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Abstract. Qualitative description of the movement of objects can be very important when
there are large quantity of data or incomplete information, such as in positioning technolo-
gies and movement of robots. We present a first step in the combination of fuzzy qualita-
tive reasoning and quantitative data obtained by human interaction and external devices as
GPS, in order to update and correct the qualitative information. We consider a Propositional
Dynamic Logic which deals with qualitative velocity and enables us to represent some rea-
soning tasks about qualitative properties. The use of logic provides a general framework
which improves the capacity of reasoning. This way, we can infer additional information
by using axioms and the logic apparatus. In this paper we present sound and complete re-
lational dual tableau that can be used for verification of validity of formulas of the logic in
question.

1 Introduction

Qualitative reasoning, QR, is an area of AI which tries to simulate the way of humans think
in almost all situations. For example, we do not need to know the exact value of velocity and
position of a car in order to drive it. When raising or answering questions about moving ob-
jects, both qualitative and quantitative responses are possible, as stated in [9]. However, human
beings usually prefer to communicate using qualitative information according to their intuition
rather than using quantitative values. Moreover, representing and reasoning with quantitative
information can lead to information overload, that is, there is more information to be handled
than the one that can be processed. A form of QR is order of magnitude reasoning, where the
values are represented by different qualitative classes. For example, talking about velocity we
may consider slow, normal, and quick as qualitative classes.

As said in [27], qualitative models can be seen as discrete abstractions of continuous and
hybrid systems and can be fully explored by a verification tool providing conservative analysis
of hybrid systems.

The use of logic in QR, as in other areas of AI, provides a general framework which allows
us to improve the capacity of solving problems and, as we will see in this paper, to deal with the
reasoning problem. This way, we can infer additional information by using axioms and the logic
apparatus. There are several applications of logics for QR (see e.g., [2, 10]) and many of them
concern spatial reasoning. As an example of logic for order of magnitude reasoning, see [4]; a
theorem prover for one of these logics can be seen in [16]; and some implementations in [5,15].

Qualitative description of the movement of objects can be very important when there are
large quantity of data, such as in positioning technologies (GPS, wireless communication) and
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movement of robots. In this direction, the concept of qualitative velocity [11, 28], together with
qualitative distance and orientation, could help in order to represent spatial reasoning.

In a hybrid intelligence system, multiple techniques are used in order to obtain an efficient
solution for a particular problem [1, 7, 8, 14, 23]. In our case, this combination is made by using
qualitative reasoning, fuzzy aspects as in [3], and quantitative data obtained by human inter-
action and external devices as GPS, in order to update and correct the qualitative information.
There are recent papers where similar combinations have been presented. For instance, in [26] a
quantitative method is used for analyzing and comparing trajectories of robots using point distri-
bution models; in [17] a simulator that combines qualitative reasoning, a geographic information
system and targeted probabilistic calculations is presented; and in [31] a mix of qualitative and
quantitative data is used for a hybrid modeling approach is studied.

Some papers [6, 18, 19] are developing the qualitative kinematics models studied in [12,
13, 21]. The relative movement of one object with respect to another has been studied by the
Region Connection Calculus [24] and the Qualitative Trajectory Calculus [9, 30]. However, as
far as we know, the first paper which proposes a logic framework for qualitative velocity is [3],
where a Propositional Dynamic Logic for order of magnitude reasoning to deal with the concept
of qualitative velocity is proposed. The main advantages of this approach are: the possibility
of constructing complex relations from simpler ones; the flexibility for using different levels of
granularity; its possible extension by adding other spatial components, such as position, distance,
cardinal directions, etc.; the use of a language close to programming languages; and, above all,
the strong support of logic in spatial reasoning. Following [11], velocity of an object B with
respect to another object A is represented by two components: module and orientation, each
one given by a qualitative class. If we consider a velocity of B with respect to A, and another
velocity of C with respect to B, the composition of these two velocities consists of obtaining
the velocity of C with respect to A. For example, if (Q,l) represents a quick velocity towards
the left orientation of B with respect to A, and (N,r) is a normal velocity towards the right of
C with respect to B, the composition is a velocity of C with respect to A, that could be either
(Q,l) or (N,l), that is, a quick or normal velocity towards the left orientation. The results of
these compositions could depend on the specific problem we are dealing with. In the following
section, we consider the logic QV where some assumptions about these compositions are posed
in its models.

In this paper we present a first step in the construction of an hybrid approach to deal with
qualitative velocity. We show a sound and complete relational dual tableau for the Propositional
Dynamic Logic of qualitative velocity introduced in [3], which can be used for verification
of validity of its formulas. The system is based on Rasiowa-Sikorski diagrams for first-order
logic [25]. The common language of most of relational dual tableaux is the logic of binary
relations, which is a logical counterpart to the class RRA of (representable) relation algebras
introduced by Tarski in [29]. The formulas of the classical logic of binary relations are intended
to represent statements saying that two objects are related. Relations are specified in the form
of relational terms. Terms are built from relational variables and/or relational constants with
relational operations of union, intersection, complement, composition, and converse.

Relational dual tableaux are powerful tools for verification of validity as well as for proving
entailment, finite model checking (i.e., verification of truth of a statement in a particular fixed fi-
nite model) and finite satisfaction (i.e., verification that a statement is satisfied by some fixed ob-
jects of a finite model). A comprehensive survey on applications of dual tableaux methodology
to various theories and logics can be found in [22]. The main advantage of relational methodol-
ogy is the possibility of representation within a uniform formalism the three basic components
of formal systems: syntax, semantics, and deduction apparatus. Hence, the relational approach



provides a general framework for representation, investigation and implementation of theories
with different languages and/or semantics.

The paper is organized as follows. In Section 2 we present the Propositional Dynamic Logic
of qualitative velocity, QV, its syntax and semantics. Relational formalization of the logic is
presented in Section 3. In Section 4 we present the relational dual tableau for this logic, and we
study its soundness and completeness; moreover, we show an example of the relational proof of
validity of a QV-formula. Conclusions and final remarks are discussed in Section 5.

2 Logic QV for reasoning with qualitative velocity

In this section we present the syntax and semantics of the logic QV for order of magnitude quali-
tative reasoning to deal with the concept of qualitative velocity. We consider the set of qualitative
velocities L1 = {z, v
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represent zero, slow, normal, and quick veloc-
ity, respectively; and the set of qualitative orientations L2 = {n, o
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} representing
none, front, right, back, and left orientations, respectively. Thus, we consider four qualitative
classes for the module of the velocities, and five qualitative classes for the orientation of the
velocity. Orientations o

j

and o
j+2

, for j 2 {1, 2}, are interpreted as opposite. Furthermore, ori-
entations o

j

and o
j+1

, for j 2 {1, 2, 3}, are interpreted as perpendicular.

The logic QV is an extension of Propositional Dynamic Logic PDL which is a framework for
specification and verification of dynamic properties of systems. It is a multimodal logic with
the modal operations of necessity and possibility determined by binary relations understood as
state transition relations or input-output relations associated with computer programs. The vo-
cabulary of the language of QV consists of symbols from the following pairwise disjoint sets:
V - a countably infinite set of propositional variables; C = L1 ⇥ L2 - the set of constants
representing labels from the set L1 ⇥ L2; SP = {⌦

?

|? 2 C} - the set of relational constants
representing specific programs; {[, ; , ?,⇤ } - the set of relational operations, where [ is inter-
preted as a nondeterministic choice, ; is interpreted as a sequential composition of programs, ?
is the test operation, and ⇤ is interpreted as a nondeterministic iteration; {¬,_,^,!, [ ], hi} -
the set of propositional operations of negation, disjunction, conjunction, implication, necessity,
and possibility, respectively.

The set of QV-relational terms interpreted as compound programs and the set of QV-formulas
are the smallest sets containing SP and V [ C, respectively, and satisfying the following condi-
tions:

– If S and T are QV-relational terms, then so are S [ T , S ;T , and T

⇤.
– If ' is a QV-formula, then '? is a QV-relational term.
– If ' and  are QV-formulas, then so are ¬',' _  ,' ^  , and '!  .
– If ' is a QV-formula and T is a QV-relational term, then [T ]' and hT i' are QV-formulas.

Given a binary relation R on a set W and X ✓ W , we define:

R(X) df= {w 2 W | 9x 2 X, (x,w) 2 R}.

Fact 1 For every binary relation R on a set W and for all X,Y ✓ W :

R(X) ✓ Y iff (R�1 ; (X ⇥W )) ✓ (Y ⇥W ).



A QV-model is a structure M = (W,m), where W is a non-empty set of states and m is a
meaning function satisfying the following conditions:

– W =
S
?2C ? where all ?’s are pairwise disjoint subsets of states understood as states of

objects affected by a qualitative velocity
– m(p) ✓ W for every p 2 V
– m(?) = ?, for every ? 2 C
– m(⌦

?

) ✓ W ⇥ W , for every ⌦
?

2 SP, and, in addition, for all v, v
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2 L2, the following hold:
(S1) m(⌦(v,o)) ;m(⌦(z,n)) = m(⌦(v,o))
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), for j 2 {1, 2}, s 2 {2, 3}, and
r < s

m extends to all the compound QV-relational terms and formulas:

– m(T ⇤) = m(T )⇤ =
S

i�0 m(T i), where T

0 is the identity relation on W and T

i+1 df=
(T i ;T )

– m(S [ T ) = m(S) [m(T )
– m(S ;T ) = m(S) ;m(T )
– m('?) = {(s, s) 2 W ⇥W : s 2 m(')}
– m(¬') = W \m(')
– m(' _  ) = m(') [m( ))
– m(' ^  ) = m(') \m( ))
– m('!  ) = m(¬') [m( ))
– m([T ]') = {s 2 W | for all t 2 W, if (s, t) 2 m(T ), then t 2 m(')}
– m(hT i') = {s 2 W | exists t 2 W such that (s, t) 2 m(T ) and t 2 m(')}

Given a QV-model M = (W,m), a QV-formula ' is said to be satisfied in M by s 2 W ,
M, s |= ' for short, whenever s 2 m('). As usual, a formula is true in a model whenever it is
satisfied in all states of the model and it is QV-valid iff it is true in all QV-models.

Intuitively, (s, s0) 2 m(T ) means that there exists a computation of program T starting in the
state s and terminating in the state s

0. Program S[T performs S or T nondeterministically; pro-
gram S ;T performs first S and then T . Expression '? is a command to continue if ' is true, and
fail otherwise. Program T

⇤ performs T zero or more times sequentially. For example, the for-
mula h(v
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)?i' is satisfied in s whenever s is a slow velocity towards the left orientation and
' is satisfied in s; the formula [⌦⇤(v

3

,o

2

)]' is satisfied in s iff for every velocity s

0 obtained by the
repetition of the composition of s with a quick velocity towards the right orientation a nondeter-
ministically chosen finite number of times, ' is satisfied in s

0; the formula [⌦(v
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,o
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) ;⌦(v
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)]'
is satisfied in s iff for every velocity s

0 obtained by composing s with a slow velocity towards
the left followed by a normal velocity towards the right orientation, ' is satisfied in s

0.

Example 1. Let us consider the case study of ball interception of simulated soccer agents, pre-
sented in [3]. Suppose that the ball is located at a point B and is moving with a velocity (v

b

, o
b

)
and the robot is at point R and it is not moving at this instant (see Figure 1). Suppose also that



the robot can calculate the qualitative velocity needed to catch the ball at the current instant and
position and this velocity is (v

c

, o
c

). A simple vectorial argument leads us to the fact that the
composition of both velocities has to be the velocity needed to catch the ball. This condition can
be expressed in our language by the formula (z, n) ! [⌦(v

c

,o

c

);⌦(v
b

,o

b

)]OK, where (z, n) means
that the robot is not moving at this instant, and OK means that the velocity of the robot is the
correct one in order to catch the ball. the validity of this formula has to be checked as the robot is
moving towards the ball and has to be corrected if it is not OK. The correction of this movement
could require the human intervention and, on the other hand, the position of the robot may need
some external device as a GPS.
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)

OK

Fig. 1. Catching a ball when the robot is not moving

3 Relational representation of logic QV

In this section we present the relational formalization of logic QV providing a framework for
deduction in logic QV. First, we define the relational logic RL

QV

appropriate for expressing
QV-terms and QV-formulas. Then, we translate all QV-terms and QV-formulas into relational
terms and we show the equivalence of validity between a modal formula and its corresponding
relational formula. The vocabulary of the language of the relational logic RL

QV

consists of of
symbols from the following pairwise disjoint sets: OV = {x, y, z, . . .} - a countably infinite set
of object variables; RV = {P,Q, . . .} - a countably infinite set of binary relational variables;
RC = {1, 10} [ {R

?

, 

?

|? 2 C} - the set of relational constants, where C is defined as in
QV-models; OP = {�,[,\, ; ,�1

,

⇤ } - the set of relational operation symbols. The intuitive
meaning of the relational representation of the symbols of logic QV is as follows: propositional
variables are represented by relational variables; constants from C are represented by relational
constants  

?

interpreted as right ideal binary relations; relational constants R

?

correspond to
specific programs⌦

?

; the relational constants 1 (the universal relation), 10 (the identity relation),
and relational operations are used in the representation of compound QV-formulas.

The set of RL
QV

-terms is the smallest set containing relational variables and relational constants
and closed on all the relational operations. RL

QV

-formulas are of the form xTy, where T is an
RL

QV

-relational term and x, y are object variables. An RL
QV

-model is a structure M = (W,m),
where W is defined as in QV-models and m is the meaning function that satisfies:

– m(P ) ✓ W ⇥W , for every P 2 RV [ {R
?

|? 2 C}
– m( 

?

) = ?⇥W , for every ? 2 C



– m(10) is an equivalence relation on W

– m(10) ;m(P ) = m(P ) ;m(10) = m(P ), for every P 2 RV [ RC (the extensionality
property)

– m(1) = W ⇥W

– For all v, v
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)), for j 2 {1, 2}, s 2 {2, 3},
and r < s

– m extends to all the compound relational terms as follows:

m(�T ) = m(1) \ �m(T ),
m(S [ T ) = m(S) [m(T ),
m(S \ T ) = m(S) \m(T ),

m(T�1) = m(T )�1,
m(S ;T ) = m(S) ;m(T ),
m(T ⇤) = m(T )⇤.

Observe that the conditions (RS1), . . . , (RS6) are relational counterparts of the conditions (S1),
. . . , (S6) assumed in QV-models. An RL

QV

-model M in which 10 is interpreted as the identity
is said to be standard. Let v: OV ! W be a valuation in an RL

QV

-model M. An RL
QV

-formula
xTy is said to be satisfied in M by v whenever (v(x), v(y)) 2 m(T ). A formula ' is true in
M iff it is satisfied in M by all the valuations and it is RL

QV

-valid whenever it is true in all
RL

QV

-models.

Now, we define the translation ⌧ of QV-terms and QV-formulas into RL
QV

-relational terms.
Let ⌧ 0 be a one-to-one mapping that assigns relational variables to propositional variables. The
translation ⌧ is defined as follows:

– ⌧(p) = (⌧ 0(p) ; 1), for every p 2 V
– ⌧(?) =  

?

, for every ? 2 C
– ⌧(⌦

?

) = R

?

, for every ⌦
?

2 SP

For all relational terms T and S:

– ⌧(T ⇤) = ⌧(T )⇤
– ⌧(S [ T ) = ⌧(S) [ ⌧(T )
– ⌧(S ;T ) = ⌧(S) ; ⌧(T )
– ⌧('?) = 10 \ ⌧(')
– ⌧(' _  ) = ⌧(') [ ⌧( )

– ⌧(' ^  ) = ⌧(') \ ⌧( )
– ⌧('!  ) = ⌧(¬' _  )
– ⌧(hT i') = ⌧(T ) ; ⌧(')
– ⌧([T ]') = �(⌧(T ) ;�⌧(')).

Relational terms obtained from formulas of logic QV include both declarative information and
procedural information provided by these formulas. The declarative part which represents static
facts about a domain is represented by means of a Boolean reduct of algebras of relations, and
the procedural part, which is intended to model dynamics of the domain, requires the relational
operations. In the relational terms which represent the formulas after the translation, the two
types of information receive a uniform representation and the process of reasoning about both
statics and dynamics, and about relationships between them can be performed within the frame-
work of a single uniform formalism.



Theorem 1.
For every QV-formula ' and for all object variables x and y, the following conditions are

equivalent:

1. ' is QV-valid.

2. x⌧(')y is true in all standard RL
QV

-models.

4 Relational dual tableau for QV

In this section we present a dual tableau for the logic RL
QV

that can be used for verification
of validity of QV-formulas. Relational dual tableaux are determined by the axiomatic sets of
formulas and rules which apply to finite sets of relational formulas. The axiomatic sets take the
place of axioms. The rules are intended to reflect properties of relational operations and con-
stants. There are two groups of rules: decomposition rules and specific rules. Although most
often the rules of dual tableaux are finitary, the dual tableau system for logic QV includes an
infinitary rule reflecting the behaviour of an iteration operation. Given a formula, the decompo-
sition rules of the system enable us to transform it into simpler formulas, or the specific rules
enable us to replace a formula by some other formulas. The rules have the following general
form:

(rule)
�(x)

�1(x1, u1, w1) | . . . |�
n

(x
j

, u
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, w

j

) | . . .

where j 2 J , for some (possibly infinite) set J , �(x) is a finite (possibly empty) set of formulas
whose object variables are among the elements of set(x), where x is a finite sequence of object
variables and set(x) is a set of elements of sequence x; every �

j

(x
j

, u

j

, w

j

), j 2 J , is a finite
non-empty set of formulas, whose object variables are among the elements of set(x

j

)[set(u
j

)[
set(w
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), where x

j

, u
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are finite sequences of object variables such that set(x
j

) ✓ set(x),
set(u

j

) consists of the object variables that may be instantiated to arbitrary object variables
when the rule is applied (usually to the object variables that appear in the set to which the rule
is being applied), set(w

j

) consists of the object variables that must be instantiated to pairwise
distinct new variables (not appearing in the set to which the rule is being applied) and distinct
from any variable of sequence u

j

. A rule of the form (rule) is applicable to a finite set X of
formulas whenever �(x) ✓ X . As a result of an application of a rule of the form (rule) to set
X , we obtain the sets (X \ �(x)) [ �

j

(x
j

, u

j

, w

j

), for every j 2 J . A set to which a rule is
applied is called the premise of the rule, and the sets obtained by the application of the rule are
called its conclusions. If the set J is finite, then a rule of the form (rule) is said to be finitary,
otherwise it is referred to as infinitary. Thus, if J has n elements, then the rule of the form (rule)
has n conclusions.

A finite set {'1, . . . ,'n

} of RL
QV

-formulas is said to be an RL
QV

-set whenever for every
RL

QV

-model M and for every valuation v in M there exists i 2 {1, . . . , n} such that '
i

is
satisfied by v in M. It follows that the first-order disjunction of all the formulas from an RL
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-
set is valid in the first-order logic. A rule of the form (rule) is RL
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-correct whenever for every
finite set X of RL
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) is an
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-set, for every j 2 J , i.e., the rule preserves and reflects validity. It follows that ‘,’ (comma)
in the rules is interpreted as disjunction and ‘|’ (branching) is interpreted as conjunction.

RL
QV

-dual tableau includes decomposition rules of the following forms, for any object vari-
ables x and y and for any relational terms S and T :



([)
x(S [ T )y
xSy, xTy

(�[)
x�(S [ T )y

x�Sy | x�Ty

(\)
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xSy |xTy
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(�⇤) x�(T ⇤)y
x�(T 0)y | . . . |x�(T i)y | . . .
for any i � 0 where T

0 = 10, T

i+1 = T ;T i

Below we list the specific rules of RL
QV

-dual tableau.

For all object variables x, y, z and for every relational term T 2 RC:

(101)
xTy

xTz, xTy | y10z, xTy
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xTy

x10z, xTy | zTy, xTy

For every ? 2 C and for all object variables x and y:
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for any object variable z, j 2 {1, 2, 3} for any object variable z and j 2 {1, 2, 3} and r < s
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A set of RL
QV

-formulas is said to be an RL
QV

-axiomatic set whenever it includes a subset of
either of the following forms, for all object variables x, y, for every relational term T , for any
? 2 C, and for any # 2 C \ {?}:

(Ax1) {x10x}
(Ax2) {x1y}
(Ax3) {xTy, x�Ty}

(Ax4)
[

?2C
{x 

?

y}

(Ax5) {x� 
?

y, x� #y}

Let ' be an RL
QV

-formula. An RL
QV

-proof tree for ' is a tree with the following properties:

– The formula ' is at the root of this tree.
– Each node except the root is obtained by an application of an RL

QV

-rule to its predecessor
node.

– A node does not have successors whenever its set of formulas is an RL
QV

-axiomatic set or
none of the rules is applicable to its set of formulas.

Observe that the proof trees are constructed in the top-down manner, and hence every node has
a single predecessor node.

A branch of an RL
QV

-proof tree is said to be closed whenever it contains a node with an RL
QV

-
axiomatic set of formulas. A tree is closed iff all of its branches are closed. An RL

QV

-formula '
is RL

QV

-provable whenever there is a closed RL
QV

-proof tree for it which is then refereed to as
its RL

QV

-proof.

Theorem 2 (Relational Soundness and Completeness).
For every QV-formula ' and for all object variables x and y, the following conditions are

equivalent:

1. ' is QV-valid.

2. x⌧(')y is RL
QV

-provable.

Example
Let ' be a QV-formula of the following form: ' = (v, o

1

) ! [⌦(v,o
2

)]((v, o1

) _ (v, o
2

)).
The translation of ' into RL

QV

-term is: ⌧(') = � (v,o
1

) [ �(R(v,o
2

) ;�( (v,o
1

) [  (v,o
2

)))
Figure 2 shows RL

QV

-proof of the formula x⌧(')y, which by Theorem 2 proves QV-validity of
'. In each node of the tree presented in the example we underline the formulas which determine
the rule that has been applied during the construction of the tree and we indicate which rule has
been applied. If a rule introduces a variable, then we write how the variable has been instantiated.
Furthermore, in each node we write only those formulas which are essential for the application
of a rule and the succession of these formulas in the node is usually motivated by the reasons of
formatting.
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Fig. 2. RL
QV

-proof of QV-validity of the formula (v, o
1

)! [⌦(v,o
2

)]((v, o1

) _ (v, o
2

)).

5 Conclusions and future work

We have presented a sound and complete relational dual tableau for verification of validity of
QV-formulas. This system is a first step in order to provide a general framework for improving
the capacity of reasoning about moving objects. The direction of our future work is twofold.
First of all, we will focus on the extension of the logic by considering other spatial components
(relative position, closeness, etc.). On the other hand, it would be needed a prover which is a
decision procedure based on the dual tableau presented in this paper.
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