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Abstract

Two classical semantical approaches to studying logics
which combine time and modality are the T × W-frames
and Kamp-frames (see Thomason, 84). In this paper we
study a new kind of frame that extends the one introduced
in [Burrieza and P. de Guzmán(2002)]. The motivation is
twofold: theoretical, i.e., representing properties of the ba-
sic theory of functions (definability); and practical, their
use in computational applications (considering time-flows
as memory of computers connected in a net, each computer
with its own clock). Specifically, we present a temporal ×
modal (labelled) logic, whose semantics are given by ind-
functional frames in which accessibility functions are used
in order to interconnect time-flows. This way, we can: (i)
specify to what time-flow we want to go; (ii) carry out diffe-
rent comparisons among worlds with different time mea-
sures, and (iii) define properties of certain kinds of func-
tions (in particular, of total, injective, surjective, constant,
increasing and decreasing functions), without the need to
resort to second-order theories. In addition, we define a
minimal axiomatic system and give the completeness theo-
rem (Henkin-style).

1. Introduction

Two classical semantical approaches to study logics
which combine time and modality are the T × W-frames
and Kamp-frames (see Thomason, 84). In this paper we
study a new kind of frame that extends the one introduced
in [Burrieza and P. de Guzmán(2002)]. The motivation is
twofold: theoretical, i.e., representing properties of the ba-
sic theory of functions (definability); and practical, their
use in computational applications (considering time-flows
as memory of computers connected in a net, each computer
with its own clock).

The semantic approach introduced in [Burrieza and P.
de Guzmán(2002)], named functional, allows us to esta-

blish connections among time-flows in very different ways,
which enables us to carry out different comparisons among
worlds with different time measures. These connections are
made by means of functions, called accessibility functions,
and not by means of equivalence relations, as in T × W-
frames and Kamp-frames approaches. The theoretical study
is interesting itself but also, in our opinion, and according to
our experience when contacting users (who require applica-
tions for information and communication technologies), the
functional approach considered in this paper is more ade-
quate to the specifications used by them.

Specifically, we present a temporal × modal (labelled)
logic, whose semantics are given by ind-functional frames
in which accessibility functions are used in order to inter-
connect time-flows. This way, we can: (i) specify to what
time-flow we want to go; (ii) carry out different compari-
sons among worlds with different time measures, and (iii)
define basic properties of some kinds of functions (in parti-
cular, of total, injective, surjective, constant, increasing, and
decreasing functions), without the need to resort to second-
order theories. Thus, we require to label time-flows, so that
our language will include indexed-modal connectives, that
is, < i >-type connectives, so that an expression such as
<i>A can be intuitively read as follows: “A is true in flow
i at the image of the reference instant (or where I am)”.

In addition, we define a minimal axiomatic system and
give the completeness theorem (Henkin-style).

The article is organized as follows: in Sect. 2 we intro-
duce the family of temporal-(indexed-modal) languages and
define its (algebraic-style) semantics. In Sect. 3 we present
the results about definability of function properties. Finally,
in Sect. 4 we give the proof of completeness of a minimal
system for partial functions.

2. Languages LF
(T×W )-I

Given a denumerable set of indices I, the alphabet of the
language LF

(T×W )-I is defined as follows: 1) a denumera-
ble set, V , of propositional variables; 2) the logic constants
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� and⊥, and the boolean connectives ¬,∧,∨ and→; 3) the
temporal connectives G and H; 4) a family of unary modal
connectives of the form <i>, for i ∈ I.
The well-formed formulas (wffs) are generated by the cons-
truction rules of classical propositional logic, adding the
following rule: If A is a wff, then GA, HA and <i>A are
wffs. We consider, as usual, the connectives F , P and [ i ]
to be defined connectives. The connectives G and H have
their usual readings, but <i>A has the following mean-
ing: A is true in flow i, at the image of the reference instant
(from which I execute or speak). For its part, [ i ]A has the
following non-existential meaning: if there exists an image
of the reference instant in flow i, then A is true at such an
image and [ i ]A is true at the reference instant when this has
no i-image. So, if such an image exists in flow i, <i>A has
the same meaning as [ i ]A.

2.1. Semantics for LF
(T×W )-I

Definition 1 An ind-functional frame for LF
(T×W )-I is a

tuple Σ = (W, T ,F), where W is a nonempty set (set of
labels for a set of time-flows), T is a nonempty set of strict
linear orders, indexed by W , specifically:

T = {(Tw, <w) | w ∈W}, where each Tw is non
empty and, if w �= w′, then Tw ∩ Tw′ = ∅.

Finally, F is a set of non-empty functions, called accessi-
bility functions, such that:

1. each function in F is a partial function from Tw to
Tw′ , for some w ∈W and some w′ ∈W ∩ I 1;

2. for an arbitrary pair (w,w′) ∈ W × (W ∩ I), there
is (in F) at most one accessibility function from Tw to

Tw′ , denoted by
w w′
−→ .

We will denote Fw = {w w′
−→ ∈ F | w ∈ W}. Then

F =
⋃

w∈W Fw. The elements tw of the disjoint union
CoorΣ =

⊕
w∈W Tw are called coordinates.

Note that the definition of W and T depends only on the
set (of labels) W , whereas F depends on W and I.

Notation 1 If tw ∈ CoorΣ and C ⊆ CoorΣ:

- [tw,→) = {t′w | tw ≤w t′w}; (tw,→)={t′w | tw <w t′w}.
- (←, tw] = {t′w | t′w ≤w tw}; (←, tw)={t′w | t′w <w tw}.
- C ↑=

⋃
tw∈C(tw,→); C↑ =

⋃
tw∈C [tw,→).

- C ↓=
⋃

tw∈C(←, tw); C↓ =
⋃

tw∈C(←, tw].

Definition 2 An ind-functional model for LF
(T×W )-I is a

tuple (Σ, h), where Σ = (W, T ,F) is an ind-functional
frame and h is a function h : LF

(T×W )-I −→ 2CoorΣ ,

1Note that we don’t require that I ⊆ W . Thus, the notion of validity
can be given in a standard way.

called an ind-functional interpretation, satisfying the fo-
llowing conditions: The interpretation of the constants and
of the boolean connectives is defined as usual,

- h(GA) = {tw ∈ CoorΣ | (tw,→) ⊆ h(A)}
- h(HA) = {tw ∈ CoorΣ | (←, tw) ⊆ h(A)}
- h(<i>A) = {tw ∈ CoorΣ | w i−→ ({tw}) ∩ h(A) �= ∅}.

2

Thus, the semantics of [ i ] is the following:

h([ i ]A) = {tw ∈ CoorΣ | w i−→ ({tw}) ⊆ h(A)}
The notions of satisfiability, validity and logical equi-

valence (denoted ≡) are defined in a standard way. As a
consequence of the semantics, [ i ]A is valid in every ind-
functional frame, Σ = (W, T ,F) such that I ∩W = ∅.

3 A Minimal Axiomatic System for LF
(T×W )-I

In this section we introduce a minimal axiomatic system
for LF

(T×W )-I to work with partial functions.

3.1 The system SF
(T×W )−I-Parc

This system has the following axiom schemes:

1. Those of the minimal system of propositional linear
temporal logic Kl and, for each i ∈ I the schema

[ i ](A→ B) → ([ i ]A→ [ i ]B).

2. The following characteristic axiom schemes: for each
i ∈ I,

2.1 <i>A→ [ i ]A (Functionality)

2.2 (λ <i>A ∧ λ′ <i>B) →
λ <i>(A ∧ (B ∨ FB ∨ PB)) (Confluence)

where:{
λ = γ1 <j1>γ2 . . . <jn>γn+1, γi ∈ {F, P, ε},
λ′ = γ′

1 <k1>γ′
2 . . . <km>γ′

m+1, γi ∈ {F, P, ε},

being n,m ≥ 1; ki, ji ∈ I and ε the empty chain.

The rules of inference are those of Kl and
A

[ i ]A
, for

each i ∈ I.
The concepts of proof and theorem are defined as usual.

Proposition 1 The schema

(<i>A∧ <i>B) →<i>(A ∧B)

is a theorem of SF
(T×W )−I-Parc.

2Consider that, in order that <i> A be true in tw ∈ CoorΣ, it is
necessary that i ∈ I ∩ W .
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3.2 Definability of basic properties of functions

Definition 3 Let J be a class of ind-functional frames and
K ⊆ J . We say that K is LF

(T×W )-I- definable in J if

there exists a set Γ of formulas in LF
(T×W )-I such that for

every frame Σ ∈ J , we have that Σ ∈ K if and only if
every formula of Γ is valid in Σ. If J is the class of all ind-
functional frames, we say that K is LF

(T×W )-I-definable.
Let P be a property of functions (injectivity, etc.) and K
the class of all ind-functional frames whose functions have
the property P . We say that P is LF

(T×W )-I-definable if K
is LF

(T×W )-I-definable.

Theorem 1 The following classes of ind-functional frames
are LF

(T×W )-I-definable:
K1 ={(W, T ,F) |F is a class of total functions }
K2 ={(W, T ,F) |F is a class of non total functions }
K3 ={(W, T ,F) |F is a class of total constant functions}
K4 ={(W, T ,F) |F is a class of total injective functions}
K5 ={(W, T ,F) |F is a class of surjective functions }
K6 ={(W,T ,F) |F is a class of total increasing functions}
K7 ={(W,T ,F) |F is a class of total strictly increasing functs.}
K8 ={(W,T ,F) |F is a class of total decreasing functions}
K9 ={(W,T ,F) |F is a class of total strictly decreasing functs.}

Proof:
We prove some of the items. For the rest, we give the set of
formulas which defines the corresponding class.

1. It is sufficient to check that K1 is defined by the fo-
llowing set of formulas, denoted (Tot)-ind:

{<i>(A∧GA∧HA) → (G<i>A∧H<i>A) | i ∈ I}
In order to prove this result, we state that

w i−→ is a total
function if and only if, for all tw ∈ Tw:
w i−→((tw,→))∪ w i−→((←, tw))

†1⊆ w i−→({tw})↑∪ w i−→({tw})↓
Thus, we have that for all i ∈ I

tw ∈ h(<i>(A ∧GA ∧HA)) iff
tw ∈ h(<i>A) ∩ h(<i>GA) ∩ h(<i>HA) iff
w i−→ ({tw})∪( w i−→ ({tw}),→)∪(←,

w i−→ ({tw}))⊆h(A) iff
w i−→ ({tw})↑∪ w i−→ ({tw}) ↓⊆ h(A))

and, on the other hand, tw ∈ h(G<i>A) if and only if
w i−→ ((tw,→)) ⊆ h(A). Analogously, tw ∈ h(H<i>A) if

and only if
w i−→ ((←, tw)) ⊆ h(A). Now, it is sufficient to

consider †1 to finish the demonstration of validity.
Reciprocally, if Σ = (W, T ,F) �∈ K1, then there is a

non total function
w i−→∈ F . In this case, there exists a

tw ∈ CoorΣ such that †1 does not hold for tw, that is,

there exists a ti ∈ w i−→ ((tw,→)) ∪ w i−→ ((←, tw)) but

ti /∈ w i−→ ({tw})↑ ∪ w i−→ ({tw})↓. Now, since i ∈ I, to re-
fute the formula <i>(p∧Gp∧Hp) → (G<i>p∧H<i>p)

in t′w �= tw, such that
w i−→ (t′w) = ti, it is enough to define

an interpretation function h so that h(p) = CoorΣ.
2. We shall prove that K2 is defined by the following set of
formulas:

(Non-Tot)-ind {[ i ]⊥ ∨ F [ i ]⊥ ∨ P [ i ]⊥ | i ∈ I}

Indeed, for every ind-functional frame Σ we have Σ =
(W, T ,F) ∈ K2 if and only if for all Tw ∈ T and
w i−→∈ F , there is at least tw ∈ Tw such that tw is not
in the domain of

w i−→. From this, it should be clear that
tw ∈ h([ i ]⊥) if and only if tw does not belong to the do-

main of
w i−→. Then, considering the linearity of <w, we

have that [ i ]⊥∨F [ i ]⊥∨P [ i ]⊥ holds at every coordinate

in Tw if and only if
w i−→ is a non-total function.

3. K3 is defined by (Tot-Con)-ind:
{<i>A→ (G <i>A ∧H <i>A) | i ∈ I}

4. K4 is defined by (Tot-Inj)-ind:
{<i>(GA ∧HA) → (G <i>A ∧H<i>A)) | i ∈ I}

5. K5 is defined by (Surj)-ind :
{(G[ i ]A ∧H[ i ]A)) → [ i ](GA ∧HA) | i ∈ I}

6. K6 is defined by (Tot-Inc)-ind: for all i ∈ I,
<i>(A ∧GA) → G<i>A)) and
<i>(A ∧HA) → H<i>A))

7. K7 is defined by (Tot-Str-Inc) :
{<i>GA→ G <i>A,<i>HA→ H<i>A | i ∈ I}

8. K8 is defined by (Tot-Dec)-ind: for all i ∈ I,
<i>(A ∧GA) → H<i>A) and
<i>(A ∧HA) → G <i>A)

9. K9 is defined by (Tot-Str-Dec)-ind:
{<i>GA→ H<i>A, <i>HA→ G <i>A | i ∈ I}

4 Completeness of SF
(T×W )−I-Parc

The proof of soundness is standard. In order to study
the completeness, we assume the familiarity with the basic
properties of maximally consistent sets in the propositional
classical logic, and their standard definition, in the system
SF

(T×W )−I-Parc. We will denote byMC the family of max-
imally consistent sets (from now on, mc-sets).

We start with the following definitions, of interest for the
rest of the development.

Definition 4 Let Γ1,Γ2 ∈MC and i ∈ I. Then we define:

(a) Γ1 ≺T Γ2 if and only if {A | GA ∈ Γ1} ⊆ Γ2

(b) Γ1 ≺i Γ2 if and only if ∅ �= {A |<i>A ∈ Γ1} ⊆ Γ2.

Definition 5 In MC we define the following equivalence
relation, denoted ∼T . If Γ1,Γ2 ∈MC, then:
Γ1 ∼T Γ2 iff [ Γ1 ≺T Γ2, or Γ2 ≺T Γ1, or Γ1 = Γ2]
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Definition 6 InMC we define the relation≺∼
T

i as follows.
If Γ1,Γ2 ∈MC and i ∈ I, then Γ1 ≺

∼
T

i Γ2 if and only if
one of the two following conditions is satisfied:

- Γ1 ∼T Γ2.
- There are some Γ3 and Γ4 such that Γ1 ∼T Γ3, Γ3 ≺i Γ4

and Γ4 ∼T Γ2.

Definition 7 We define the relation↘ inMC as follows: if
Γ,Γ′ ∈ MC, then: Γ ↘ Γ′ if and only if there are n ≥ 0,
i1, . . . , in ∈ I and Γ0, . . . ,Γn ∈MC such that

Γ = Γ0 ≺
∼

T

i1 Γ1 ≺
∼

T

i2 Γ2 ≺
∼

T

i3 . . . ≺
∼

T

in
Γn = Γ′

The following lemma is standard in modal and tense logic.

Lemma 1

1. Any consistent set of formulas in SF
(T×W )−I-Parc

can be extended to an mc-set in SF
(T×W )−I-Parc

(Lindenbaum’s lemma)

2. Let Γ1 ∈MC and i ∈ I:

(a) If FA ∈ Γ1, there exists Γ2 ∈ MC such that
Γ1 ≺T Γ2 and A ∈ Γ2.

(b) If PA ∈ Γ1, there exists Γ2 ∈ MC such that
Γ2 ≺T Γ1 and A ∈ Γ2.

(c) If <i>A ∈ Γ1, there exists Γ2 ∈ MC such that
Γ1 ≺i Γ2 and A ∈ Γ2.

3. Let Γ1, Γ2, Γ3 ∈MC. If Γ1 ≺T Γ2 and Γ2 ≺T Γ3,
then Γ1 ≺T Γ3.

4. Let Γ1,Γ2,Γ3 ∈MC. Then:

(a) If Γ1 ≺T Γ2 and Γ1 ≺T Γ3, then Γ2 ∼T Γ3.

(b) If Γ2 ≺T Γ1 and Γ3 ≺T Γ1, then Γ2 ∼T Γ3.

The following lemma is specific to our system.

Lemma 2 Let Γ1,Γ2 ∈MC and i ∈ I. Then we have:

1. Γ1 ∼T Γ2 iff there exists γ ∈ {F, P, ε} such that
{γA | A ∈ Γ2} ⊆ Γ1.

2. Γ1 ≺i Γ2 iff one of the following condition is satisfied:

i) {A | [ i ]A ∈ Γ1} ⊆ Γ2;

ii) {<i>A | A ∈ Γ2} ⊆ Γ1

3. Γ1 ≺
∼

T

i Γ2 iff one of the following conditions is sa-
tisfied:

(i) there exists γ ∈ {F, P, ε} such that

{γA | A ∈ Γ2} ⊆ Γ1,

(ii) there are γ1, γ2 ∈ {F, P, ε} such that

∅ �= {γ1 <i>γ2A | A ∈ Γ2} ⊆ Γ1

Corollary 1 Let Γ1,Γ2 ∈MC. Then Γ1 ↘ Γ2 if and only
if one of the following conditions is satisfied:

a) there exists γ ∈ {F, P, ε} such that

{γA | A ∈ Γ2} ⊆ Γ1.

b) there are γ1, . . . γn+1 ∈ {F, P, ε} and i1, . . . , in ∈
I, with n ≥ 1, such that

{γ1 <i1>γ2 . . . <in>γn+1A | A ∈ Γ2} ⊆ Γ1.

Theorem 2 (Diamond theorem) Let Γ1,Γ2,Γ3 ∈ MC
such that:

1. Γ1 ↘ Γ2 and Γ1 ↘ Γ3.

2. there are i ∈ I and Ω1 ∈MC such that

2.1) Γ2 ≺i Ω1 2.2) {A |<i>A ∈ Γ3} �= ∅

Then, there exists Γ4 ∈MC such that
Γ2 ↘ Γ4 and Γ3 ↘ Γ4.

More concretely, there exists Ω2 ∈MC such that
Γ3 ≺i Ω2 and Ω2 ∼T Ω1.

Proof:
In order to prove that there exists Ω2 ∈ MC with the de-
sired properties, it suffices to prove that one of the following
conditions is satisfied:

a) {A |<i>A ∈ Γ3} ⊆ Ω1.
b) {A |<i>A ∈ Γ3} ∪ {A | GA ∈ Ω1} is consistent.
c) {A |<i>A ∈ Γ3} ∪ {A | HA ∈ Ω1} is consistent.

Indeed, if condition a) is satisfied, then it is enough to
take Ω2 = Ω1. On the other hand, if condition b) is sat-
isfied, then Lindenbaum’s lemma guarantees that there e-
xists at least one mc extension, Ω2, such that Γ3 ≺i Ω2

and Ω1 ≺T Ω2. Analogously, if condition c) is satisfied,
then Lindenbaum’s lemma again guarantees that there e-
xists at least one mc extension, Ω2, such that Γ3 ≺i Ω2 and
Ω2 ≺T Ω1.

We assume that none of the conditions a)–c) holds: Since
condition a) does not hold, we have that there exists A �∈ Ω1

such that <i> A ∈ Γ3. Also, since condition b) does not
hold, there are B1, . . . Br1 and C1, . . . Cr2 such that:

- <i>B1, . . . <i>Br1 ∈ Γ3

- GC1, . . . GCr2 ∈ Ω1

- ' ¬(B ∧ C), where B = B1 ∧ . . . ∧ Br1 and C =
C1 ∧ . . . ∧ Cr2

Similarly, since condition c) does not hold, there are
D1, . . . Dr3 and E1, . . . Er4 such that:

- <i>D1, . . . <i>Dr3 ∈ Γ3

- HE1, . . . HEr4 ∈ Ω1
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- ' ¬(D ∧ E), where D = D1 ∧ . . . ∧ Dr3 and E =
E1 ∧ . . . ∧ Er4

Now, it is clear that ¬A ∧GC ∧ HE ∈ Ω1 and, by propo-
sition 1, we can obtain <i>(A ∧ ¬C ∧ ¬E) ∈ Γ3.

Since Γ1 ↘ Γ3, by corollary 1, we have that one of the
following conditions holds:

a′) there exists γ∈{F, P, ε} such that {γA |A ∈ Γ2} ⊆ Γ1

b′) there are γ1, . . . γn+1∈{F, P, ε}, i1, . . . , in ∈I, n ≥ 1,
such that {γ1<i1>γ2. . .<in>γn+1A |A ∈ Γ2} ⊆ Γ1.

Therefore, there exists λ such that either λ = γ or
λ = γ1 <i1>γ2 . . . <in>γn+1 and:

λ <i>(A ∧ ¬C ∧ ¬E) ∈ Γ1 (†1)

On the other hand, since Γ2 ≺i Ω1, we have

<i>(¬A ∧GC ∧HE) ∈ Γ2

and, since Γ1 ↘ Γ2, by the same reasoning, once again
by corollary 1, there exists λ′ such that either λ′ = γ′ or
λ′ = γ′

1 <i′1>γ′
2 . . . <i′m>γ′

m+1 and

λ′ <i>(¬A ∧GC ∧HE) ∈ Γ1 (†2)

Now, by (†1), (†2) and the axiom of confluence, we have:
λ <i>(α∧(β∨Fβ∨Pβ)) ∈ Γ1, where α = A∧¬C∧¬E
and β = ¬A ∧GC ∧HE. But α ∧ (β ∨ Fβ ∨ Pβ) ≡ ⊥.
Thus, the desired contradiction is obtained.

Definition 8 Let Σ be an ind-functional frame. A trace of

Σ is a function ΦΣ : CoorΣ −→ 2L
F
(T×W )-I such that, for

all tw ∈ CoorΣ, the set ΦΣ(tw) is an mc-set.

Definition 9 A trace ΦΣ is called:

- temporally coherent if, for all tw, t′w ∈ CoorΣ:
if t′w ∈ (tw,→), then ΦΣ(tw) ≺T ΦΣ(t′w)

- ind-modally coherent if, for all ti, tw ∈ CoorΣ with

i ∈ I ∩W : if ti = w i−→ (tw), then ΦΣ(tw) ≺i ΦΣ(ti)
- coherent if it is temporally coherent and ind-modally co-
herent
- prophetic if it is temporally coherent and, moreover, for
all A ∈ LF

(T×W )-I and tw ∈ CoorΣ :
(1) if FA ∈ ΦΣ(tw), there exists t′w ∈ (tw,→) such that

A ∈ ΦΣ(t′w)
- historic if it is temporally coherent and, moreover, for all
formula A ∈ LF

(T×W )-I and tw ∈ CoorΣ :
(2) if PA ∈ ΦΣ(tw), there exists t′w ∈ (←, tw) such that

A ∈ ΦΣ(t′w)
- ind-possibilistic if it is ind-modally coherent and, more-
over, for all formula A ∈ LF

(T×W )-I, tw ∈ CoorΣ and
i ∈ I ∩W :
(3) if <i>A ∈ ΦΣ(tw), there exists ti = w i−→ (tw) such

that A ∈ ΦΣ(ti)

The conditional (1) (resp., (2) or (3)) is called a prophe-
tic (resp., historic or ind-possibilistic) conditional for ΦΣ

with respect to FA (resp., PA or <i>A) and tw.
An ind-functional frame, ΦΣ, is called full if it is

prophetic, historic and ind-possibilistic.

Definition 10 Let WΞ be a denumerable infinite set such
that I ⊂ WΞ and TΞ =

⋃
w∈WΞ

Tw where, for all
w ∈WΞ, Tw is a denumerable infinite set. We will consider
the class, Ξ, of the ind-functional frames (W ′, T ′,F ′) such
that:

- W ′ is a nonempty finite subset of WΞ.
- T ′

Ξ = {(T ′
w, <′

w) | w ∈ W ′}, where T ′
w is a nonempty

finite subset of Tw.
If Σ1 = (W1, T1,F1),Σ2 = (W2, T2,F2) ∈ Ξ, we say

that Σ2 is an extension of Σ1 if the following conditions
are satisfied:

•W1 ⊆W2;
• either T1 ⊂ T2, or for each (Tw, <w) ∈ T1, the set
T2 contains an extension of (Tw, <w).

• eitherF1 ⊂ F2 or, for each
w i−→∈ F1, the setF2 contains

a function which extends
w i−→.

Definition 11 Let Ξ be as in definition 10, and let ΦΣ′ be
a trace of an ind-functional frame Σ′ = (W ′, T ′,F ′) ∈ Ξ.

I) Given a prophetic conditional:

(1) if FA ∈ ΦΣ′(tw), there exists a t′w ∈ (tw,→)

such that A ∈ ΦΣ′(t′w).

We say that (1) is inactive if its antecedent is not ful-
filled, that is, if one of the following conditions is sa-
tisfied:

(i) tw �∈ CoorΣ′ ,

(ii) tw ∈ CoorΣ′ , but FA �∈ ΦΣ′(tw).

We say that (1) is active if its antecedent is fulfilled
but its consequent is not, that is, tw ∈ CoorΣ′ and
FA ∈ ΦΣ′(tw), but there is no t′w ∈ (tw,→) such
that A ∈ ΦΣ′(t′w). We say that (1) is exhausted if
its consequent is fulfilled, that is, there exists t′w ∈
(tw,→) such that A ∈ ΦΣ′(t′w).

II) Given a historic conditional:

(2) if PA ∈ ΦΣ′(tw), there exists t′w ∈ (←, tw)

such that A ∈ ΦΣ′(t′w).

We say that (2) is inactive if its antecedent is not ful-
filled, that is, if one of the following conditions is sa-
tisfied:

(i) tw �∈ CoorΣ′ , (ii) tw ∈ CoorΣ′ but PA �∈ ΦΣ′(tw).

We say that (2) is active if its antecedent is fulfilled
but its consequent is not, that is, tw ∈ CoorΣ′ and
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PA ∈ ΦΣ′(tw), but there is no t′w ∈ (←, tw) such
that A∈ΦΣ′(t′w). We say that (2) is exhausted if its
consequent is fulfilled, that is, there exists a t′w ∈
(←, tw) such that A ∈ ΦΣ′(t′w).

III) Given an ind-possibilistic conditional:

(3) if <i>A ∈ ΦΣ′(tw), then there exists

ti = w i−→ (tw) such that A ∈ ΦΣ′(ti).

We say that the conditional (3) is inactive if its an-
tecedent is not fulfilled, that is, if one of the following
conditions is satisfied:

(i) tw �∈ CoorΣ′ ,

(ii) tw ∈ CoorΣ′ but <i>A �∈ ΦΣ′(tw).

We say that the conditional (3) is active if its an-
tecedent is fulfilled but its consequent is not, that is,
tw ∈ CoordΣ′ and <i>A ∈ ΦΣ′(tw), but there is no

ti = w i−→ (tw) such that A ∈ ΦΣ′(ti). We say that (3)
is exhausted if its consequent is fulfilled, that is, there

exists a ti = w i−→ (tw) such that A ∈ ΦΣ′(ti).

Lemma 3 (trace lemma) Let ΦΣ be an full trace of an ind-
functional frame Σ = (W, T ,F) and h an ind-functional
interpretation assigning each propositional variable, p, the
set h(p) = {tw ∈ CoorΣ | p ∈ ΦΣ(tw)}. Then, for any
formula A, we have

h(A) = {tw ∈ CoorΣ | A ∈ ΦΣ(tw)}

In order to prove the completeness theorem, for each
consistent formula, A, we will construct (using the class Ξ
in definition 10) an ind-functional frame Σ = (W, T ,F)
and a full trace, ΦΣ, such that A ∈ ΦΣ(tw) for some
tw ∈ CoorΣ.

To this end, we define:

- an enumeration of WΞ: WΞ = {wn | n ∈ N}.

- an enumeration of TΞ =
⋃

w∈WΞ
Tw:

TΞ =
⋃

n∈N
Twn ; Twn = {t(n,m) | m ∈ N}

- an enumeration of LF
(T×W )-I: A0, A1, . . . An, . . . .

Therefore, we can also assign a code number for each
prophetic conditional (historic conditional, ind-possibilistic
conditional, etc.) in the usual way.

Now, given a consistent formula A, the construction of
Σ and ΦΣ goes step by step as follows:

We begin with a finite ind-functional frame Σ0 =
(W0, T0,F0) ∈ Ξ, with W0 = {w0}, where w0 ∈WΞ − I;
T0 = {({t(0,0)}, ∅)}, F0 = ∅ and a trace ΦΣ0 , such that
ΦΣ0(t(0,0)) = Γ0, where Γ0 is an mc-set containing A.

Assume that Σn = (Wn, Tn,Fn) and ΦΣn are defined.
Then Σn+1 and ΦΣn+1 are defined as follows:

• If all conditionals are not active, then Σn+1 = Σn,
ΦΣn+1 = ΦΣn and the construction is finished.

• Otherwise, i.e., if there is some conditional (α) for
ΦΣn which is active, then we choose the conditional
(α′) with the lowest code number and the exhausting
lemma below ensures that there exists a finite exten-
sion Σn+1 = (Wn+1, Tn+1,Fn+1) of Σn and a finite
extension ΦΣn+1 of ΦΣn

, such that the conditional (α′)
for ΦΣn+1 is exhausted.

The result is a sequence of finite ind-functional frames
(W0, T0,F0), (W1, T1,F1), ..., (Wn, Tn,Fn), ...,

whose union is the ind-functional frame Σ, and a sequence
of corresponding traces, ΦΣ0 ,ΦΣ1 , . . . ,ΦΣn , . . . , whose
union is ΦΣ.

Each finite ind-functional frame of the above sequence
satisfies the condition of linearity of temporal orders and
each trace of it is coherent, but in general, it fails to be
prophetic, historic or ind-possibilistic.

However, as we shall show, the trace ΦΣ has all these
properties. Finally, we will demonstrate that the trace lem-
ma ensures that A is satisfied in Σ.

Lemma 4 (Exhausting lemma) Let Ξ be as in defini-
tion 10, ΦΣn

a coherent trace of an ind-functional frame
Σn = (Wn, Tn,Fn) ∈ Ξ and let (α) be a prophetic (his-
toric or ind-possibilistic) conditional for ΦΣn which is ac-
tive. Then there exists a coherent trace ΦΣn+1 , extension
of ΦΣn

, such that (α) is a conditional for ΦΣn+1 which is
exhausted.

Proof:
The proof for prophetic or historic conditionals is stan-
dard in temporal logic. Consider the special case of ind-
possibilistic conditionals.

Let ΦΣn
be a coherent trace of an ind-functional frame

Σn = (Wn, Tn,Fn) ∈ Ξ, let i ∈ I and assume that the
following ind-possibilistic conditional for ΦΣn

is active:
(2) if <i>A ∈ ΦΣn(tw), then there exists

ti = w i−→ (tw) such that A ∈ ΦΣn
(ti).

Thus, we have that < i> A ∈ ΦΣn
(tw), but there is no

ti = w i−→ (tw) such that A ∈ ΦΣn(ti). Now, we have to
consider two cases:

I) i /∈ Wn. Then, by item 2 (c) in lemma 1, there exists
an mc-set, Γ, such that ΦΣn(tw) ≺i Γ and A ∈ Γ; then
we need a new flow of time labelled with i, Ti, which
requires to extend Wn and, also, to introduce a new

coordinate ti associated with Γ so that ti = w i−→ (tw).
So, we proceed as follows:

- Wn+1 = Wn ∪ {i}
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- Tn+1 = Tn ∪ {(Ti, <i)}, where

(Ti, <i) = ({ti}, ∅)

- Fn+1 = F ∪ { w i−→}, where
w i−→= {(tw, ti)}

- ΦΣn+1 = ΦΣn ∪ {(ti,Γ)}

It is immediate that linearity is preserved and that
ΦΣn+1 is coherent.

II) i ∈ Wn. In this case, we must consider the following
situations:

(II.1)
w i−→ is defined in Fn.

(II.2)
w i−→ is not defined in Fn.

(II.1): Let ti be the minimum 3 of
w i−→ (Tw) and t′w

such that ti = w i−→ (t′w). Thus, we have that

ΦΣn(t′w) ≺i ΦΣn(ti) (†1)

and, since ΦΣn
(tw) ∼T ΦΣn

(t′w), we obtain
ΦΣn

(tw) ↘ ΦΣn
(t′w). On the other hand, it is evident

that ΦΣn
(tw) ↘ ΦΣn

(tw). Thus, by diamond theo-
rem, from (†1) we obtain that there exists an mc-set,
Γ, such that

ΦΣn
(tw) ≺i Γ and Γ ∼T ΦΣn

(ti) (†2)
(†2) means that one of the following three conditions
is satisfied:

(i) Γ = ΦΣn
(ti);

(ii) ΦΣn
(ti) ≺T Γ;

(iii) Γ ≺T ΦΣn
(ti).

In all of these cases we have Wn+1 = Wn. Now,

– if item (i) holds, we have:

Tn+1 = Tn;

Fn+1 = (Fn − { w i−→}) ∪ { w i−→
′
}, where

w i−→
′
= w i−→ ∪{(tw, ti)}

ΦΣn+1 = ΦΣn

It is evident that ΦΣn+1 is coherent.

– if item (ii) holds, we have to consider the number of
successors of ti in Ti:

(ii.a) if the number of successors of ti in Ti is zero,
then a new coordinate t′i is chosen, to be associ-
ated with Γ and we have:

Tn+1 = (Tn − {(Ti, <i)}) ∪ {(T ′
i , <

′
i)}, where

- T ′
i = Ti ∪ {t′i}

- <′
i =<i ∪{(ti, t′i)} ∪ {(t∗i , t′i) | t∗i <i ti}

3We could also consider the maximum.

Fn+1 = (Fn − { w i−→}) ∪ { w i−→
′
}, where:

w i−→
′
= w i−→ ∪{(tw, t′i)} (*)

ΦΣn+1 = ΦΣn
∪ {(t′i,Γ)} (**)

Clearly, linearity is preserved and lemma 1 com-
pletes the proof of the coherence of ΦΣn+1 .

(ii.b) On the other hand, if the number of successors of
ti in Ti is s > 0, then we consider the immediate
successor of ti, say t1i . Now, since ΦΣn(ti) ≺T

ΦΣn(t1i ), by item 4 (a) in lemma 1, we obtain one
of the three following conditions:

(ii.b.1) Γ = ΦΣn(t1i )
(ii.b.2) Γ ≺T ΦΣn

(t1i )
(ii.b.3) ΦΣn(t1i ) ≺T Γ

For case (ii.b.1) the reasoning is the same as in
(i). The case (ii.b.2) gives rise to

ΦΣn
(ti) ≺T Γ ≺T ΦΣn

(t1i )

Then we select a new coordinate, t′i, to associate
it to Γ. Thus:

Tn+1 = (Tn − {(Ti, <i)}) ∪ {(T ′
i , <

′
i)},

where
- T ′

i = Ti ∪ {t′i}
- <′

i =<i ∪{(ti, t′i), (t′i, t1i )}∪{(t∗i , t′i) |
t∗i <i ti} ∪ {(t′i, t∗i ) | t1i <i t∗i }

Fn+1 and ΦΣn+1 are defined as in (*) and
(**) respectively.

Linearity in the new frame and coherence of the
new trace are again preserved.

In case (ii.b.3) we consider the immediate
successor of t1i , namely t2i , and we proceed in
a similar way.

By iterating this operation at most s times, we
fix the image of tw associating an mc-set to it,
preserving coherence and linearity.

Finally, case (iii) is analogous to case (ii).

Consider case (II.2), that is,
w i−→ is not defined in Fn.

It means (by construction of Σn) that then there will

be some time-flow, Tw′ , with w′ �= w and
w′ i−→∈ Fn.

Let ti be the minimum of
w′ i−→ (Tw′) and tw′ such that

w′ i−→ (tw′) = ti.

Thus ΦΣn
(tw′) ≺i ΦΣn

(ti). Now, (again by con-
struction of Σn) we have three subcases:

(II.2.1) ΦΣn(tw) ↘ ΦΣn(tw′)
(II.2.2) ΦΣn

(tw′) ↘ ΦΣn
(tw)

(II.2.3) there exists a flow Tw′′ , with w′′ �= w and
w′′ �= w′, and there exists tw′′ ∈ Tw′′ such that:

ΦΣn(tw′′)↘ΦΣn(tw) and ΦΣn(tw′′)↘ΦΣn(tw′)
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In case (II.2.1), given that ΦΣn
(tw) ↘ ΦΣn

(tw), by
diamond theorem, there exists an mc-set Γ such that
ΦΣn(tw) ≺i Γ and Γ ∼T ΦΣn(ti). Thus, we can
observe, once again, one of the three situations referred
to in paragraph (II.1):

(i) Γ = ΦΣn(ti);

(ii) ΦΣn
(ti) ≺T Γ;

(iii) Γ ≺T ΦΣn
(ti).

and we can reason analogously. 4

In case (II.2.2), i.e., if ΦΣn
(tw′) ↘ ΦΣn

(tw), since
ΦΣn(tw′) ↘ ΦΣn(tw′), the diamond theorem ensures
that there exists an mc-set Γ such that ΦΣn(tw) ≺i Γ
and Γ ∼T ΦΣn

(ti). Thus, we have the same situation
as in the previous cases (i), (ii) and (iii) and we can
carry out the same reasoning.

Finally, in case (II.2.3), i.e., if there exists a time-
flow Tw′′ , with w′′ �= w and w′′ �= w′, and there
exists tw′′ ∈ Tw′′ such that ΦΣn

(tw′′) ↘ ΦΣn
(tw)

and ΦΣn(tw′′) ↘ ΦΣn(tw′), once again by diamond
theorem, there exists an mc-set Γ such that

ΦΣn
(tw) ≺i Γ and Γ ∼T ΦΣn

(ti)

and we can repeat the same reasoning.

Now we can formulate the following theorem.

Theorem 3 (Completeness theorem for SF
(T×W )−I-Parc.)

If a formula A ∈ LF
(T×W )-I is valid in the class of every

ind-functional frame, then A is a theorem of SF
(T×W )−I-

Parc.
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