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Abstract

A new deduction system for deciding validity for the minimal decid-
able normal modal logic K is presented in this paper. Modal logics
could be very helpful in modeling dynamic and reactive systems such
as bio-inspired systems and process algebras. In fact, recently it has
been presented the Connectionist Modal Logics which combines the
strengths of modal logics and neural networks. Thus, modal logic K
is the basis for these approaches. Soundness, completeness, and the
fact that the system itself is a decision procedure are proved in this
paper. The main advantages of this approach are: first, the system is
deterministic, that is, it generates one proof tree for a given formula;
second, the system is a validity-checker, hence it generates a proof of
a formula (if such exists); third, the language of deduction and the
language of a logic coincide. Some of these advantages are compared
to other classical approaches.

Keywords: Relational Logic, Modal Logic, Dual Tableau Methods,
Decision Procedures, Theorem Proving.

1 Introduction

Modal logics are widely applicable methods of reasoning for many areas of
computer science. These areas include artificial intelligence, database the-
ory, distributed systems, program verification, cryptography theory. Artifi-
cial neural networks exhibit many properties of intelligent systems, like being
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massively parallel, context-sensitive, adaptable, and robust; while logic sys-
tems were designed to cope with structured objects and structure-sensitive
processes and, consequently, it seems to be very interesting to combine the
advantages of connectionist and logic systems in a single one [2, 18].

Neural-symbolic integration covers different types of reasoning: neural
representations exist for modeling propositional logic, whole classes of many-
valued logics, modal logic, temporal logic, and epistemic logic. Modal logics
could be very helpful in modeling dynamic and reactive systems such as bio-
inspired systems and process algebras. In fact, recently it has been presented
a logic called Connectionist Modal Logics, which combines the strengths of
modal logics and neural networks [1]. We think this approach could be
useful for knowledge management, multi-agent systems, and case-based rea-
soning [7, 15,16,23].

On the other hand, the synergy of logical techniques and biological ap-
proaches can help to explain certain biological process. In [3], the logic used
to reason in presence of incomplete specifications in biological problems, in-
cludes modal operators. As an example of the importance of modal logics
in these ambiences, we emphasize, the Brane Logic [19], a modal logic for
expressing formally properties about systems in Brane Calculus.

Modal logic K is the basis for the previous approaches. Since K is de-
cidable [4], many efforts have been taken in order to develop effective and
simple-to-use decision procedures for it [8, 20]. One of the most popular
deduction systems for K is a tableau system. Generally, there are two kinds
of tableau systems for modal logics: sequent-like and labeled ones. Both
kinds of tableaux have been constructed for K. Tableau is a refutation sys-
tem determined by the rules and axioms. In order to prove validity of a
formula ϕ, one must built a closed proof tree for ¬ϕ. As far as we know,
all tableaux for K include some non-deterministic rules. Thus, in general,
the system may generate many trees for a valid formula and some of them
may be non-closed, i.e., the system may generate trees which are not proofs
of a valid formula. In order to prove that a formula is not valid, one must
check if all possible trees are not closed. However, the system itself does not
provide any method of finding all the trees, this is shifted to the strategy of
a proof searching, which turns out to be an extension of the original tableau
by means of special techniques, e.g., backtracking. In this sense, tableau
systems for K are not decision procedures; they only provide a method of
deciding whether a modal formula is valid or not. From a methodological
point of view, this feature of tableaux for modal logics is of big importance,
which is manifested through the implementation of the system in order to
get a decision procedure.

We present a new deduction system for the logic K by proving its sound-
ness and completeness and we show that the system itself is a decision
procedure. The system is deterministic, that is, it generates only one proof
tree for a given formula and does not need any external technique, such as
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backtracking, in order to get the desired proof tree. As far as we know, it is
the first theorem prover for modal logic with these properties, which make it
very interesting for computational purposes. More details about this, from
the implementation point of view can be seen in [11]. It is also a validity
checker, thus it provides a method of constructing a proof of a valid formula
ϕ. Moreover, the language of deduction of the system in question and the
language of the logic for which the system is constructed coincide, which is
a further advantage of our approach.

The system presented is based on relational dual tableaux which are
validity checkers [13, 14, 21]. They are extensions of Rasiowa-Sikorski di-
agrams for first-order logic [22]. The common language of all relational
dual tableaux is the logic of relations. Usually, it is a classical logic of bi-
nary relations, which was introduced as a logical counterpart to the class
RRA of representable relation algebras given by Tarski [24]. It has been
studied systematically in the last decades. A relational logic enables us
to represent within a uniform formalism the three basic components of any
logical system: syntax, semantics, and deduction. Relational formalism pro-
vides a means of reasoning in a great variety of very different theories, e.g.,
modal, temporal, spatial, information, program, as well as intuitionistic,
and many-valued logics. Therefore, the relational logic can be regarded as
the generic framework supporting representations of many non-classical log-
ics [21]. Relational dual tableaux are powerful tools for performing the four
major reasoning tasks: verification of validity, verification of entailment,
model checking, and verification of satisfaction. Moreover, it has an almost
automatic way of transforming a complete dual tableau proof tree into a
complete Gentzen sequent calculus proof tree [17]. In addition, this method
can be used for non-classical extensions of the classical logic as well as for
logics with non-classical semantics of classical connectives (e.g., intuitionistic
logics).

The implementation of this prover has been presented in [11]. An imple-
mentation of the proof system for the relational logic is available in [6] while
in [9] a translation procedure from non-classical logics to relational logic is
presented. Moreover, in [5,12] there are implementations of relational logics
for order of magnitude quatitative reasoning.

In Section 2, we present the modal logic K together with the relational
logic appropriate for expressing formulas of K. Decision procedure for K, its
soundness, completeness, and termination are given in Section 3. Conclu-
sions and prospects of future work are presented in Section 4.

2 Relational formalization of logic K

We introduce the relational formalization of modal logic K. First, the modal
logic is shown, second its relational translation and the equivalence of valid-
ity between a modal formula and its relational translation.
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2.1 Modal logic K

We present the modal logic K, its syntax, its semantics, and a function
which links the two. The language of logic K consists of the symbols from
the following pairwise disjoint sets V - a countable infinite set of proposi-
tional variables; {¬,∨,∧} - the set of the classical propositional operations
of negation (¬), disjunction (∨), and conjunction (∧); {〈R〉} - the set con-
sisting of modal propositional operation called the possibility operation. As
usual, the modal operation [R] of necessity is defined by [R] def= ¬〈R〉¬.
The set of K-formulas is the smallest set including the set of propositional
variables and closed with respect to all the propositional operations.

A K-model is a structure M = (U, R, m), where U is a non-empty set (of
states), R is a binary relation on U , and m is a meaning function such that
m(p) ⊆ U , for every propositional variable p ∈ V. The relation R is referred
to as the accessibility relation. The satisfaction relation is defined inductively
for propositional and boolean connectives as usual, and in addition, for every
K-formula ϕ, M, s |= 〈R〉ϕ iff there exists s′ ∈ U such that (s, s′) ∈ R and
M, s′ |= ϕ. A K-formula ϕ is said to be true in a K-model M = (U, R, m),
M |= ϕ, whenever for every s ∈ U , M, s |= ϕ, and it is K-valid whenever it
is true in all K-models.

2.2 Relational logic RLK

We define the relational logic, RLK, appropriate for expressing formulas of
the modal logic K. The vocabulary of the language of the relational logic
RLK consists of the symbols from the following pairwise disjoint sets: OV =
{z0, z1, . . .} - a countable infinite set of object variables; RV = {S1, S2, . . .}
- a countable infinite set of relational variables; - the set consisting of the
relational constant R representing the accessibility relation from K-models
and {−,∪,∩, ; } - the set of relational operations.

The set of relational terms, RT, is the smallest set which includes RV
and satisfies: If P,Q ∈ RT, then −P, P ∪ Q, P ∩ Q, (R;P ) ∈ RT. RLK-
formulas are of the form ziTzj , where zi, zj are object variables and T is
any relational term.

An RLK-model is a structure M = (U, R, m), where U is a non-empty
set, R is a binary relation on U , and m is a meaning function satisfying:
m(S) = X × U , where X ⊆ U , for every relational variable S; m(R) = R,
i.e., R is the interpretation of the relational constant R; m extends to all
the compound relational terms as follows: m(−P ) = (U × U) − m(P );
m(P ∪Q) = m(P )∪m(Q); m(P ∩Q) = m(P )∩m(Q); m(R;P ) = {(x, y) ∈
U × U : ∃z ∈ U ((x, z) ∈ R ∧ (z, y) ∈ m(P ))}.
Let M = (U, R, m) be an RLK-model. A valuation in M is any function
v: OV → U .
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An RLK-formula ziTzj is satisfied in an RLK-model M by a valuation v,
M, v |= ziTzj whenever (v(zi), v(zj)) ∈ m(T ). A formula is true in M
whenever it is satisfied by all the valuations in M, and it is RLK-valid when-
ever it is true in all RLK-models.

The translation of K-formulas into relational terms starts with a one-
to-one assignment of relational variables to the propositional variables. Let
τ ′ be such an assignment. Then the translation τ of formulas is defined
inductively as follows: τ(p) = τ ′(p), for any propositional variable p ∈ V;
τ(¬ϕ) = −τ(ϕ); τ(ϕ∨ψ) = τ(ϕ)∪ τ(ψ); τ(ϕ∧ψ) = τ(ϕ)∩ τ(ψ); τ(〈R〉ϕ) =
(R; τ(ϕ)). The following theorem shows the desired result of preservation of
validity via translation of formulas of modal logic into relational terms.

Theorem 1 For every K-formula ϕ, ϕ is K-valid iff z1τ(ϕ)z0 is RLK-valid.

Due to lack of space, the proofs of all the results presented in this paper can
be seen in [10].

3 Decision procedure

Relational dual tableaux are founded on the Rasiowa-Sikorski system for
the first order logic. They are powerful tools for performing the four major
reasoning tasks: verification of validity, verification of entailment, model
checking, and verification of satisfaction.
To begin with, we define an order of relational terms and relational formulas
which will be useful in the rest of the paper. The length of a relational
term T , l(T ) is defined as follows: l(S) = 0, for every relational variable
S; l(−T ) = l(T ) + 1; l(T#T ′) = l(T ) + l(T ′) + 1, for # ∈ {∪,∩} and
l(R;T ) = l(T ) + 1.

For i = 0, 1 and a relational term T , we define −iT = T , if i = 0 and
−iT = −T , if i = 1.

The type, t(T ), of a relational term T is defined as follows. If a relational
term is of the form −iSj , for i = 0, 1 and for some relational variable Sj ,
then it is said of type (−iS). If a relational term is of the form −−T , for
some relational term T , then it is said to be of type (−). A relational term
is said to be of type (−i#), # ∈ {∪,∩}, (resp. (−i; )) whenever it is of the
form −i(P#Q) (resp. −i(R;P )), for some relational terms P and Q.
We define an ordering < on the set of types as follows:

(S) < (−S) < (−) < (∪) < (−∩) < (∩) < (−∪) < (; ) < (−; ).

Now, the ordering < of relational terms is defined inductively. We say that
T < T ′ if and only if either of the following possibilities holds:

(1) t(T ) < t(T ′), or
(2) T and T ′ are of the same type and l(T ) < l(T ′), or

5



(3) T and T ′ are of the same type and of the same length and satisfy
either of the following: j < k, if T = −iSj and T ′−iSk, for some relational
variables Sj , Sk and i = 0, 1; or P < P ′, if T = −−P and T ′ = −−P ′

or T = −i(R;P ) and T ′ = −i(R;P ′), for some relational terms P and P ′

and i = 0, 1; or P < P ′ or both P = P ′ and Q < Q′, if T = −i(P#Q)
and T ′ = −i(P ′#Q′), for some relational terms P, P ′, Q,Q′, i = 0, 1, and
# ∈ {∪,∩}.

We extend the ordering < to all RLK-formulas as follows: zk1Tzk2 <
zl1T

′zl2 whenever either of the following conditions is satisfied: k1 < l1; or
k1 = l1 and T < T ′; or k1 = l1 and T ≤ T ′ and k2 < l2. Notice that the set
of all RLK-formulas is well ordered by <.

Let X be a finite set of RLK-formulas, let # ∈ {∪,∩}, and let i = 0, 1.
A formula ϕ of type (−i#) (resp. (−i; )) is said to be minimal with respect
to X and (−i#) (resp. (−i; )) whenever for every ψ ∈ X of the same type
as ϕ, ϕ < ψ. Similarly, a formula ϕ of type (−) is said to be minimal with
respect to X and (−) whenever for every formula ψ ∈ X of type (−), ϕ <ψ .

3.1 The rules

Relational proof systems are determined by axiomatic sets of formulas and
rules which apply to finite sets of relational formulas. The axiomatic sets
take the place of axioms. The rules are intended to reflect properties of
relational operations and constants. There are two groups of rules: de-
composition rules and specific rules. Given a formula, the decomposition
rules of the system enable us to transform it into simpler formulas, and the
specific rules enable us to replace a formula by some other formulas. The
rules have the following general form: (∗) X ∪Ψ

X ∪ Φ
or (∗∗) X ∪Ψ

X ∪ Φ1 |X ∪ Φ2
, where

X,Ψ,Φ,Φ1,Φ2 are finite non-empty sets of formulas such that X ∩ Ψ = ∅.
A rule of the form (**) is a branching rule. In a rule, the set above the
line is referred to as its premise and the set(s) below the line is (are) its
conclusion(s). A rule of the form (∗) (resp. (∗∗)) is applicable to a finite set
Y if and only if Y = X ∪Ψ and Φ 0⊆ X (resp. Φ1 0⊆ X or Φ2 0⊆ X), that is
an application of a rule must introduce a new formula.

Decomposition rules of RLK-dual tableau are (∪), (∩), (−∪), (−∩), (−),
(K1), and (K2) of the following forms. For every k ≥ 1 and for all relational
terms P and Q,

(∪)
X ∪ {zk(P ∪Q)z0}
X ∪ {zkPz0, zkQz0}

(∩)
X ∪ {zk(P ∩Q)z0}

X ∪ {zkPz0} |X ∪ {zkQz0}

(−∪)
X ∪ {zk−(P ∪Q)z0}

X ∪ {zk−Pz0} |X ∪ {zk−Qz0}
(−∩)

X ∪ {zk−(P ∩Q)z0}
X ∪ {zk−Pz0, zk−Qz0}

where zk−i(P#Q)z0 is minimal with respect to X and (−i#), for # ∈ {∪,∩} and i = 0, 1.
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(−)
X ∪ {zk−−Pz0}

X ∪ {zkPz0}
where zk−−Pz0 is minimal with respect to X and (−).

For all k, l,m ≥ 1 and for all relational terms Pi, Qj , 1 ≤ i ≤ j, 1 ≤ j ≤ m,

(K1)
X ∪ {zk−(R; Q1)z0, . . . , zk−(R; Qm)z0}
X ∪ {zk1−Q1z0, . . . , zk1+(m−1)−Qmz0}

(K2)
X ∪ {zk(R; Pi)z0}i∈Il ∪ {zk−(R; Q1)z0, . . . , zk−(R; Qm)z0}

X ∪ {zk1Piz0, . . . , zk1+(m−1)Piz0}i∈Il ∪ {zk1−Q1z0, . . . , zk1+(m−1)−Qmz0}

being Il = {1, . . . , l} and provided that: −(R; Qi) < −(R; Qj), for all 1 ≤ i < j ≤ m and

zk−(R; Q1)z0 is minimal with respect to X and (−; ); zk(R; T )z0 '∈ X and zk−(R; T ′)z0 '∈
X for all terms T and T ′; k < k1 and k1 is the minimal number such that zk1 does not

occur in X.

The specific rule of RLK-dual tableau is as follows. For all k ≥ 1, j ≥ 0 and
for every relational variable S:

(right)
X ∪ {zkSzj}

X ∪ {zkSzl, zkSzj}

provided that k and l are minimal satisfying: zkSzj < zk′S′zj′ , for every relational variable

S′ and for all object variables zk′ and zj′ such that zk′S′zj′ ∈ X; zl occurs X ∪ {zkSzj},
l '= j and zkSzl '∈ X.

3.2 Soundness and Completeness

A finite set of RLK-formulas is said to be an RLK-axiomatic set whenever it is
a superset of {zkPzj , zk−Pzj}, for some object variables zk, zj and for some
relational term P . A finite set of RLK-formulas {ϕ1, ϕ2, . . . ,ϕn}, n ≥ 1,
is RLK-valid whenever for every RLK-model M = (U, R, m) and for every
valuation v in M there exists i ∈ {1, . . . , n} such that M, v |= ϕi. A rule
of the form (∗) (resp. (∗∗)) is RLK-correct whenever RLK-validity of X ∪ Φ
(resp. RLK-validity of X ∪ Φ1 and X ∪ Φ2) implies RLK-validity of X ∪Ψ.

Proposition 2 The RLK-rules are RLK-correct and the RLK-axiomatic sets
are RLK-valid.

Given a formula, successive applications of the rules result in a tree whose
nodes consist of finite sets of formulas. Each node includes all the formulas of
its predecessor node, possibly except for those which have been transformed
according to a rule. A node of the tree does not have successors whenever
its set of formulas includes an axiomatic subset.

Let z1Tz0 be an RLK-formula, an RLK-proof tree of z1Tz0 is a tree with
the following properties: z1Tz0 is at the root of this tree; each node except
the root is obtained by an application of a rule to its predecessor node; the
rules are applied with the following ordering: (−), (∪), (−∩), (∩), (−∪),
(right), (K1), and (K2) and a node does not have successors whenever its set
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of formulas is an RLK-axiomatic set or none of the rules is applicable to its
set of formulas.
A branch of an RLK-proof tree is closed whenever it contains a node with
an RLK-axiomatic set of formulas. An RLK-proof tree is closed if and only
if all of its branches are closed. An RLK-formula z1Tz0 is RLK-provable
whenever there is a closed RLK-proof tree of it, which is then referred to as
its RLK-proof.
The previous Proposition ensures the desired transference of validity from
the bottom to the top of a proof tree. As a consequence of this, we have:

Proposition 3 (Soundness) If an RLK-formula z1Tz0 is RLK-provable,
then it is RLK-valid.

The rules of RLK-dual tableau guarantee that:

Proposition 4 Every RLK-formula of the form z1Tz0 has exactly one finite
RLK-proof tree.

In order to obtain completeness, as usual in proof theory, a concept of a
complete non-closed proof tree is needed. Intuitively, completeness of a non-
closed tree means that all the rules that can be applied have been applied.
By abuse of notation, for any branch b and any formula ϕ, we write ϕ ∈ b,
if ϕ belongs to a set of formulas of a node of branch b. By OVb we mean the
set of all object variables that occur in formulas belonging to the branch b.
A branch b of RLK-proof tree of an RLK-formula z1Tz0 is said to be complete
whenever either it is closed or it satisfies the following completion conditions,
for every k ≥ 1 and for all relational terms P and Q:
Cpl(∪) (resp. Cpl(−∩)) If zk(P ∪Q)z0 ∈ b (resp. zk−(P ∩Q)z0 ∈ b), then
both zkPz0 ∈ b (resp. zk−Pz0 ∈ b) and zkQz0 ∈ b (resp. zk−Qz0 ∈ b);
Cpl(∩) (resp. Cpl(−∪)) If zk(P ∩Q)z0 ∈ b (resp. zk−(P ∪Q)z0 ∈ b), then
either zkPz0 ∈ b (resp. zk−Pz0 ∈ b) or zkQz0 ∈ b (resp. zk−Qz0 ∈ b);
Cpl(−) If zk(−−P )z0 ∈ b, then zkPz0 ∈ b;
For every k ≥ 1 and for all relational terms P and Q,
Cpl(K1) If zk−(R;Q)z0 ∈ b and for every relational T , zk(R;T )z0 0∈ b, then
for some z ∈ OVb, z−Qz0 ∈ b, obtained by an application of the rule (K1);
Cpl(K2) If zk(R;P )z0 ∈ b and zk−(R;Q)z0 ∈ b, then for some z ∈ OVb,
both zPz0 ∈ b and z−Qz0 ∈ b, obtained by an application of the rule (K2);
For every k ≥ 1, for every j ≥ 0, and for every relational variable S,
Cpl(right) If zkSzj ∈ b, then for every object variable z ∈ OVb, zkSz ∈ b.

An RLK-proof tree is said to be complete whenever all of its branches are
complete. It is easy to prove that the RLK-proof tree of an RLK-formula of
the form z1Tz0 is complete.
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The RLK-rules guarantee that whenever a branch contains formulas xSy and
x−Sy, for some relational variable S and object variables x and y, then these
formulas belong to the same node of the branch, hence branch is closed. Let
b be a non-closed branch of RLK-proof tree of an RLK-formula z1Tz0, we
define a branch structure Mb = (U b, Rb, mb) as follows: U b = OVb; Rb is
defined by (zk, zj) ∈ Rb iff there exists a term Q such that zk−(R;Q)z0 ∈
b, zj−Qz0 ∈ b and zj−Qz0 is obtained by an application either of rule (K1) or
(K2); mb(S) = {(zk, zj) ∈ U b ×U b : zkSzj 0∈ b}, for every relational variable
S; mb extends to all the compound relational terms as in RLK-models.

Proposition 5 (Branch Model Property) Let b be a non-closed branch
of RLK-proof tree of a formula z1Tz0. Then Mb is an RLK-model.

A branch structure is referred to as the branch model. Let vb: OV → U b be
a valuation in Mb such that vb(x) = x, for every x ∈ OVb. The following
result can be proved by induction on the complexity of relational terms.

Proposition 6 (Satisfaction in Branch Model Property) Let b be a
non-closed branch of RLK-proof tree of a formula z1Tz0. Then for every
RLK-formula ϕ, ϕ ∈ b implies Mb, vb 0|= ϕ.

From the previous results we obtain the following two main theorems.

Theorem 7 (Relational Soundness and Completeness of K) For ev-
ery K-formula ϕ, ϕ is K-valid iff z1τ(ϕ)z0 is RLK-provable.

Theorem 8 (Decision Procedure for K) RLK-dual tableau is a decision
procedure for the logic K.

Example: Consider the K-formula ϕ = ¬([R]p ∧ [R]q) ∨ [R](p ∧ q). Let
τ ′(p) = S1 and let τ ′(q) = S2. Figure 1 presents an RLK-proof of z1τ(ϕ)z0.
In order to prove that ϕ is K-valid, we need to show that z1τ(ϕ)z0 is RLK-
provable. In the second step, we use our ordering of types of relational
terms. As a consequence, we apply rule (−∩) to formula z1−(−(R;−S1) ∩
−(R;−S2))z0 because it is of type (−∩), while z1−(R;−(S1 ∩ S2))z0 is of
type (−; ). Similarly in the next step, we use the fact that (−) < (−; ).
Then we apply the only possible rules (K2), (−), and (∩). Finally, we close
all the branches of the tree. This means that ϕ is valid.

4 Conclusions and Future Work

We have presented a new deterministic proof system for modal logic K. Its
main difference with other approaches is that it is deterministic, that is, it
generates only one tree for a given formula and does not need any external
technique, such as backtracking in order to get the desired proof tree.
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z1−(−(R;−S1) ∩ −(R;−S2)) ∪ −(R;−(S1 ∩ S2))z0

!
(∪)

z1−(−(R;−S1) ∩ −(R;−S2))z0, z1−(R;−(S1 ∩ S2))z0

!(−∩)

z1−−(R;−S1)z0, z1−−(R;−S2)z0, z1−(R;−(S1 ∩ S2))z0

!
(−) twice, first to z1−−(R;−S1)z0, then to z1−−(R;−S2)z0

z1(R;−S1)z0, z1(R;−S2)z0, z1−(R;−(S1 ∩ S2))z0

!
(K2) introducing variable z2

z2−S1z0, z2−S2z0, z2−−(S1 ∩ S2)z0

!
(−)

z2−S1z0, z2−S2z0, z2(S1 ∩ S2)z0
""""#

$$$$%(∩)

z2−S1z0, z2S1z0, . . .
closed

z2−S2z0, z2S2z0, . . .
closed

Figure 1: RLK-proof of K-formula ¬([R]p ∧ [R]q) ∨ [R](p ∧ q).

We proved its soundness and completeness and we showed that the system
itself is a decision procedure for modal logic K. With the results presented in
the paper many questions and problems arise. The most important concerns
complexity. It seems that the decision procedure presented is highly com-
plex, but it is very probable that its complexity could be improved if it would
be applied to some normal forms of RLK-formulas. Thus, the future work
could be oriented towards normal forms (clause forms) of RLK-formulas, in
order to get a good bound for complexity. Moreover, we are working in
the extension of our decision procedure to cover reflexive, symmetric, and
transitive modalities while retaining termination. The construction of the
rules for semantic constraints remains as an open problem.
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[7] J. F. De Paz; S. Rodŕıguez; J. Bajo; J. M. Corchado. Mathematical model for dynamic
case-based planning. Int. J. Comp. Math., 86 (10–11): 1719 –1730, 2009.

[8] del Cerro, L. F and Gasquet, O. A General Framework for Pattern-Driven Modal
Tableaux. Logic Journal IGPL 2002 10(1):51-83.

[9] A. Formisano, E. Omodeo, E. Or#lowska, A PROLOG tool for relational translation
of modal logics: A front-end for relational proof systems, TABLEAUX 2005, 1–10.
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[14] Golińska-Pilarek, J. and Or#lowska, E.: Tableaux and dual Tableaux: Transformation
of proofs, Studia Logica 85 (2007), 291–310.

[15] C. Gros, G. Kaczor. Semantic learning in autonomously active recurrent neural net-
works. Logic Journal IGPL, Adv. Acc. publ. Sept 14, 2009. doi:10.1093/jigpal/jzp045.

[16] A. Herrero, E. Corchado, L. Saiz, and A. Abraham. DIPKIP: A Connectionist Knowl-
edge Management System to Identify Knowledge Deficits in Practical Cases. Compu-
tational Intelligence, Vol. 26 (1): 26-56, 2010.

[17] Konikowska, B., Rasiowa-Sikorski deduction systems in computer science applica-
tions. Theor. Comp. Sci. 286, 323–366, 2002.

[18] J. M. Mesa; C. Menendez; F. A. Ortega; P. J. Garcia. A smart modelling for the
casting temperature prediction in an electric arc furnace. Int. J. Comp. Math., 86 (7):
1182 – 1193, 2009.

[19] M. Miculan and G. Bacci. Modal Logics for Brane Calculus, LNCS 4210, 2006, 1– 16.

[20] Sara Negri. Proof analysis in modal logic. J. of Phil. Logic, 34(5,6): 507 –544, 2005.
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