
A Propositional Dynamic Logic Approach for
Order of Magnitude Reasoning?
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Abstract. We introduce a Propositional Dynamic Logic for order of
magnitude reasoning in order to formalize qualitative operations of sum
and product. This new logic has enough expressive power to consider, for
example, the concept of closeness, and to study some interesting proper-
ties for the qualitative operations, together with the logical definability
of these properties. Moreover, we show the applicability of our approach
on the basis of some examples.

1 Introduction

Qualitative reasoning (QR) is the area of AI which tries to develop representation
and reasoning techniques for dealing with situations in which the information is
not sufficiently precise (e.g., exact numerical values are not available) or when
numerical models are too complex. QR is somewhere in between heuristic models,
based on symbolic manipulations and numerical models, based on numerical
calculations.

A form of qualitative reasoning is illustrated by the management of numerical
data in terms of orders of magnitude (see, for example, [10, 17, 20, 21]). Order
of magnitude reasoning stratifies values according to some notion of scale, for
instance, by including hyperreal numbers, numerical thresholds, or logarithmic
scales. Three issues faced by all these formalisms are the conditions under which
many small effects can combine to produce a significant effect, the soundness of
the reasoning supported by the formalism, and the efficiency of using them.

The introduction of a logical approach to QR tries to face the problem about
the soundness of the reasoning supported by the formalism, and to give some
answers about the efficiency of its use. Several logics have been defined to use QR
in different contexts, [2,12,24], e.g., spatial and temporal reasoning. In particular,
logics dealing with order of magnitude reasoning have been developed in [7, 8]
defining different qualitative relations (order of magnitude, negligibility, non-
closeness, etc.) on the basis of qualitative classes obtained from the real line
divided in intervals [23].
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In this paper, we introduce a logic approach in order to formalize qualitative
operations of sum and product between our intervals (like “add a small positive
number” or “multiply by a negative large number”). We consider that the intro-
duction of this logic represents an important step stone, because, as said in [19],
it contributes to model aspects of human knowledge which, together with the
intrinsic qualities of the operators, are used in performing qualitative computa-
tions. To this end, we present a Propositional Dynamic Logic (henceforth PDL)
with constants. The main purpose of extending modal logics to PDL [4, 14, 16],
is to allow not only many fixed accessibility relations (as in multi-modal logic)
but also the construction of complex relations from such simple ones by using
operators as union, composition, transitive closure, etc.

Recent applications of PDL in communication scenarios, message-passing
systems, multiagent real-time systems and knowledge acquisition, can be seen
in [3, 5, 6, 15], respectively. In our case, we introduce some nominals in order to
represent the milestones which divide the different qualitative classes, for this
reason we could say that our logic is a hybrid PDL, as a part of the Combinatory
PDL [1,18]. This hybrid dynamism will give us enough expressive power to repre-
sent different situations, for example the important concept of closeness [20], and
to consider some interesting properties for the qualitative operations, together
with the logical definability of these properties. The introduction of closeness is
one of the main differences of this approach with respect to the previous works
in logic for order of magnitude reasoning. In these works negligibility, order of
magnitude, non-closeness and distance relations where introduced. The absence
of a closeness definition is due to the difficulties of obtaining complete axiomatic
systems to deal with this relation. In our case, PDL will gives us enough theo-
retical support in order to have not only complete axiomatic systems but also
to study its decidability and complexity.

The paper is organized as follows. In Section 2, the syntax and semantics of
the proposed logic is introduced. In Section 3, we study some properties of the
qualitative sum and product and its definability, together with an example of
application of our logic. Finally, some conclusions and prospects of future work
are presented in Section 4.

2 Syntax and Semantics

We consider the real line R divided into seven equivalence classes using five
landmarks chosen depending on the context [22]. The system corresponds to the
following schematic representation, where ci ∈ R, being i ∈ {1, 2, 3, 4, 5} such
that cj < cj+1, for all j ∈ {1, 2, 3, 4}:
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c1 c2 c3 c4 c5

nl nm ns 0 ps pm pl

The labels correspond, respectively, to the qualitative classes “negative large”,
“negative medium”, “negative small”, “zero”, “positive small”, “positive medium”,
and “positive large”, being:

nl = (−∞, c1), nm = [c1, c2) ns = [c2, c3), 0 = {c3}

ps = (c3, c4], pm = (c4, c5], pl = (c5,+∞)

In order to introduce the language of our logic, we consider a set of formulas
Φ and a set of programs Π, which are defined recursively on countably infinite
and pairwise disjoint sets Φ0 and Π0, respectively. Φ0 is called the set of atomic
formulas which can be thought as abstractions of properties of states. Similarly,
Π0 is called the set of atomic programs which are intended to represent basic
instructions.

Formulas:

• Φ0 is a denumerable set of propositional variables which contains the finite
set C = {ci | i ∈ {1, 2, 3, 4, 5}} of constants together with > (true) and ⊥
(false).
• If ϕ and ψ are formulas and a is a program, then ϕ∨ψ, ¬ϕ, 〈a〉ϕ are formulas.

As usual in propositional modal logic, ϕ→ ψ means ¬ϕ ∨ ψ, and [a] represents
¬〈a〉¬.

Programs:

• Π0 = {<,>,+Eq, ·Eq, θ}, where Eq ∈ {nl, nm, ns, 0, ps, pm, pl} represents the
equivalence classes defined above and θ is the null program.
• If a and b are programs and ϕ is a formula, then (a; b) (“do a followed by
b”), a ∪ b (“do a or b, nondeterministically”), a∗ (“repeat a a finite, but
nondeterministically determined, number of times”) and ϕ? (“proceed if ϕ
is true, else fail”) are also programs.

As an example of formulas, we can consider 〈+ps ∪+ns〉, 〈·pl; ·pl〉 and 〈ns?; +pl〉
in order to represent, respectively, the intuitive meanings of adding a (positive
or negative) small number, multiplying twice by a positive large number and
adding a positive large number to a negative small number.
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We now define the semantics of our logic. A model M is a pair (W,m),
where W is a non-empty subset 3 of R and m is a meaning function such that
m(ϕ) ⊆W , for all formula ϕ, and m(a) ⊆W ×W , for all programs a. Moreover,
for every formula ϕ and ψ and for all programs a, b, we have:

• m(>) = W and m(⊥) = ∅
• m(ci) ∈W , for all i ∈ {1, 2, 3, 4, 5}
• m(ϕ ∨ ψ) = m(ϕ) ∪m(ψ)
• m(¬ϕ) = W −m(ϕ)
• m(〈a〉ϕ) = {w ∈W : ∃v ∈W such that (w, v) ∈ m(a) and v ∈ m(ϕ)}
• m(<) is the restriction to W of the usual strict linear ordering of R, such

that (m(cj),m(cj+1)) ∈ m(<), for all j ∈ {1, 2, 3, 4}.
• m(θ) = ∅
• m(a ∪ b) = m(a) ∪m(b)
• m(a; b) = m(a);m(b) (composition of relations m(a) and m(b))
• m(a∗) = m(a)∗ (reflexive and transitive closure of relation m(a)).
• m(ϕ?) = {(w,w) : w ∈ m(ϕ)}

Given a modelM = (W,m), a formula ϕ is true in w ∈W whenever w ∈ m(ϕ).
We say that ϕ is valid in a modelM = (W,m) if ϕ is true in all w ∈W , that is,
if m(ϕ) = W . Finally, ϕ is valid iff ϕ is valid in all models.

The informal meaning of some of our connectives is given as follows:

• 〈<〉ϕ is true in w iff there exists w′, greater than w, such that ϕ is true in
w′.
• 〈+pm〉ϕ is true in w iff there exists w′, obtained by adding a positive medium

number to w, such that ϕ is true in w′.
• [·pl]ϕ is true in w iff for every w′, obtained by multiplying w by a positive

large number, ϕ is true in w′.
• 〈nl?〉ϕ is true in w iff w is a negative large number and ϕ is true in w.
• 〈+∗ns〉ϕ is true in w iff there exists w′, obtained by adding a finite number

of negative small numbers to w, such that ϕ is true in w′.

Notation: In the rest of the paper, we will use the intuitive notation ps as a
formula which is true exactly in the set ps, that is, ps ≡ (〈>〉c3 ∧ 〈<〉c4) ∨ c4,
and similarly for the rest of intervals. Moreover, we use the abbreviation ♦ϕ ≡
(〈>〉ϕ ∨ ϕ ∨ 〈<〉ϕ), for any formula ϕ, and similarly for �.

As said before, one of the main advantages of using PDL is the possibility of
constructing complex programs from basic ones. As a consequence, following
the ideas presented in [7], we can use our connectives in order to represent
some relations as negligibility and distance. Moreover, we introduce a notion of
closeness which was not included in the previous approaches of logics for order
of magnitude reasoning. Thus, for any formula ϕ, we have:

〈c〉ϕ = 〈+ns ∪+0 ∪+ps〉ϕ 〈d〉ϕ = 〈+nl ∪+pl〉ϕ
3 We could use any strict linearly ordered set with two internal operations + and ·
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〈n〉ϕ = 〈c3?〉♦ϕ ∨ 〈(ns ∨ ps)?〉♦(〈c2?; +nl〉ϕ ∨ 〈c4?; +pl〉ϕ)

The intuitive interpretation of the closeness relation is that x is close to y if, and
only if, y is obtained from x by adding a small number. On the other hand, x
is distant from y if and only if y is obtained from x by adding a large number.
Moreover, we assume that zero is negligible with respect to any real number and
a small number is negligible with respect to any number sufficiently large, that
is, distant either from c2 or c4.

Example 1. In this example, inspired in that given in [11], we show the expres-
siveness of our logic in order to make different comparisons. Let us consider three
computational tasks with different ranges of difficulty. For instance:

(a) Add up a column of 100 numbers.
(b) Sort a list of 10,000 elements.
(c) Invert a 100 × 100 matrix.
(d) Add up a column of 120 numbers.

We can say that the time required by (a) and (d) are much shorter than the
others, and task (b) is much shorter than (c). For example, we may assume that
the time required by (b) is obtained from the time required by (a) by adding a
positive medium number, that the time required by (a) is negligible with respect
to the time required by (c) and that the time required by (a) is close to the time
required by (d).

If formulas time a, time b, time c and time d represent the time required by
(a), (b), (c) and (d) respectively, then the following formulas hold:

time a→ 〈+pm〉 time b, time a→ 〈n〉 time c, time a→ 〈c〉 time d

If we assume also that the time required by (c) is obtained by multiplying by a
positive large number the time required by (b), then we have:

time b→ 〈·pl〉 time c, time a→ 〈+pm; ·pl〉 time c

3 Some properties of qualitative sum and product

This section is devoted to study different properties of some classes of our models
with respect to the qualitative operations sum and product defined previously.
For simplicity, in the rest of the paper, we will consider the class L of models
M = (U,m) such that:

1. U ⊆ R, such that 0, α, β ∈ U
2. m(c3) = 0, −m(c2) = m(c4) = α, −m(c1) = m(c5) = β

To begin with, some elementary results of qualitative arithmetic are recalled;
then, some relevant properties regarding sum and product are stated. Finally,
we study the definability of these properties and give some examples.

Following [20], we consider the sum and product between non-empty sets and
between elements and non-empty sets defined as follows:

Definition 1. Let X,Y ⊆ R and x ∈ R such that X,Y 6= ∅, we define the sets
x+ Y and x · Y , X + Y and X · Y as follows:
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x+ Y = {x+ y | y ∈ Y }
x · Y = {xy | y ∈ Y }

X+Y = {x+y | x ∈ X and y ∈ Y }
X · Y = {xy | x ∈ X and y ∈ Y }

In the following proposition, we particularize the definition above to the seven
qualitative classes of our order of magnitude model and obtain a number of
intuitive properties.

The properties stated in the proposition below can be verified by straight-
forward inspection:

Proposition 1.

1. 0 + Eq = Eq, for all Eq ∈ {nl, nm, ns, 0,ps, pm, pl}
2. pl + (ps ∪ pm ∪ pl) ⊆ pl
3. pl + nm ⊆ (ps ∪ pm ∪ pl)
4. pm + (ps ∪ pm) ⊆ (pm ∪ pl)
5. pm + ns ⊆ (ps ∪ pm)
6. ps + ns ⊆ (ns ∪ 0 ∪ ps)
7. If β ≥ 2α, we have pl + ns ⊆ (pm ∪ pl) and ps + ps ⊆ (ps ∪ pm)
8. If β ≥ 1, (pl · pl) ∪ (nl · nl) ⊆ pl; pl · nl ⊆ nl
9. If α ≥ 1, we have:

(a) (pm · pl) ∪ (nm · nl) ⊆ pl
(b) (pm · nl) ∪ (nm · pl) ⊆ nl.
(c) (nm · nm) ∪ (pm · pm) ⊆ (pm ∪ pl)

Note that additional properties are obtained when interchanging negative and
positive numbers in the items from 2 to 7.

The following concept of definability based on models gives us a relationship
between properties of our models and formulas of our logic.

Definition 2. Let K be a class of models and J ⊆ K the class of all models in
K having a certain property P . We say that P is definable by a formula ϕ in the
class K if for every model M∈ K, we have that M∈ J iff ϕ is valid in M.

In our case, we will say that P is definable in the class K if there exists a formula
ϕ such that P is definable by ϕ in K.

Proposition 2. All the properties in Table 1 are definable in the class L defined
above, but the exceptions stated below:

– Property 7 is definable in the class L1 of models in L such that β ≥ 2α.
– Property 8 is definable in the class L2 of models in L such that β ≥ 1.
– Property 9 is definable in the class L3 of models in L such that α ≥ 1.

Proof. We only show the definability of the first property in 7, that is, pl+ns ⊆
(pm ∪ pl). The proof in the rest of the cases is similar.

To obtain the validity of the formula ϕ = 〈pl?〉 [+ns] (pm ∨ pl), let (W,m)
be a model in L1 and suppose (pl + ns) ⊆ (pm ∪ pl). If w ∈ W such that
w ∈ m(pl), this means that w ∈ pl. By hypothesis, this implies that, for every
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w′ ∈ W such that (w,w′) ∈ m(+ns), we have that w′ ∈ m(pm ∪ pl), hence
w ∈ m(〈pl?〉 [+ns] (pm ∪ pl)). This means that the validity of ϕ.

Conversely, given a model (W,m) in which holds (pl + ns) 6⊆ (pm ∪ pl).
As a consequence, there exists w′ ∈ pl + ns, such that w′ 6∈ pm ∪ pl. Thus,
w′ = w + w′′, being w ∈ pl and w′′ ∈ ns, hence w 6∈ m(〈pl?〉 [+ns] (pm ∨ pl)).
This means that formula ϕ is not true in w, that is, ϕ is not valid in (W,m).

Table 1. Definability of Properties

PROPERTY DEFINED BY

1 0 + Eq = Eq 0→ [+Eq]Eq

2 pl + (ps ∪ pm ∪ pl) ⊆ pl 〈pl?〉 [+ps ∪+pm ∪+pm]pl

3 (pl + nm) ⊆ (ps ∪ pm ∪ pl) 〈pl?〉 [+nm] (ps ∨ pm ∨ pl)

4 pm + (ps ∪ pm) ⊆ (pm ∪ pl) 〈pm?〉 [+ps ∪+pm](pm ∨ pl)

5 (pm + ns) ⊆ (ps ∪ pm) 〈pm?〉 [+ns] (ps ∨ pm)

6 (ps + ns) ⊆ (ns ∪ 0 ∪ ps) 〈ps?〉 [+ns] (ns ∨ 0 ∨ ps)

7 pl + ns ⊆ (pm ∪ pl) 〈pl?〉 [+ns] (pm ∨ pl)
ps + ps ⊆ (ps ∪ pm) 〈ps?〉 [+ps] (ps ∨ pm)

8 (pl · pl) ∪ (nl · nl) ⊆ pl (〈pl?〉 [·pl] pl) ∧ (〈nl?〉 [·nl] pl)

9 (pm · pl) ∪ (nm · nl) ⊆ pl (〈pl?〉 [·pm] pl) ∧ (〈nl?〉 [·nm] pl)
(pm · nl) ∪ (nm · pl) ⊆ nl (〈nl?〉 [·pm] nl) ∧ (〈pl?〉 [·nm] nl)

(nm · nm) ∪ (pm · pm) ⊆ (pm ∪ pl) (〈nm?〉 [·nm] (pm ∨ pl)) ∧ (〈pm?〉 [·pm] (pm ∨ pl))

We now present some examples which show up the expressiveness of our logic
and the applicability of the previous properties.

Example 2. We continue with the previous example 1, by assuming now that
the time required by tasks (a), (b) and (c) are positive small, medium and large
numbers, respectively. This means that:

time a→ ps time b→ pm, time c→ pl

If we assume that β ≥ 2α, properties 4 and 7 of Proposition 1 can be applied to
obtain, respectively:

time b→ [+ps] (pm ∨ pl), time a→ [+ps] (ps ∨ pm)

The intuitive reading of the formula time b→ [+ps] (pm ∨ pl), is “if we add the
time required by task (b) to the required one by any task with the same order of
magnitude to task (a) (in this case ps), the time obtained has the same order of
magnitude than the one required by task (b) or by task (c), i.e., pm or pl.” In
the same way, formula time a→ [+ps] (ps∨pm) can be interpreted as “if we add
the time required by task (a) to the time required by any task with the same
order of magnitude than (a), the time obtained has the same order of magnitude
than the one required by any task (a) or (b)”.
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Example 3. We consider now the heat exchanger studied, for example, in [21].
Let DTH be the temperature drop of the hot stream, DTC is the temperature rise
of the cold stream, and DT1,DT2 are the driving force in the left and right ends
of the device, respectively. Moreover, FH and KH are, respectively, the molar-
flowrate and molar-heat of the hot stream and FC, KC the molar-flowrate and
molar-heat of the cold stream. Notice that DTH, DTC, DT1, DT2, FH, KH, FC
and KC are all positive real numbers.

Fig. 1. The heat exchanger

The following equations are consequence of the previous definition and energy
conservation:

DTH− DT1− DTC + DT2 = 0 (1)

DTH · KH · FH = DTC · KC · FC (2)

In this example, we use models such that every value of DTH,DTC, . . . is repre-
sented as a current state in the real line, being the milestones α and β such that
β ≥ 2α and α ≥ 1. We define dth as the formula which is true iff the current
value is DTH, and similarly for the rest of values dtc, dt1, etc. Assume that DTH
is a positive large number and DT1,DT2 are positive small numbers, that is, the
following formulas hold:

dth→ pl (dt1 ∨ dt2)→ ps

From (1) and our previous assumptions, we have that DTC ∈ (DTH + ps) + ns,
which implies that the following formula is true:

dth→ 〈+ps; +ns〉 dtc

Thus 4, we have DTC ∈ (pl + ps) + ns. Now, from Proposition 1(2), we have
that pl+ps ⊆ pl, and from Proposition 1(7), we obtain pl+ns ⊆ (pm∪pl). As

4 Notice that although qualitative sum is not necessarily associative, in this case we
could eliminate the brackets.
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a consequence, (pl + ps) + ns ⊆ (pm ∪ pl). This means that DTC ∈ (pm ∪ pl).
Hence, the following formula is true:

dtc→ (pm ∨ pl)

This means that if DTH is large, then DTC is medium or large, that is, if we
want that the device decreases very much the temperature of the hot stream,
we have to accept that the temperature of the cold stream increases much.

On the other hand, from (1) again and our previous assumptions, we have that
DTC−DTH ∈ ps+ns. Now, Proposition 1(6), we have that ps+ns ⊆ (ns∪0∪ps).
As a consequence, the difference between DTC and DTH is a small number while
DTH is a large number.

Finally, if we assume also that KH and KC are positive medium numbers, by
Proposition 1(9a,c), we have: (pm · pl) ⊆ pl and (pm · pm) ⊆ (pm ∪ pl), from
(2), we have:

〈fh?〉 〈·pl〉 pl→ �〈fc?〉 〈·pm ∪ ·pl〉 pl

The meaning of this formula is: if we make the product of FH by a large number
(as the product DTH ·KH) and we obtain, for example, a positive large number,
then we have the same order of magnitude if we make the product of FC by a
medium or large number (as the product DTC · KC).

4 Conclusions and future work

A PDL for order of magnitude reasoning has been introduced, which gives us
enough expressive power to introduce different qualitative operations of sum
and product. As a consequence, we are able to define notions as negligibility,
closeness and distance. Moreover, we have studied the definability of interesting
properties of sum and product of real numbers and its applicability has been
shown on the basis of an example.

As a future work, the introduction of PDL will give us the theoretical support
in order to give a complete axiomatization of this logic and to study its decid-
ability and complexity [14, 18]. Last, but not least, we want to give a relational
proof system based on dual tableaux for this extension in the line of [9, 13].
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13. Golińska-Pilarek, J., and Muñoz-Velasco, E., Relational approach for a logic for
order of magnitude qualitative reasoning with negligibility, non-closeness and dis-
tance. Technical Report, 2008.

14. Harel, D, Kozen, D. and Tiury. Dynamic logic. Handbook of Philosophical Logic,
vol 4, 2nd ed. , edited by D. Gabbay and F. Guenthner: 99–218, 2002.

15. Heinemann, B. A PDL-like logic of knowledge acquisition. Lecture Notes in Com-
puter Science 4649, pp. 146-157, 2007.

16. Mirkowska, C., Salwicki, A. Algorithmic Logic Kluwer Academic Publishers Nor-
well, 1987.

17. Nayak, P. Causal Approximations. Artificial Intelligence 70. 277-334, 1994.
18. Passy, S. and Tinchev, T. An essay in combinatory dynamic logic Information

and Computation Volume 93 , Issue 2 (August 1991), pp 263 - 332, 1991.
19. Piera, N. and Agell, N. Binary Relations for Qualitative Reasoning. Systems, Man

and Cybernetics, 1992., IEEE International Conference on pp. 267-271 vol.1, 1992
20. Raiman, O. Order of magnitude reasoning Artificial Intelligence. 51: 11-38, 1991.
21. Sanchez, M. Prats, F. and Piera, N. Una formalización de relaciones de compa-

rabilidad en modelos cualitativos Bolet́ın de la AEPIA (Bulletin of the Spanish
Association for AI) 6: 15-22, 1996.
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