Corchado and A. Herrero, Neural visualization of network traffic data for intrusion detec-
tion, Applied Soft Computing. doi:10.1016/j.as0c.2010.07.002.

E. Corchado, A. Arroyo, and V. Tricio, Soft computing models to identify typical meteorolog-
ical days, Logic Journal of the IGPL, Press July 21, 2010. doi:10.1093/jigpal/jzq035.

M. Fitting, Modal Proof Theory, in: P. Blackburn, J. van Benthem, and F. Wolter (eds), Hand-
book of Modal Logic, Studies in Logic and Practical Reasoning, Volume 3, Elsevier, Amster-
dam, 85-138 (2007).

O. Gasquet, A. Herzig, D. Longin, and M. Sahade, Lotrec: Logical tableaux research engi-
neering companion, Lecture Notes in Artificial Intelligence Vol. 3702, 318-322 (2005).

J. Golinska-Pilarek, E. Mufioz-Velasco, and A. Mora, A new deduction system for deciding
validity in modal logic K, Logic Jnl of IGPL, doi:10.1093/jigpal/jzq033, (2010).

R. Goré and L. A. Nguyen, Clausal Tableaux for Multimodal Logics of Belief, Fundamenta
Informaticae, Vol. 94(1), 21-40 (2009).

I. Horrocks, U. Hustadt, U. Sattler, and R. Schmidt, Computational Modal Logic, in: P. Black-
burn, J. van Benthem, and F. Wolter (eds), Handbook of Modal Logic, Studies in Logic and
Practical Reasoning, Volume 3, Elsevier, Amsterdam, 181-245 (2007).

L. Lima, P. Novais, R. Costa, J. Bulas Cruz, and J. Neves, Group decision making and Quality-
of-Information in e-Health systems, Logic Jnl IGPL, doi:10.1093/jigpal/jzq029 (2010).

G. Mints, Gentzen-type Systems and Resolution Rules, Lecture Notes in Computer Science
Vol. 417, 198-231 (1988).

A. Mora, E. Muioz-Velasco, and J. Goliiska-Pilarek, Implementing a Relational Theorem
Prover for Modal Logic K, to appear in Int. Jnl. of Computer Mathematics (2010).

E. Ortowska and J. Golinska-Pilarek, Dual Tableaux: Foundations, Methodology, Case Stud-
ies, Trends in Logic 36, Springer Science, doi: 10.1007/978-94-007-0005-5-21, a book in
print (2011).

H. Rasiowa and R. Sikorski, On Gentzen theorem, Fundamenta Mathematicae 48, 57-69
(1960).

J. Sedano, L. Curiel, E. Corchado, E. de la Cal and J. R. Villar, A soft computing method for de-
tecting lifetime building thermal insulation failures, Integrated Computer-Aided Engineering
17 (2), 103-115, 10S Press (2010).

A. Tarski, On the calculus of relations, Journal of Symbolic Logic 6, 73-89 (1941).

S. Yim, J. O. Wilson, D. W. Rosen, Development of an Ontology for Bio-Inspired Design
using Description Logics. International Conference on Product Lifecycle Management 2008
(PLMOS), Vol. 4, No. 1, 2008.

10

