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Abstract. In this paper, we enrich the logic of order of magnitude qual-
itative reasoning by means of a new notion of negligibility which has very
useful properties with respect to operations of real numbers. A complete
axiom system is presented for the proposed logic, and the new negli-
gibility relation is compared with previous ones and its advantages are
presented on the basis of an example.

1 Introduction

Qualitative reasoning is an emergent area of AI. It is an adequate tool for dealing
with situations in which information is not sufficiently precise (e.g., numerical
values are not available).

A form of qualitative reasoning is to manage numerical data in terms of orders
of magnitude (OM) (see, for example, [7–9,11,13,15]). There are two approaches
for OM that can be combined: Absolute Order of Magnitude (AOM), which is
represented by a partition of the real line R and each element of R belongs to a
qualitative class and Relative Order of Magnitude (ROM), introducing a family
of binary order of magnitude relations which establishes different comparison
relations in R (e.g., comparability, negligibility and closeness [13]).

Several logics have been defined to deal with qualitative reasoning, such as the
Region Connection Calculus [2, 14] for managing qualitative spatial reasoning;
or the multimodal logics used in [3, 17] to deal with qualitative spatio-temporal
representations, and the use of branching temporal logics to describe the possible
solutions of ordinary differential equations when we have a lack of complete
information about a system [12]: however, an analogous development of order-
of-magnitude reasoning from a logical approach standpoint has received little
attention: to the best of our knowledge, the only logics dealing with order-of-
magnitude reasoning have been developed in [5,6]. The present paper continues
the line of research of a logical approach to order-of-magnitude reasoning.

Regarding the underlying representation model, it seems natural to consider
an absolute order of magnitude model with a small number of landmarks, so that
the size of the proof system obtained is reasonable. Following usual practice, we
? Partially supported by Spanish project TIC2003-9001-C02-01



will divide the real line into seven equivalence classes using five landmarks chosen
depending on the context [10,16].

The system considered corresponds to the schematic representation shown in
the picture below

NL NM NS PS

0

PM PL

-b -a +a +b

were α, β are two positive real numbers such that α <R β, and ≤R the usual
order in R. Moreover, in this work we consider that:

NL = (−∞,−β), NM = [−β,−α), NS = [−α, 0), [0] = {0},
PS = (0, α], PM = (α, β], PL = (β, +∞)

The labels correspond to “negative large”, “negative medium”, “negative
small”, “zero”, “positive small”, “positive medium” and “positive large”, re-
spectively.

The main result of this paper is the introduction of a new bidirectional neg-
ligibility relation in the logic for qualitative reasoning with orders of magnitude
introduced in [6]. This new negligibility relation is “more quantitative” than the
original one and, thus, is closer to the one presented in [11] but less complex.
As a consequence, our approach (between purely qualitative and purely quan-
titative) allows us to have the expressive power of the logic and a lot of useful
properties of the negligibility relation.

The notion of negligibility that will be used in the rest of the paper is given
in the following definition:

Definition 1. Given α, β, x, y ∈ R, such that 0 <R α <R β, we say that x is
negligible with respect to (wrt from now on) y, in symbols xNR y, if and only
if, we have one of the following possibilities:

(i) x = 0 (ii) x ∈ NS ∪PS and y ∈ NL ∪ PL

Note that item (i) above corresponds to the intuitive idea that 0 is negligible
wrt any real number and item (ii) corresponds to the intuitive idea that a number
sufficiently small is negligible wrt any number sufficiently large, independently
of the sign of these numbers. Thus, we have that NR is not a restriction of <R.
In this way, we say that NR is bidirectional.

The paper is organized as follows: In Section 2, the syntax and semantics of
the proposed logic is introduced; in Section 3, the axiom system for our language
is presented; in Section 4, a comparison with alternative definitions of negligibil-
ity is done, and an example is presented on which some features of the proposed
relation are shown. Finally, some conclusions and future work are presented.



2 Syntax and Semantics of the Language L(MQ)NR

In a similar way to [6], we define the connectives
→
�,
←
�, �N and �N to deal

with the relations < and N , respectively. The intuitive meanings of each modal
connective is as follows:

•
→
� A means A is true for all element greater than the current one.

•
←
� A means A is true for all number less than the current one.

• �NA is read A is true for all number from which the current one is negligible.
• �NA is read A is true for all number which is negligible from the current

one.

Now, we define the language L(MQ)NR of our logic. The alphabet of L(MQ)NR

is defined by using:

– A stock of atoms or propositional variables, V.
– The classical connectives ¬,∧,∨,→ and the constants > and ⊥.
– The unary modal connectives

→
�,
←
�, �N and �N .

– The finite set of specific constants C defined by C = {β−, α−, 0, α+, β+}.
– The auxiliary symbols (, ).

Formulae of L(MQ)NR are generated from V ∪C by the construction rules of
classical propositional logic adding the following rule:

If A is a formula, then so are
→
� A,

←
� A, �NA and �NA. The mirror

image of A is the result of replacing in A the occurrence of
→
�,
←
�, �N , �N ,

β−, α−, 0, α+, β+ by
←
�,
→
�, �N , �N , β+, α+, 0, α−, β− respectively. As usual in

modal logic, we use
→
♦,
←
♦, ♦N , and ♦N as abbreviations respectively of ¬

→
� ¬,

¬
←
� ¬, ¬�N¬ and ¬�N¬.

Definition 2. A qualitative frame for L(MQ)NR is a tuple Σ = (S, C, <, N),
where:

1. S is a nonempty set of real numbers.
2. C ⊆ S where C = {−β,−α, 0, α, β}.
3. < and N are, respectively, the restriction to S of the relations <R and NR

above.

If condition 2 it not fulfilled, we say that (S, <, N) is a pre-frame.

Notation: We will sometimes assume the following notations, in order to sim-
plify the presentation of results:

• c1 = −β, c2 = −α, c3 = 0, c4 = +α, c5 = +β
• c1 = β−, c2 = α−, c3 = 0, c4 = α+c5 = β+

• If X ⊆ R, R is a relation in X and a ∈ X:

R(a) = {a′ ∈ R | aRa′}
R−1(a) = {a′ ∈ R | a′Ra}



Definition 3. Let Σ = (S, C, <, N) be a qualitative frame for L(MQ)NR , a
qualitative model for Σ (or, simply Σ-model) is an ordered pair M = (Σ, h)
where h : V → 2S is a function called interpretation. Any interpretation can
be uniquely extended to the set of all formulae in L(MQ)NR (also denoted by h)
by means of the usual conditions for the classical boolean connectives and for >,
⊥, and the following conditions 3:

• h(
→
� A) = {x ∈ S | (x,+∞) ⊆ h(A)}.

• h(
←
� A) = {x ∈ S | (−∞, x) ⊆ h(A)}.

• h(�NA) = {x ∈ S | N(x) ⊆ h(A)}.
• h(�NA) = {x ∈ S | N−1(x) ⊆ h(A)}.
• h(ci) = {ci} for all i ∈ {1, 2, 3, 4, 5}.

The concepts of truth and validity are defined in a standard way.

3 Axiom system for L(MQ)NR

We will denote MQNR the axiom system with all the tautologies of classical
propositional logic together with the following axiom schemata:

Axiom schemata for modal connectives:

K1
→
� (A → B) → (

→
� A →

→
� B)

K2 A →
→
�
←
♦ A

K3
→
� A →

→
�
→
� A

K4
( →

� (A ∨B)∧
→
� (
→
� A ∨B)∧

→
� (A∨

→
� B)

)
→ (

→
� A∨

→
� B)

Axiom schemata for constants:

C1
←
♦ ci ∨ ci∨

→
♦ ci, where i ∈ {1, 2, 3, 4, 5}

C2 ci → (
←
� ¬ci∧

→
� ¬ci), being i ∈ {1, 2, 3, 4, 5}

C3 ci →
→
♦ ci+1, where i ∈ {1, 2, 3, 4}.

Axiom schemata for negligibility connectives:

N1 �N (A → B) → (�NA → �NB)
N2 A → �N♦NA

N3 (
←
� A ∧A∧

→
� A) → �NA

N4 (
→
♦ α−∨

←
♦ α+) → �N⊥

N5 0 → (�NA → (
←
� A ∧ A∧

→
� A))

N6 (¬0 ∧ (α− ∨ (
←
♦ α−∧

→
♦ α+) ∨ α+)) → �N (

→
♦ β−∨

←
♦ β+)

3 These algebraic conditions for modal connectives are based on the intuitive meanings
presented above.



N7
(
¬0 ∧ (α− ∨ (

←
♦ α−∧

→
♦ α+) ∨ α+)

)
→(

�NA → (
←
� (
→
♦ β− → A)∧

→
� (
←
♦ β+ → A)

)
We also consider as axioms the corresponding mirror images of axioms K1-K4,
and axioms N1-N3.

Rules of Inference:

(MP) Modus Ponens for →
(R
→
�) If ` A then `

→
� A

(R
←
�) If ` A then `

←
� A

Informal reading of specific axioms is the following:

– Axioms C1–C3 formalize, respectively, the existence, uniqueness and order-
ing of the constants.

– Axioms N1-N2 are standard in modal logic.
– Axiom N3 means that the bidirectional relation N is a restriction of < ∪ >.
– Axiom N4 expresses that neither large nor medium elements are negligible

with respect to any number.
– Axiom N5 means that 0 is negligible wrt every number.
– Axiom N6 means that all elements wrt which small elements are negligible

are large. Axiom N7 means that any small number is negligible wrt any large
number. Summarising, axioms N6 and N7 mean that x 6= 0 is negligible wrt
y if and only if x is small and y is large (as expressed in Definition 1).

Theorem 1 (Soundness and Completeness).

– Every theorem of MQNR is a valid formula of L(MQ)NR .
– Every valid formula of L(MQ)NR is a theorem of MQNR .

The soundness of the axiom system is straightforward.
Regarding completeness, a step-by-step proof (see, for example, [1] and [4]) can
be given in the following terms:

Given any consistent formula A , we have to prove that A is satisfiable. With
this purpose, the step-by-step method defines a qualitative frame Σ = (S, C, <
,N) and a function fΣ which assigns maximal consistent sets to any element
of S, such that A ∈ fΣ(x) for some x ∈ S. The process to build such a frame
is recursive, and follows the ideas of [6]: firstly, a pre-frame is generated which
is later completed to an initial finite frame; later, successive extensions of this
initial frame are defined until Σ is obtained.

Although the method of proof is the same, the technical problems which arise
from the use of this more complex language need special attention. Due to lack
of space, the formal details are omitted.



4 Comparison of NR with other definitions of negligibility

In the definition of our negligibility relation NR, we pursue a balance between
the applicability to different types of problems and the complexity of the logic
that we want to construct. For this reason, this section is devoted to compare
the properties of NR with other definitions of negligibility, in particular, the ones
presented in [6, 11].

The negligibility relation presented in [6], denoted by ≺ is defined as a re-
striction of <R satisfying the following properties: (i) If x ≺ y <R z, then x ≺ z;
(ii) If x <R y ≺ z, then x ≺ z; (iii) If x ≺ y, then either x 6∈ INF or y 6∈ INF ,
being α ∈ R and considering the real line divided in three equivalence classes
using two landmarks α and −α as follows:

OBS− = {x ∈ R | x ≤R −α};
INF = {x ∈ R | −α ≤R x ≤R α};

OBS+ = {x ∈ R | α ≤R x}

The main differences between NR and ≺ are that ≺ is a restriction of <R and NR
is not. Indeed NR is bidirectional and this fact allows us to compare positive and
negative numbers. Another difference is that NR uses the standard division of the
real line in seven classes while ≺ only uses three. Thus, NR verifies a version of
property (iii) in the definition of ≺, taking into account that we have a different
number of intervals and substituting INF by NS ∪ PS. NR satisfies neither (i)
nor (ii) because, as commented above, NR is not a restriction of <R. However,
if we work just with positive numbers, then the two properties are fulfilled. NR
verifies one of the properties of quasi-density studied in [6], i.e. if xNR y, then
there exists z ∈ R such that xNR z <R y, for all x ∈ R but does not satisfy the
other one, i.e. if xNR y, then there exists z ∈ R such that x <R z NR y, because
it fails when x = 0 or x = α. However, none of these properties is obtained from
the definition of ≺.

On the other hand, the negligibility relation (also bidirectional) presented
in [11], denoted by Ne, is defined as follows: Given α, β ∈ R such that 0 <R
α <R β, then x Ne y if and only if, |xy | <R

α
β . The main difference wrt our

relation is that Ne is not supported by a logic whereas NR is; in addition, NR
maintains the majority of the properties of Ne as we can see below.

Proposition 1. Consider x, y, z, t ∈ R, then we have:

1. 0 NR x
2. If y 6= 0 and xNR y, then |x| < |y|.
3. If x 6= 0 and xNR y, then it is not the case that y NR x
4. If xNR y and y NR z, then xNR z
5. If xNR y, then (±x) NR (±y)
6. If xNR y, |z| ≤ |x| and |y| ≤ |t|, then z NR t
7. If xNR y, then sign(x + y) = sign(y)
8. If sign(x+y) = + and sign(x) = −, then sign(y) = + and it is not the case

that y NR x



9. If xNR y and sign(y) = sign(z), then xNR (y + z)
10. If y 6= 0 and (x− y) NR y, then it is not the case that y NR x

11. If β ≥ 2α, y ∈ PL and xNR y, then x + y ∈ PM ∪ PL.
12. If β ≥ 2α, y ∈ NL and xNR y, then x + y ∈ NM ∪NL.
13. If xNR y, |z| ≤ 1 ≤ |t|, then zxNR ty

Summarising, we can say that NR presents different features than ≺ which
make it closer to Ne and, consequently, NR is somewhere in between the other two
relations, sharing with them some qualitative and some quantitative interesting
properties, apart from the fact that both ≺ and NR are founded on a logic.

We finish this section with the next example which is devoted to specify a
small use of our logic. We want to emphasize the use of the bidirectionallity and
properties of our negligibility relation. Moreover, the use of the axiom system
allows us to obtain some interesting properties from the specification of the
example.

Example 1. Let us suppose that we want to specify the behaviour of a device to
automatically control the temperature, for example, in a museum, where we need
to have some specific conditions. If we have to maintain the temperature close to
some limit T , for practical purposes any value of the interval [T−ε, T+ε] for small
ε is admissible. Then the extreme points of this interval can be considered as the
milestones −α and α, respectively. Moreover, assume that if the temperature
is out of this interval (for example, because the number of people within the
museum is changing), it is necessary to put into operation some heating or cooling
system. In addition, we have another interval [T − λ, T + λ], such that if the
temperature does not belong to this interval, we need to use an extra system of
cooling or heating, because the normal system is not enough. Now, the extreme
points of this interval are the milestones −β and β, respectively. We also assume
that when the normal system of cooling or heating is operating, a system to
maintain the humidity is needed, and when the extra system is operating, we
also need an extra system of humidification.

The intervals NL,NM,NS ∪ [0] ∪ PS,PM and PL can be interpreted by
Very Cold, Cold, Ok, Hot and Very Hot, respectively. The proper axioms
that specify the general behaviour of the system are stated below:

Ok → off Very Cold → X-heating

Cold → heating Hot → cooling

Very Hot → X-cooling (Cold ∨ Hot) → humidifier

(Very Cold ∨ Very Hot) → X-humidifier



The following formulae introduce relations among actions:

X-heating → (¬heating ∧ ¬off ∧ ¬cooling ∧ ¬X-cooling ∧X-humidifier)

heating → (humidifier ∧ ¬extra-cooling ∧ ¬cooling ∧ ¬off)

off → (¬X-cooling ∧ ¬cooling ∧ ¬humidifier ∧ ¬X-humidifier)

cooling → (¬X-cooling ∧ humidifier)

X-cooling → X-humidifier

humidifier → (cooling ∨ heating)

X-humidifier → ¬humidifier

where off means that the system is off, cooling means that we use the normal
system of cooling and X-cooling means that we need to use an extra cooling
system. Analogously, we have the meaning of heating, X-heating, humidifier and
X-humidifier.

Some consequences of the previous specification that are obtained by using
the proposed axiom system are the following:

1. The conditionals in the proper axioms turn out to be bi-conditionals, that
is, we also have: off → Ok, cooling → Hot, etc.

2. ¬off → �N⊥
3. (cooling ∨X-cooling) → (humidifier ∨X-humidifier)
4. cooling →

→
� (¬X-cooling → humidifier)

5. (off ∧ ¬0) → �NX-humidifier
6. humidifier → �N (¬0 → ⊥)
7. X-humidifier → �N off
8. (X-cooling ∨X-heating) → �N (¬humidifier ∧ ¬X-humidifier)

If we assume the intuitive hypothesis β ≥ 2α, the properties 11 and 12 of
Proposition 1 can be applied in this example as follows, where p represents the
temperature is incremented (positively or negatively) in the actual value:

(Ok ∧ ¬0̄ ∧ ♦Np) → (humidifier ∨X-humidifier)

This formula can be read in this way: if the temperature is Ok but nonzero and
is incremented in a value from which the actual value is negligible, then we have
to use the humidifier or extra humidifier system because the cooling or heating
systems have been put into operation.

5 Conclusions and future work

A sound and complete system of qualitative order-of-magnitude reasoning has
been introduced with a new notion of negligibility. This new negligibility relation
is between those presented in [11] and [6], thus sharing convenient properties
from both the qualitative and the quantitative sides. As a result, we have been



able to construct a logic with a reasonable number of axioms, which is useful to
work in situations where we need to use different properties of the negligibility
relation.

As future work, our plan is to investigate a logic with modal operators which
represent, in some way, the sum and product of real numbers. Thus, it would be
very interesting for the applications (see, for example [13]) to study the behaviour
of the negligibility relation NR wrt the sum and product of real numbers as we
have commented in Section 4. It is easy to see that if xNR y and z ∈ R, neither
(x + z) NR (y + z) nor xz NR yz are true in general; thus, we are interested in
finding new relations which guarantee such kind of properties under certain
conditions. Specifically, we will investigate the definition of new relations to
obtain the definability of those properties of sum and product introduced in
Proposition 1, in order to extend the current logic with the corresponding new
modal connectives.

Last but not least, we are planning to develop theorem provers for our system
based either on tableaux or on resolution.
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10. Missier, A., Piera, N. and Travé, L. Order of Magnitude Algebras: a Survey. Revue
d’Intelligence Artificielle 3(4):95–109, 1989

11. Sanchez, M. Prats, F. and Piera, N. Una formalización de relaciones de compa-
rabilidad en modelos cualitativos Bolet́ın de la AEPIA (Bulletin of the Spanish
Association for AI). 6: 15-22, 1996.



12. Shults, B. and Kuipers, B.J. Proving properties of continuous systems: qualitative
simulation and temporal logic. Artificial Intelligence, 92:91–129, 1997.

13. Raiman, O. Order of magnitude reasoning Artificial Intelligence. 51: 11-38, 1991.
14. Randell, D., Cui, Z. and Cohn, A. A spatial logic based on regions and connec-

tions. Proc. of the 3rd Intl Conf on Principles of Knowledge Representation and
Reasoning (KR’92), pg 165–176, 1992.
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16. Travé-Massuyès, L., Ironi, L. and Dague, P. Mathematical foundations of qualita-
tive reasoning. AI magazine 24(3):91–106, 2003.

17. Wolter, F. and Zakharyaschev, M. Qualitative spatio-temporal representation and
reasoning: a computational perspective. In G. Lakemeyer and B. Nebel, editors,
Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.


