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Abstract. This paper continues the research line on the multimodal
logic of qualitative reasoning; specifically, it deals with the introduction
of the notions non-closeness and distance. These concepts allow us to
consider qualitative sum of medium and large numbers. We present a
sound and complete axiomatization for this logic, together with some of
its advantages by means of an example.

1 Introduction

Qualitative reasoning is an adequate tool for dealing with situations in which
information is not sufficiently precise (e.g., exact numerical values are not avail-
able) or when numerical models are too complex. A form of qualitative rea-
soning is to manage numerical data in terms of orders of magnitude (see, for
example, [10,11,13,15,17,20]). There are crucial problems in order of magnitude
reasoning which remain to be solved: the difficulty to incorporate quantitative in-
formation when available, and the difficulty to control the inference process [10].
Two approaches to order of magnitude reasoning have been identified in [20]:
Absolute Order of Magnitude, which is represented by a partition of the real
line R where each element belongs to a qualitative class; and Relative Order of
Magnitude, introducing a family of binary order of magnitude relations which
establishes different comparison relations in R (e.g. negligibility, closeness and
distance). In general, both models need to be combined in order to capture all
the relevant information. This fact has led us to define a logic which bridges the
absolute and relative order of magnitude models.

Previous works in logic to deal with qualitative reasoning, are presented in
[2, 3, 16, 18, 22] for managing qualitative spatial reasoning, qualitative spatio-
temporal representations, and the use of branching temporal logics to describe
the possible solutions of ordinary differential equations when we have a lack
of complete information about a system. However, an analogous development
of order of magnitude reasoning from a logical standpoint has received little
attention: to the best of our knowledge, the only logics dealing with order-of-
magnitude reasoning have been developed in [6–8]. More recently, a relational
? Partially supported by projects TIN2006-15455-C03-01 and P6-FQM-02049.



theorem prover has been developed in [9] for the logic of order-of-magnitude
with negligibility introduced in [7].

The present paper generalizes the line of research presented in [8], where
a notion of negligibility relation was considered, by introducing a logic to deal
with two new relations: non-closeness and distance [12, 17, 21] defined in an ar-
bitrarily chosen strict linearly ordered set. We present a sound and complete
axiomatization for this logic, together with some of its advantages, which are
shown by means of an example. The non-closeness relation is introduced follow-
ing the ideas of the Near relation in [17], that is, a real number x is Near to
y, when y = x + Small. If we work with real numbers, our definition says that
x is non-close to y when either they have different order of magnitude or y is
obtained by adding a medium or large number to x. The same idea is introduced
to define distance: a real number is distant from another one when it is obtained
by adding a large number. These definitions have the additional advantage that
enables us to introducing the operation of qualitative sum of medium and large
numbers.

We will consider a strict linearly ordered set (S, <) 3 divided into seven
equivalence classes using five landmarks chosen depending on the context [14,19].
The system considered corresponds to the schematic representation shown below:

NL NM NS PS

c

PM PL

c c c c-2 -1 0 1 2

where ci ∈ S for i ∈ {−2,−1, 0, 1, 2} such that cj < cj+1 for all j ∈ {−2,−1, 0, 1}.
In this work we consider the following set of qualitative classes:

nl = (−∞, c−2), nm = [c−2, c−1) ns = [c−1, c0), c0 = {c0}

ps = (c0, c1], pm = (c1, c2], pl = (c2,+∞)

As it could be expected, the labels correspond to “negative large”, “negative
medium”, “negative small”, “zero”, “positive small”, “positive medium” and
“positive large”, respectively. By convention, the constants c−2, c2 are considered
to belong to the medium-size classes, whereas c−1, c1 are considered to belong
to the small-size classes.

The logic introduced in this paper is a special type of hybrid logic [1] because
we just use a finite number of constants (i.e. nominals) which are used not only to
represent points but also to represent distances. More differences arise from the
specificity of our modal connectives and the fact that we do not have a nominal
for each point, this fact would allow us to work with the set of real numbers.

The paper is organized as follows: In Section 2, the concepts of negligibility,
non-closeness and distance are introduced; then, syntax and semantics of the
proposed logic is introduced in Section 3 and some of its advantages on the basis
3 for practical purposes, this set could be the real line.



of an example; the axiom system for our language is presented in Section 4.
Finally, some conclusions and prospects of future work are presented.

2 Non-Closeness, Distance and Negligibility

As stated in the introduction, we will combine absolute and relative order of
magnitude models. For this purpose, regarding the underlying representation
model, it seems natural to consider an absolute order of magnitude model with
a small number of landmarks, so that the size of the axiom system obtained is
reasonable.

The concepts of order of magnitude, non-closeness, distance and negligibility
we consider in this paper introduce the ‘relative part’ of the approach, which
builds directly on the ‘absolute part’ just presented.

First of all, we define the following relation to give the intuitive meaning of
constant distance.

Definition 1. Let (S, <) a strict linearly ordered set which contains the con-
stants ci for i ∈ {−2,−1, 0, 1, 2} as defined above. Given n ∈ N, we define

−→
dα as

a relation in S such that, for every x, y, z, x′, y′ ∈ S:

• cr
−→
dα cr+1, for r ∈ {−1, 0} and cs

−→
dα

n cs+1
4, for s ∈ {−2, 1}.

• If x
−→
dα y, then x < y

• If x
−→
dα y and x

−→
dα z, then y = z.

• If x
−→
dα y, x′

−→
dα y′ and x < x′ then y < y′.

We denote by
←−
dα the inverse of relation

−→
dα.

We assume in the previous definition that both constants c−1 and c1 are
at the same distance (called α) from c0. Moreover, the distances from c−2 to
c−1 and from c1 to c2 are assumed to be a multiple of α (that is, n times α).
This choice arises from the idea of taking α as the basic pattern for measuring.
As a consequence, the distance between two consecutive constants should be
measurable in terms of α.

Definition 2 (Order of Magnitude). Let (S, <) be defined as above. For ev-
ery x, y ∈ S we say that xomy if and only if x, y ∈ Eq, where Eq denotes
a qualitative class, that is, an element in the set {nl, nm, ns,c0,ps, pm, pl}.
Analogously, we define xomy when x, y do not belong to the same class.

Definition 3 (Non-Closeness and Distance). Let (S, <) and n ∈ N be given
as above. We define the relations −→nc and −→d in S as follows:

x
−→
nc y if and only if either xomy and x < y

or there exists z ∈ S such that z < y and x
−→
dαz

x
−→
d y if and only if there exists z ∈ S such that z < y and x

−→
dα

n+1z

4 −→dα
n is defined by

−→
dα

1 =
−→
dα and

−→
dα

n =
−→
dα ◦

−→
dα

n−1, for n ∈ N, n ≥ 2, being ◦ the
usual composition of relations.



We denote by ←−nc and ←−d the inverses of relations −→nc and −→d , respectively.

If we assume that S is a set of real numbers, the intuitive interpretation of
non-closeness relation is that x is non-close to y if, and only if, either x and
y have not the same order of magnitude, or y is obtained from x by adding a
medium or large number. On the other hand, x is distant from y if and only if y
is obtained from x by adding large number. On the other hand, we introduce the
definition of non-closeness instead of closeness directly in order to have an easier
way to prove the completeness of the axiom system given later. Nevertheless, as
we will see in example below, this definition gives us enough expressive power.

In order to define the negligibility relation, it seems to be reasonable that if
x 6= c0 is neglibible with respect to y, then x is distant to y. With this aim, we
give the following definition.

Definition 4 (Negligibility). Let (S, <) be defined as above. If x, y ∈ S, we
say that x is negligible with respect to (wrt from now on) y, usually denoted
x
−→
Ny, if and only if, we have one of the following cases:

(i) x = c0 (ii) x ∈ ns ∪ ps and, either c−1
←−
d y or c1

−→
d y

We denote by
←−
N the inverse of relation

−→
N .

Note that item (i) above corresponds to the intuitive idea that zero is negligible
wrt any real number and item (ii) corresponds to the intuitive idea that a number
sufficiently small is negligible wrt any number sufficiently large, independently
of the sign of these numbers. This definition ensures that if x 6= c0 and x

−→
Ny,

then either x
←−
d y or x

−→
d y.

3 Syntax and Semantics of the Language L(OM)NCD

The language L(OM)NCD is an extension of L(OM) presented in [8]. To begin
with, let us define informally the meaning of the modal connectives we will
consider in our language. Their intuitive meanings of some of its connectives are
given below (the rest are similar), where A is any formula:

• −→�A means A is true for all point greater than the current one.
• �−→

dα
A is read A is true for all point which is greater than the current one

and its distance to this one is α.
• �−→

N
A is read A is true for all point with respect to which the current one is

negligible.
• �−→nc A is read A is true for all point which is non-close and greater than the

current one.
• �−→d A is read A is true for all point which is distant from and greater than

the current one.

The syntax of our logic is the usual modal propositional language on the
modal connectives described above and a set of specific constants to denote the
landmarks. Formally, the alphabet of our language is defined by using:



– A stock of atoms or propositional variables, V.
– The classical connectives ¬,∧,∨,→ and the constant symbols > and ⊥.
– The unary modal connectives

−→
� ,
←−
� ,�−→

R
, �←−

R
being R ∈ {dα,nc,d, N}.

– The finite set of specific constants defined by C = {c−2, c−1, c0, c1, c2}.
– The auxiliary symbols (, ).

Well-formed formulae of L(OM)NCD are generated from V ∪ C by the con-
struction rules of classical propositional logic plus the following rule which in-
troduces the modal connectives:
If A is a formula, then so are

−→
�A,

←−
�A, �−→

R
A and �←−

R
A being R ∈ {dα,nc,d, N}

As usual, the mirror image of A is the result of replacing in A the occurrences
of
−→
� ,
←−
� , �−→

R
, �←−

R
, cj , c0 by

←−
� ,
−→
� , �←−

R
, �−→

R
, c−j and c0, respectively, being

j ∈ {−2,−1, 1, 2}.
Moreover, we use

−→
♦ ,
←−
♦ , ♦−→

R
, ♦←−

R
as abbreviations, respectively, of ¬−→�¬,

¬←−�¬, ¬�−→
R
¬ and ¬�←−

R
¬.

Definition 5. A qualitative frame for L(OM)NCD or, simply a frame, is a tuple
Σ = (S, <,

−→
R,
←−
R), being (S, <) a strict linearly ordered set which contains the

constants ci for i ∈ {−2,−1, 0, 1, 2} as defined above, and R ∈ {dα,nc,d, N}
are respectively the relations on S given in Definitions 1, 3 and 4.

We can now give the definition of qualitative model. In its formulation, given
R any relation in a set X and x ∈ X, we write R(x) with the usual meaning:

R(x) = {x′ ∈ X | xRx′}

Definition 6. Let Σ = (S, <,
−→
R,
←−
R) be a qualitative frame for L(OM)NCD , a

qualitative model for Σ (or, simply Σ-model) is an ordered pair M = (Σ, h)
where h : V → 2S is a function called interpretation. Any interpretation can
be uniquely extended to the set of all formulae in L(OM)NCD (also denoted
by h) by means of the usual conditions for the classical boolean connectives
and for >, ⊥, and the following conditions, being R ∈ {dα,nc,d, N}, and
i ∈ {−2,−1, 0, 1, 2} 5:

h(
−→
�A) = {x ∈ S | (x, +∞) ⊆ h(A)} h(

←−
�A) = {x ∈ S | (−∞, x) ⊆ h(A)}

h(�−→
R

A) = {x ∈ S |
−→
R(x) ⊆ h(A)} h(�←−

R
A) = {x ∈ S |

←−
R(x) ⊆ h(A)}

h(ci) = {ci}

The concepts of truth and validity are defined in a standard way.

Notice that the connectives �−→nc , �−→d allow us to manage the concepts of non-
closeness and distance defined above which were not introduced in [8]. Thus, we
extend the example presented in this previous paper with some uses of these
new concepts.

5 Note that these algebraic conditions for modal connectives are based on the intuitive
meanings presented above.



Example 1. Let us suppose that we want to specify the behaviour of a device
to automatically control the temperature, for example, in a museum, subject to
have some specific conditions.

If we have to maintain the temperature close to some limit T , for practical
purposes any value of the interval [T − ε, T + ε] for small ε is admissible. Then
the extreme points of this interval can be considered as the milestones c−1 and
c1, respectively.

Moreover, assume that if the temperature is out of this interval (for example,
because the number of people within the museum is changing), it is necessary to
put into operation some heating or cooling system. In addition, we have another
interval [T − λ, T + λ], such that if the temperature does not belong to this
interval, we need to use an extra system of cooling or heating, because the default
system is not enough. Now, the extreme points of this interval are the milestones
c−2 and c2, respectively.

We also assume that, when the normal system of cooling or heating is oper-
ating, a system to maintain the humidity is needed, and when the extra system
is operating, we also need an extra system of humidification.

The qualitative classes nl,nm,ns ∪ c0 ∪ ps,pm and pl can be interpreted
by Very Cold, Cold, Ok, Hot and Very Hot, respectively. The following
conditions specify the general behaviour of the system:

Ok→ off Very Cold→ X-heating

Cold→ heating Hot→ cooling

Very Hot→ X-cooling (Cold ∨ Hot)→ humidifier

(Very Cold ∨ Very Hot)→ X-humidifier

The following formulae introduce relations among actions:

X-heating→ (¬heating ∧ ¬off ∧ ¬cooling ∧ ¬X-cooling ∧X-humidifier)

heating→ (humidifier ∧ ¬X -cooling ∧ ¬cooling ∧ ¬off)

off→ (¬X-cooling ∧ ¬cooling ∧ ¬humidifier ∧ ¬X-humidifier)

cooling→ (¬X-cooling ∧ humidifier) X-cooling→ X-humidifier

humidifier→ (cooling ∨ heating) X-humidifier→ ¬humidifier

where off means that the system is off, cooling means that we use the normal
system of cooling and X-cooling means that we need to use an extra cooling
system. Analogously, we have the meaning of heating, X-heating, humidifier and
X-humidifier.

Some consequences of the previous specification that are obtained by using
the proposed axiom system are the following:

1. The conditionals in the proper axioms turn out to be bi-conditionals, that
is, we also have: off→ Ok, cooling→ Hot, etc.

2. cooling → −→�(¬X-cooling→ humidifier)



3. (off ∧ ¬c0)→ �−→
N
X-humidifier

4. (X-cooling ∨X-heating)→ �←−
N
(¬humidifier ∧ ¬X-humidifier)

5. (Ok ∧
←−
♦ c0)→ (�−→nc (humidifier ∨X-humidifier) ∧�−→d X-humidifier)

6. Hot→ �−→d X-humidifier

We give now the intuitive meanings for the previous formulae.

– Formula 2 means that if the cooling system is running and the temperature
increases, while the extra cooling system were not put in operation, the
humidifier system is enough to maintain the desired conditions.

– Formula 3 says that if the system is off, but the temperature is not c0, for
every value wrt the current one is negligible, the extra humidifier system is
needed.

– Formula 4 means that if the extra cooling or extra heating system are op-
erating, the values which are negligible wrt that ones are not using neither
humidifier nor humidifier systems.

– Formula 5 can be read in this way: if the temperature is Ok but greater
than c0 and it is incremented by a medium or large positive value to obtain
a non-close value, then we have to use the humidifier or extra humidifier
system because the cooling or heating systems have been put into operation.
Moreover, if this temperature is incremented by a positive large value to
obtain a distant value, then we have to use the extra humidifier system.

– Formula 6 means that if the temperature is Hot and is incremented to obtain
a distant value, then we have to use the extra humidifier system.

If we assume that the system is more efficient (in terms of energy saving) if
the temperature is Ok and close to the milestone c1, that is close but no greater,
the following formula must be true:

c1 → (�ncnon-efficient ∧�dwarning) 6

This formula means that for every temperature non-close (smaller or greater)
to c1, the system is not running efficiently and if the temperature is distant to
c1, the system is wasting very much energy. Notice that, as c1 is a milestone,
every value greater than c1 is not in the same order of magnitude and, as a
consequence of Definition 3, it is non-close to c1.

The following section is devoted to the axiomatization of this logic. For sim-
plicity, from now on, we will assume that n = 1 in Definition 1, that is, the
distance between every two consecutive constants is α. On the other hand, we
will only consider modal connectives

−→
� ,
←−
� ,�−→

dα
,�←−

dα
, because the connectives

�−→
N
,�−→nc ,�−→d (and its inverses) can be defined by using only the first ones. As

6 We use �RA as an abbreviation of �←−RA ∧�−→RA, for R ∈ {dα,nc,d, N}



an example, we give the definition of �−→nc :

�−→nc A ≡ �−→
dα

−→
�A ∧ (

2∨
j=0

cj →
−→
�A)∧

∧
0∧

s=−2

(
−→
♦ cs →

−→
�((cs ∨

←−
♦ cs)→ A)) ∧

2∧
r=1

(
−→
♦ cr →

−→
�(
←−
♦ cr → A))

4 Axiom system for L(OM)NCD

We will denote OMNCD the axiom system containing all the tautologies of clas-
sical propositional logic together with the following axiom schemata:
Axiom schemata for modal connectives:

K1
−→
�(A→ B)→ (

−→
�A→ −→�B)

K2 A→ −→�
←−
♦A

K3
−→
�A→ −→�−→�A

K4
(−→
�(A ∨B) ∧ −→�(

−→
�A ∨B) ∧ −→�(A ∨ −→�B)

)
→ (
−→
�A ∨ −→�B)

Axiom schemata for constants:

C1
←−
♦ ci ∨ ci ∨

−→
♦ ci, where i ∈ {−2,−1, 0, 1, 2}

C2 ci → (
←−
�¬ci ∧

−→
�¬ci), being i ∈ {−2,−1, 0, 1, 2}

Axiom schemata for specific modal connectives:

d1 �−→
dα

(A→ B)→ (�−→
dα

A→ �−→
dα

B)
d2 A→ �−→

dα
♦←−

dα
A.

d3 cj → ♦−→
dα

cj+1, where j ∈ {−2,−1, 0, 1} 7.

d4 (♦−→
dα

A ∧
−→
♦♦−→

dα
B)→

−→
♦ (A ∧

−→
♦B)

d5 ♦−→
dα

A→ �−→
dα

A

d6
−→
�A→ �−→

dα
A

We also consider as axioms the corresponding mirror images of K1–K4 and
d1–d6.
Rules of Inference:

(MP) Modus Ponens for →
(R
−→
�) If ` A then ` −→�A

(R
←−
�) If ` A then ` ←−�A

7 This is the unique axiom which is affected by our previous assumption that n = 1
in Definition 1.



Theorem 1 (Soundness and Completeness).

– Every theorem of OMNCD is a valid formula of L(OM)NCD .
– Every valid formula of L(OM)NCD is a theorem of OMNCD .

The soundness of the axiom system is straightforward. Regarding completeness,
a step-by-step proof (see, for example, [4] and [5]) can be given in the following
terms: Given any consistent formula A , we have to prove that A is satisfiable.
With this purpose, the step-by-step method defines a qualitative frame Σ =
(S, <,

−→
R,
←−
R) and a function fΣ which assigns maximal consistent sets to any

element of S, such that A ∈ fΣ(x) for some x ∈ S. The process to build such a
frame is recursive, and follows the ideas of [7]: firstly, a pre-frame is generated
which is later completed to an initial finite frame; later, successive extensions
of this initial frame are defined until Σ is obtained. Although the method of
proof is the same, the technical problems which arise from the use of this more
complex language need special attention. Due to lack of space, the formal details
are omitted.

5 Conclusions and Future Work

A multimodal logic for order of magnitude reasoning to deal with negligibility,
non-closeness and distance has been introduced which enriches previous works
in this line of research by introducing in some way qualitative sum of medium
and large numbers. Some of the advantages of this logic have been studied on
the basis of an example.

As a future work, our plans are to study the decidability and complexity of
this logic. Last, but not least, we want to give a relational proof system based
on dual tableaux for this extension in the line of [9].
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21. Travé-Massuyès, L., Prats, F., Sánchez, M. and Agell, N. Relative and absolute
order-of-magnitude models unified. In Annals of Mathematics and Artificial Intel-
ligence 45: 323-341, 2005.

22. Wolter, F. and Zakharyaschev, M. Qualitative spatio-temporal representation and
reasoning: a computational perspective. In G. Lakemeyer and B. Nebel, editors,
Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.


