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Abstract. The syntax, semantics and an axiom system for an extension
of Propositional Dynamic Logic (PDL) for order of magnitude qualita-
tive reasoning which formalizes the concepts of closeness and distance is
introduced in this paper. In doing this, we use some of the advantages of
PDL: firstly, we exploit the possibility of constructing complex relations
from simpler ones for defining the concept of closeness and other pro-
gramming commands such as while . . . do and repeat . . . until ; secondly,
we employ its theoretical support in order to show that the satisfiability
problem is decidable and the completeness of our system. Moreover, the
specific axioms of our logic have been obtained from the minimal set of
formulas needed in our definition of qualitative sum of small, medium and
large numbers. We also present some of the advantages of our approach
on the basis of an example.

1 Introduction

The area of research within Artificial Intelligence that automates reasoning and
problem solving about the physical world is called Qualitative Reasoning (QR).
It creates non-numerical descriptions of systems and their behaviour, preserving
important behavioural properties and qualitative distinctions. Successful appli-
cation areas include autonomous spacecraft support, failure analysis and on-
board diagnosis of vehicle systems, automated generation of control software for
photocopiers, conceptual knowledge capture in ecology, and intelligent aids for
human learning. Order of magnitude reasoning is a part of QR which stratifies
values according to some notion of scale [11,17,19,20].

There are different approaches in the literature [2, 12, 23] for using logic in
QR that face the problem about the soundness of the reasoning supported by the
formalism, and try to give some answers about the efficiency of its use. In par-
ticular, multimodal logics dealing with order of magnitude reasoning have been
developed in [8, 9] defining different qualitative relations (order of magnitude,
negligibility, non-closeness, etc.) on the basis of qualitative classes obtained by
dividing the real line in intervals [22].
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The syntax, semantics and an axiom system for a logic which formalizes the
concepts of closeness and distance are introduced in this paper. To do this,
we use the advantages of Propositional Dynamic Logic [4, 14, 16], mainly the
possibility of constructing complex relations from simpler ones. Some recent
applications of PDL in AI can be seen in [3, 5, 6, 15]. In our case, we define the
concept of closeness as a program obtained by the union of the sum of classes
representing zero, positive and negative small numbers. Moreover, we introduce
some nominals in order to represent the different qualitative classes, for this
reason we can say that our logic is a part of Combinatory PDL [1,18].

This work continues the line of [7] about using PDL in the framework of
order of magnitude reasoning, however it introduces some differences, for ex-
ample, here we use constants to represent the qualitative classes instead of the
milestones which divide them, introducing an ordering only in the set of qualita-
tive classes. This makes the approach more heavily founded on quantitativeness.
Furthermore, this paper is an step forward in the formalization for two main
reasons. Firstly, it gives a syntactic approach by presenting an axiom system
where the specific axioms have been obtained from the minimal set of formulas
needed in our definition of qualitative sum of small, medium and large numbers.
Secondly, we have used the theoretical support of PDL in order to prove the
decidability of the satisfiability problem and the completeness of this logic.

The paper is organized as follows. In Section 2, the syntax and semantics
of the proposed logic is introduced, together with an example of application of
our logic. In Section 3, we give an axiom system for our logic and in Section 4
the decidability of the problem of satisfiability and the completeness are proved.
Finally, some conclusions and future works are discussed in Section 5.

2 Syntax and Semantics

In order to introduce the language of our logic, we consider a set of formulas Φ
and a set of programs Π, which are defined recursively on disjoint sets Φ0 and
Π0, respectively. Φ0 is called the set of atomic formulas which can be thought
as abstractions of properties of states. Similarly, Π0 is called the set of atomic
programs which are intended to represent basic instructions.

Formulas:

• Φ0 = V ∪ C, where V is a denumerable set of propositional variables and
C = {nl, nm, ns, 0, ps, pm, pl}. The elements of C are intended to represent,
respectively the qualitative classes of “negative large”, “negative medium”,
“negative small”, “zero”, “positive small”, “positive medium”, and “positive
large” numbers.
• If ϕ and ψ are formulas and a is a program, then ϕ → ψ (propositional

implication), ⊥ (propositional falsity) and [a]ϕ (program necessity) are also
formulas. As usual, ∨ and ∧ represent logical disjunction and conjunction,
respectively; while 〈a〉 represents the program posibility.



Programs:

• Π0 = {+? | ? ∈ C}.
• If a and b are programs and ϕ is a formula, then (a; b) (“do a followed

by b”), a ∪ b (“do either a or b, nondeterministically”), a∗ (“repeat a a
nondeterministically chosen finite number of times”) and ϕ? (“proceed if ϕ
is true, else fail”) are also programs.

As an example of programs, we can consider +ps ∪ +ns and ns?; +pl in order to
represent, respectively, the intuitive meanings of adding a (positive or negative)
small number and adding a positive large number to a negative small number.

The possibility of construction complex programs from simpler ones allow
us to define programming commands such as while . . . do and repeat . . . until as
follows. If ϕ is a formula and a is a program, the program while ϕ do a is defined
by (ϕ?; a)∗;¬ϕ? and the program repeat a until ϕ is given by a; (¬ϕ?; a)∗;ϕ?.

We now define the semantics of our logic. A modelM is a tuple (W,m), where
W is a non-empty set divided in 7 qualitative classes, chosen depending on the
context [21], denoted also 3 by {nl, nm, ns, 0, ps, pm, pl}, and m is a meaning
function such that m(p) ⊆ W , for every propositional variable, m(?) = ?, for
every ? ∈ C and m(a) ⊆W ×W , for all program a. Moreover, for every formula
ϕ and ψ and for all programs a, b, we have:

• m(ϕ→ ψ) = (W rm(ϕ)) ∪m(ψ)
• m(⊥) = ∅
• m([a]ϕ) = {w ∈W : for all v ∈W, if (w, v) ∈ m(a) then v ∈ m(ϕ)}
• m(a ∪ b) = m(a) ∪m(b)
• m(a; b) = m(a);m(b) (composition of relations m(a) and m(b))
• m(a∗) = m(a)∗ (reflexive and transitive closure of relation m(a)).
• m(ϕ?) = {(w,w) : w ∈ m(ϕ)}

The following properties are required for our atomic programs:

• m(+ps) is a relation on W such that:

1. m(+ps)(nl) ⊆ nl ∪ nm
2. m(+ps)(nm) ⊆ nm ∪ ns
3. m(+ps)(ns) ⊆ ns ∪ 0 ∪ ps

4. m(+ps)(ps) ⊆ ps ∪ pm
5. m(+ps)(pm) ⊆ pm ∪ pl
6. m(+ps)(pl) ⊆ pl

• m(+pm) is a relation on W such that:

1. m(+pm)(nl) ⊆ nl ∪ nm ∪ ns
2. m(+pm)(nm) ⊆nm∪ns∪0∪ps∪pm
3. m(+pm)(ns) ⊆ ps ∪ pm

4. m(+pm)(ps) ⊆ pm ∪ pl
5. m(+pm)(pm) ⊆ pm ∪ pl
6. m(+pm)(pl) ⊆ pl

3 By abuse of notation, we will use the same symbols to represent the qualitative
classes and its corresponding formulas.



• m(+pl) is a relation on W such that:

1. m(+pl)(nm) ⊆ ps ∪ pm ∪ pl
2. m(+pl)(ns) ⊆ pm ∪ pl
3. m(+pl)(ps) ⊆ pl

4. m(+pl)(pm) ⊆ pl

5. m(+pl)(pl) ⊆ pl

• m(+ns), m(+nm) and m(+nl) are given similarly and m(+0) is defined such
that m(+0) = {(w,w) | w ∈W}.

Notice that the properties required for the specific atomic programs are intended
to reflect intuitive properties of qualitative sum. For example, m(+ps)(pl) ⊆ pl
means that the sum of a positive small number plus a positive large number has
to be a positive large number, and similarly for the rest of properties.

Given a modelM = (W,m), a formula ϕ is true in u ∈W whenever we have
that u ∈ m(ϕ). We say that ϕ is satisfiable if there exists u ∈ W such as ϕ is
true in u. Moreover, ϕ is valid in a modelM = (W,m) if ϕ is true in all u ∈W ,
that is, if m(ϕ) = W . Finally, ϕ is valid if ϕ is valid in all models.

The informal meaning of some of our formulas is given as follows:

• 〈+ps〉ϕ is true in u iff there exists u′, obtained by adding a positive small
number to u, such that ϕ is true in u′.

• 〈nl?〉ϕ is true in u iff u is a negative large number and ϕ is true in u.
• 〈+∗ps〉ϕ is true in u iff there exists u′, obtained by adding a finitely many

small positive numbers to u, such that ϕ is true in u′.
• [+ps∪+nm]ϕ is true in u iff for every u′, obtained by adding either a positive

small number or a negative medium number to u, ϕ is true in u′.

As stated above, one of the main advantages of using PDL is the possibility
of constructing complex programs from basic ones. As a consequence, following
the ideas presented in [7], we can use our connectives in order to represent the
relations of closeness and distance. Thus, for any formula ϕ, we define the modal
connectives [c] and [d] as follows:

[c]ϕ = [+ns ∪+0 ∪+ps]ϕ [d]ϕ = [+nl ∪+pl]ϕ

The intuitive interpretation of the closeness relation is that x is close to y if, and
only if, y is obtained from x by adding a small number. On the other hand, x is
distant from y if and only if y is obtained from x by adding a large number.
The following example was presented in [8] for a multimodal logic. In this case,
the use of PDL gives us many advantages, such as the possibility of expressing
not only closeness and distance, but also the programming commands while. . . do
and repeat. . . until defined above.

Example 1. Let us suppose that we want to specify the behaviour of a device
to automatically control the temperature, for example, in a museum, subject to
have some specific conditions. If we have to maintain the temperature close to



some limit T , for practical purposes any value of the interval [T−ε, T+ε] for small
ε is admissible. This interval can be considered as ns ∪ 0 ∪ ps in our approach.
Moreover, assume that if the temperature is out of this interval (for example,
because the number of people inside the museum is changing), it is necessary to
put into operation either some heating or cooling system. We also assume that,
when the normal system of cooling or heating is operating, a system to maintain
the humidity is needed, and when the extra system is operating, we also need
an extra system of humidification. As a consequence, the qualitative classes
nl, nm, ns ∪ 0 ∪ ps, pm and pl can be interpreted by the formulas: Very Cold,
Cold, Ok, Hot and Very Hot, respectively.

We consider that program +0 means that the system is off; moreover +ps ∪
+pm and +pl, mean that a system for heating and extra heating are operating,
respectively. Similarly, the programs +nm ∪ +ns and +nl represent cooling and
extra cooling operations, respectively.

Some consequences of the previous specification are the following:

1. Hot→ ([+pl]Very Hot ∧ 〈(+nm ∪+ns)∗〉Ok)
2. [(¬Ok?; +Sys)∗; Ok?]Ok, being +Sys = +nl ∪+nm ∪+ns ∪+ps ∪+pm ∪+pl

3. Very Hot→ [(+nl; (¬Ok?; +nl)∗; Ok?]Ok
4. 0→ [c] Ok
5. Ok→ [d] (Very Cold ∨Cold ∨Hot ∨Very Hot)

We give now the intuitive meanings for the previous formulae.

– Formula 1 means that, if the temperature is hot and the extra heating system
is put into operation, then the temperature will be very hot. Moreover, if
the temperature is hot, the temperature becomes OK after finitely many
applications of the cooling system.

– Formula 2 says that while the temperature is not OK, the system has to be
operating, as a consequence, we will obtain the desired temperature.

– Formula 3 is interpreted as if the temperature is very hot, repeat the appli-
cation of the extra cooling system until the temperature is OK.

– Formula 4 means that every value close to the desired temperature is con-
sidered OK.

– Formula 5 can be read in this way: if the temperature is OK, for every distant
value, the temperature will be either very cold or cold or hot or very hot.

Assume now that the system is more efficient (in terms of energy saving) if the
temperature is close to the desired value and if the temperature is distant to these
values, the system is wasting very much energy. The following formula must be
true: Ok→ ([c] efficient∧ [d] warning), which means that for every temperature
close to Ok, the system is running efficiently and if the temperature is distant
to Ok, the system is wasting very much energy.

3 Axiom system

We introduce here the axiom system for our logic.



Axiom schemata for PDL:

A1 All instances of tautologies of the propositional calculus.
A2 [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ)
A3 [a](ϕ ∧ ψ)↔ ([a]ϕ ∧ [a]ψ)
A4 [a ∪ b]ϕ↔ ([a]ϕ ∨ [b]ϕ)
A5 [a; b]ϕ↔ [a][b]ϕ
A6 [ϕ?]ψ ↔ (ϕ→ ψ)
A7 (ϕ ∧ [a][a∗]ϕ)↔ [a∗]ϕ
A8 (ϕ ∧ [a∗](ϕ→ [a]ϕ))→ [a∗]ϕ (induction axiom)

Axiom schemata for qualitative classes:

QE nl ∨ nm ∨ ns ∨ 0 ∨ ps ∨ pm ∨ pl
QU ?→ ¬# for every ? ∈ C and # ∈ C− {?}

QO1 nl→ 〈+∗ps〉 nm
QO2 nm→ 〈+∗ps〉 ns
QO3 ns→ 〈+∗ps〉 0

QO4 0→ 〈+∗ps〉 ps
QO5 ps→ 〈+∗ps〉 pm
QO6 pm→ 〈+∗ps〉 pl

Axiom schemata for specific programs:

PS1 nl→ [+ps] (nl ∨ nm)
PS2 nm→ [+ps] (nm ∨ ns)
PS3 ns→ [+ps] (ns ∨ 0 ∨ ps)

PS4 ps→ [+ps] (ps ∨ pm)
PS5 pm→ [+ps] (pm ∨ pl)
PS6 pl→ [+ps] pl

PM1 nl→ [+pm] (ns ∨ nm ∨ nl)
PM2 nm→ [+pm] (nm∨ns∨0∨ps∨pm)
PM3 ns→ [+pm] (ps ∨ pm)

PM4 ps→ [+pm] (pm ∨ pl)
PM5 pm→ [+pm] (pm ∨ pl)
PM6 pl→ [+pm] pl

PL1 nm→ [+pl] (ps ∨ pm ∨ pl)
PL2 ns→ [+pl] (pm ∨ pl)
PL3 ps→ [+pl] pl

PL4 pm→ [+pl] pl

PL5 pl→ [+pl] pl

We also consider as axioms NS1. . . NS6; NM1. . . NM6 and NL1. . . NL5 by
changing in the previous axioms every appearance of p by n and vice versa.

Z1 〈+0〉ϕ→ [+0]ϕ Z2 [+0]ϕ→ ϕ

Inference Rules:
(MP) ϕ,ϕ→ ψ ` ψ (Modus Ponens) (G) ϕ ` [a]ϕ (generalization)

Notice that axioms A1. . . A8 are classical for this type of logics. The rest ones
have the following intuitive meaning:

• QE and QU mean the existence and uniqueness of the qualitative classes,
respectively. Q01–Q06 represent the ordering of these qualitative classes.



• PS1–PS6, PM1–PM6 and PL1–PL5; the respective ones for negative
numbers and 01–06 represent the desired properties of our atomic specific
programs.

It is straightforward that all the previous axioms are valid formulas and that
the inference rules preserve validity. For this reason, we can conclude that our
system is sound, that is, every theorem is a valid formula.

4 Decidability and Completeness

In order to obtain the decidability of the satisfiability problem, we prove the
small model property. This property says that if a formula ϕ is satisfiable, then
it is satisfied in a model with no more than 2|ϕ| elements, where |ϕ| is the number
of symbols of ϕ. This result can be obtained by the technique of filtrations used in
modal logic. However, while in modal logic it is used the concept of subformula,
in PDL we have to rely on the Fisher-Lander Closure. All the results in this
section can be proved in a standard way. For more details, see [14].

First of all, we define by simultaneous induction the following two functions,
being Φ the set of formulas, Π the set of programs of our logic and for every
ϕ,ψ ∈ Φ, a, b ∈ Π:

FL : Φ→ 2Φ; FL2 : {[a]ϕ | a ∈ Π,ϕ ∈ Φ} → 2Φ

(a) FL(p) = {p}, for every propositional variable p.
(b) FL(?) = ?, for all ? ∈ C.
(c) FL(ϕ→ ψ) = {ϕ→ ψ} ∪ FL(ϕ) ∪ FL(ψ)
(d) FL(⊥) = {⊥}
(e) FL([a]ϕ) = FL2([a]ϕ) ∪ FL(ϕ)
(f) FL2([a]ϕ) = {[a]ϕ}, being a an atomic program.
(g) FL2([a ∪ b]ϕ) = {[a ∪ b]ϕ} ∪ FL2([a]ϕ) ∪ FL2([b]ϕ)
(h) FL2([a; b]ϕ) = {[a; b]ϕ} ∪ FL2([a][b]ϕ) ∪ FL2([b]ϕ)
(i) FL2([a∗]ϕ) = {[a∗]ϕ} ∪ FL2([a][a∗]ϕ)
(j) FL2([ψ?]ϕ) = {[ψ?]ϕ} ∪ FL(ψ)

FL(ϕ) is called the Fisher-Lander closure of formula ϕ.

The following result bounds the number of elements of FL(ϕ), denoted by
|FL(ϕ)|, in terms of |ϕ|. It is proved by simultaneous induction following the
ideas presented in [14], taking into account our specific definition of FL(?) = ?,
for all ? ∈ C, in the basis case of this induction.

Lemma 1.

(a) For any formula ϕ, |FL(ϕ)| ≤ |ϕ|.
(b) For any formula [a]ϕ, |FL2([a]ϕ)| ≤ |a|, being |a| the number of symbols of

program a.



We now define the concept of filtration. First of all, given a formula ϕ and a
model (W,m), we define the following equivalence relation on W :

u ≡ v def⇐⇒ ∀ψ ∈ FL(ϕ)[u ∈ m(ψ) iff v ∈ m(ψ)]

The filtration structure (W,m) of (W,m) by FL(ϕ) is defined on the quotient
set W/ ≡, denoted by W , and the qualitative classes in W are defined, for every
? ∈ C, by ? = {u | u ∈ ?}. Furthermore, the map m is defined as follows:

1. m(p) = {u | u ∈ m(p)}, for every propositional, variable p.
2. m(?) = m(?) = ?, for all ? ∈ C.
3. m(a) = {(u, v) | ∃u′ ∈ u and ∃v′ ∈ v such that (u′, v′) ∈ m(a)}, for every

atomic program a.

m is extended inductively to compound propositions and programs as described
previously in the definition of model.

The following two Lemmas are the key of this section and are proved following
also the ideas presented in [14]. To do this, we have to take into account that
our definition of Fisher-Lander closure includes the qualitative classes and that
the properties required in our models for atomic programs, such as m(+ps)(nl) ⊆
nl∪nm, are maintained in the filtration structure, as a direct consequence of our
previous definitions.

Lemma 2. (W,m) is a finite model.

Lemma 3 (Filtration Lemma). Let (W,m) be a model and (W,m) defined
as previously from a formula ϕ. Consider u, v ∈W .

1. For all ψ ∈ FL(ϕ), u ∈ m(ψ) iff u ∈ m(ψ).
2. For all [a]ψ ∈ FL(ϕ),

(a) if (u, v) ∈ m(a) then (u, v) ∈ m(a);
(b) if (u, v) ∈ m(a) and u ∈ m([a]ψ), then v ∈ m(ψ).

As a consequence or the previous Lemmas, we can give the following result.

Theorem 1 (Small Model Theorem). Let ϕ a satisfiable formula, then ϕ is
satisfied in a model with no more than 2|ϕ| states.

Proof. If ϕ is satisfiable, then there exists a model (W,m) and u ∈ W such
that u ∈ m(ϕ). Let us consider FL(ϕ) the Fisher-Lander closure of ϕ and the
filtration model (W,m) of (W,m) by FL(ϕ) defined previously. From Lemma 2,
(W,m) is a finite model and by Lemma 3 (Filtration Lemma), we have that
u ∈ m(ϕ). As a consequence, ϕ is satisfied in a finite model. Moreover, W has
no more elements as the truth assignments to formulas in FL(ϕ), which by
Lemma 1 is at most 2|ϕ|.



In order to get the completeness of our system, we construct a nonstandard
model from maximal consistent sets of formulas and we use a filtration lemma
for nonstandard models to collapse it to a finite standard model. For lack of
space, we present only an sketch of this proof. For more details, see [14].

A nonstandard model is any structure N = (N,mN ) such as it is a model
in the sense of Section 2 in every respect, except that, for every program a,
mN (a∗) need not to be the reflexive and transitive closure of mN (a), but only
a reflexive and transitive relation which contains mN (a). Given a nonstandard
model (N,mN ) and a formula ϕ, we can construct the filtration model (N,mN )
as above, and the Filtration Lemma (Lemma 3) also holds in this case.

As said before, to obtain completeness, we define a nonstandard model (N,mN )
as follows: N contains all the maximal consistent sets of formulas of our logic
and mN is defined, for every formula ϕ and every program a, by:

mN (ϕ) = {u | ϕ ∈ u}; mN (a) = {(u, v) | for all ϕ, if [a]ϕ ∈ u then ϕ ∈ v}

It is easy to prove that with the previous definition, all the properties for non-
standard models are satisfied, even the ones for our specific atomic programs.
Now, we can give the following completeness result.

Theorem 2. For every formula ϕ, if ϕ is a theorem then ϕ is valid.

Proof. We need to prove that if ϕ is consistent, then it is satisfied. If ϕ is con-
sistent, it is contained in a maximal consistent set u, which is a state of the
nonstandard model constructed above. By the Filtration Lemma for nonstan-
dard models, ϕ is satisfied in the state u of the filtration model (N,mN ).

5 Conclusions and future work

A PDL for order of magnitude reasoning has been introduced which deals with
qualitative relations as closeness and distance. An axiom system for this logic has
been defined by including as axioms the formulas which express syntactically the
needed properties. Moreover, we have shown the decidability of the satisfiability
problem of our logic. As a future work, we are trying to extend this approach for
more relations such as a linear order and negligibility, by maintaining decidability
and completeness. Finally, we have planned to give a relational proof system
based on dual tableaux for this logic in the line of [10,13].
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