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Abstract. In this paper, the Multi-flow Asynchronous Temporal Logic,
called MAT Logic, is presented. MAT Logic is a new temporal×modal
logic with non-deterministic operators among time flows as accessibility
relations. The main goal of this work has been the design and description
of a logic that could be capable of managing communications among sys-
tems with not necessarily synchronizable time flows. In order to better
understand the design of the logic, an example in the field of communi-
cations is given.

1 Introduction

The necessity of the incorporation of non-determinism in computation has been
widely discussed. So, for example, in the literature, the concept of non-determinis-
tic automata as a formal model of computation is widely consolidated; in [20]
the author presents a discussion about how the study of non-determinism is
useful for natural language processing; in [10] the author shows how formal
non-deterministic models are useful in describing interactive systems. Another
example is designing a circuit or a network: non-determinism characterizes the
flexibility allowed in the design [15].

Most works about non-determinism are based on simulation by means of
algorithms and deterministic automata. Nonetheless, it is widely accepted that
it will be necessary to develop a formal theory that regards non-determinism as
inherent to it and the fact that computational logic will play an important role
in this development [12].

Thus, on the one hand, modal logics have been proven useful in interactive
systems. So, they have been used in multi-agent systems to describe the agent
mental state and behaviour [17], or, for example, to reason with social categories,
such as obligations [3] and cooperativity [1].

On the other hand, temporal logic has been shown as a successful tool for
specifying and reasoning with interactive systems and the global behaviour of



multi-agent systems. However, it is not capable of reasoning out the intern struc-
ture of these systems [8, 13, 16]. In the literature, there exist several extensions
of propositional temporal logic to solve this disadvantage. So, for example, in
the case of multi-agent systems, the simplest extension is to consider that all
the agents are synchronized [9, 16], nevertheless, this is a very strong restriction.
Other extensions are obtained via some form of synchronization given by visibil-
ity or accessibility functions. Thus, temporal logics with linear temporal flows in
which the visibility functions are bidirectional, that is, the relation among states
(in different flows) is symmetric, were introduced in [14, 18].

In our opinion, a combination of the above approaches, i.e. modal and tem-
poral logics, could be the key to achieve a more comprehensive way to describe
interactive and multi-agent systems. Nonetheless, determining which properties
of the chosen combinations hold is not an easy task [21]. In the framework of
combining this kind of logics, this work presents the Multi-flow Asynchronous
Temporal Logic (briefly, MAT Logic). Our main goal has been the design and
description of a logic that could be capable of managing communications among
systems with time flows not necessarily synchronized. Occasionally, this kind of
communication between two time flows can be described by a function. However,
on many occasions the type of instant (kind of state of the system) in the image
flow is known but not the specific instant, consequently, a function can not be
defined. These characteristics, together with the fact that synchronization of the
time flows is not required, have led us to represent accessibility among them by
means of, on the one hand, non-deterministic operators for possible communica-
tions and, on the other hand, execution functions for effective communications.

The usual way in the literature about temporal×modal logics is to use equiv-
alence relations of accessibility, for example the Kamp-models in [19] and the
reasoning about knowledge and time in asynchronous systems, in [11]. However,
in [6, 7] a new kind of frame was introduced to manage linear time flows con-
nected by accessibility functions instead of using equivalence relations. MAT
Logic is a more general framework, because the accessibility is given by non
deterministic operators and, as a consequence, can be applied to different situ-
ations only by changing the properties required to them. Another characteristic
to be considered, is the use of indexed connectives to label time flows that can be
reached from the current flow (as in [7]). This notation, claimed by applications
to interactive systems, allows us to identify systems which we want to establish
a communication with.

Before the description of our logic, in order to better understand the aim in its
design, we give the following simplified example. Consider a computer network
with some physical links among them and, for simplifying, let us suppose that
the possible states of the computers are: ready to send and receive, ready to send
but not to receive, not ready to send but ready to receive and, finally, not ready
to send and not ready to receive. Assume also that the computers are working
changing their states and, in each change of state, a change in the instant in its
time flow is produced. That is, the time flow of each computer represents the
different states of this computer with respect to the time course. For simplicity in



this example, we reason only with two computers, but these ideas can be easily
generalizable for more computers. If a computer X1 is planning to establish a
communication with another X2 in an instant t1 ∈ T1, being Ti the time flow of
Xi for i ∈ {1, 2}, t1 has to be a ready to send state and X2 has to be in a ready
to receive state. However, the specific instant in which the communication is
executed is not initially known. As a consequence, the possible communications
are represented by a subset of T2, which is the image of t1 by the accessibility
non deterministic operator. Moreover, if the communication from t1 is effectively
executed in the instant t2 ∈ T2, then t2 is the image of t1 by the execution
function and we assume that the images of every later instant of t1 are lower
bounded by t2, because in this moment the information in X1 about X2 has
been updated. The following figures represent two different situations.
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In figure 1, the image of instant 1 of T1 are 1, 2, 5 and 9 in T2, which
are possible instants in ready to receive state. Also, in instant 5 of T2 a real
communication (an execution) occurs. Instant 3 of T1 is analogous. The image
of 3 is lower bounded by the execution instant of 1, that is, 5 of T2.

In figure 2, two different executions from instants 1 and 3 of T1 occur in the
same instant 5 of T2. This can be explained because the instant 5 of T2 can be in
a ready to receive state for which communication with instant 1 of T1 occurred,
but due to the computer X2 do not change its state, a communication with 3 of
T1 occurred also.

The figures above give the intuitive idea about the type of frame that we
are going to define in this paper: different time flows and the accessibility be-
tween every pair of them is given by a lower bounded non-deterministic operator
(possible communications) and an execution function (effective communications)
which determines these lower bounds. This kind of frame, as we will see, will
allow us to interpret temporal×modal connectives of our MAT logic.

This paper is organized as follows: In section 2, concepts of non-deterministic
operator and lower bounded non-deterministic operator are introduced. Nota-
tion that will be used in the rest of the paper is introduced too. In section 3,
MAT logic is defined. Moreover, the semantic is shown, emphasizing the set
of accessibility non deterministic operators among temporal flows, C, the set of
execution functions, Fex. In section 4, an axiom system SMAT for our logic is
introduced. Also, soundness and completeness of the system are stated. Finally,
in section 5, some conclusions and future works are shown.



2 Lower Bounded Unary Non-Deterministic Operators

This section is devoted to the necessary preliminaries about non-deterministic
operators.

Definition 1. Let A and B be non-empty sets and n ∈ N where n ≥ 1. Any
function F : An → 2B is said to be a non-deterministic operator of arity n
from A to B. Any non-deterministic operator of arity 1 from A to B is called a
ndo from A to B. The set Ndo(A,B) is the set of all non-deterministic operators
of arity 1 from A to B.

In the same way that occurs when we work with functions, F (X) will denote
the set

⋃
x∈X

F (x), for all F ∈ Ndo(A,B) and X ⊆ A.

Definition 2. Given two non-empty sets A and B, the relation ⊆ in Ndo(A,B)
is defined by F ⊆ G if and only if F (a) ⊆ G(a) for all a ∈ A.

Remark 1. Non-determinism condition is about the fact that cardinality of the
images is arbitrary, contrarily to functions and deterministic operators. Never-
theless, every (total or partial) function f : A → B can be identified with an
element of F ∈ Ndo(A,B):

F : A→ 2B and F (a) =
{
{f(a)}, if f is defined for a;
∅, if f is not defined for a.

In this work, functions will be considered in this previous way. This fact moti-
vates the following definition.

Definition 3. Let A and B be non-empty sets and F ∈ Ndo(A,B), we define
the domain of F as the set Dom(F ) = {a ∈ A | F (a) 6= ∅}. The empty
ndo, denoted by ∅, is the ndo whose domain is empty, that is, ∅ : A → 2B and
∅(a) = ∅, for all a ∈ A.

As it was mentioned in the introduction, we are interested in linear temporal
flows and particularly in the use of ndos with the characteristics collected in the
following definition.

Definition 4. Let A and B be two linear ordered sets and let F be a ndo from
A to B. F is lower bounded if, for all a ∈ Dom(F ), the minimum of F (a)
exists (hereinafter denoted minF (a)). Ndolb(A,B) denotes the set of all lower
bounded ndos of arity 1 from A to B, its elements will be called lb-ndo.

Some notations useful in the rest of the paper are introduced now.

Notation: Let (A,≤) be a linear ordered set, a be an element of A and X ⊆ A.
[a,→) = {x ∈ A | a ≤ x}, X↑=

⋃
x∈X

[x,→) and X ↑∗=
⋃

x∈X

(x,→).

(a,→), (←, a], (←, a), X ↓ and X ↓∗ can be analogously defined.



3 The MAT Logic

In this section MAT logic is defined as a family of indexed temporal×modal
logics MAT -I = (LI,MI) where I is a non-empty numerable set of indexes.
The selection of this set determines a specific MAT logic. LI denotes the language
and MI the set of models for LI.

3.1 The Language LI of MAT -I

Given a denumerable set of indexes I, the alphabet of LI consists of:

(i) a denumerable set, V, of propositional variables;
(ii) the logic constants > (“truth”) and ⊥ (“falseness”), and the boolean con-

nectives ¬ (“not”), ∧ (“and”), ∨ (“or”) and → (“if. . . then. . . ”);
(iii) the temporal connective of future G (“it will always be that”) and H (“it

has been always that”);
(iv) the three indexed modal connectives <i>, <i>min and <i>ex for i ∈ I;
(vi) the auxiliary symbols: (, ).

The well formed formulae (wffs) are generated by the construction rules of
classical propositional logic by adding the new rule:

If A is a wff, then GA, HA. <i> A, <i> minA and <i> exA are wffs. The
desired interpretation of the new modal connectives is as follows:

• <i>A is read as “There exists a temporal flow Ti and there exist some states
in Ti that are available from present state and A is true in some of these
states”.
• <i> minA is read as “There exists a temporal flow Ti and there exist some

states in Ti that are available from present state and A is true in the mini-
mum of these states”.
• <i> exA is read as “There exists a temporal flow Ti and there exist some

states in Ti that are available from present state and A is true in one of
these states, specifically in the execution state”.

We also consider the connectives [ i ], [ i ]min and [ i ]ex as usual in modal logic.

3.2 Semantics of MAT -I

As we have said in the introduction section, the frames must satisfy some prop-
erties formalized in the following definition.

Definition 5. A MAT- frame is a tuple Σ = (W,Λ, T , C,Fex) such that:

(1) W is a non-empty set (set of labels that will be used for temporal flows).
(2) Λ is a distinguished subset (possibly empty) of W .
(3) T = {(Tw, <w) | w ∈ W} is a non-empty set of temporal flows, such that

Tw 6= ∅ for all w ∈W ; Tw∩Tw′ = ∅ for all w,w′ ∈W with w 6= w′ and, for
all w ∈W, <w is a strict order relation in Tw which is linear. The elements
tw of the disjoint union CoordΣ =

⊕
w∈W Tw are called coordinates.



(4) C is a set of ndos C = {Cl
w | (w, l) ∈W × Λ} whose elements, called acces-

sibility ndos, satisfy that for any (w, l) ∈W ×Λ, Cl
w is an lb-ndo (possibly

the empty ndo, ∅) from Tw to Tl.
(5) Fex is a set of partial functions Fex = { w l−→ex| (w, l) ∈ W × Λ}, whose

elements, called execution functions, satisfy that for any (w, l) ∈W ×Λ,
w l−→ex is a partial function (possibly the empty function, ∅) from Tw to Tl.

(6) C and Fex satisfy the following conditions:
6.1) w l−→ex⊆ Cl

w for all (w, l) ∈W × Λ

6.2) If tw ∈ Dom( w l−→ex), then Cl
w

(
(tw,→)

)
⊆

( w l−→ex (tw)
)
↑

Remark 2. Condition (6) gives the relation between the accessibility ndos and
execution functions: (6.1) says that the image of the execution function is a
subset of the image of the corresponding ndo, that is, the execution instant in
one of the available states and (6.2) represents that the execution instant is a
lower bound for the image by the ndo of later states, as we have said previously.

The following definition introduces a lb-ndo useful in the rest of the paper.

Definition 6. Given a MAT-frame (W,Λ, T , C,Fex) and (w, l) ∈ W × Λ, we
define the lb-ndo, ml : Tw → 2Tl , as follows:

ml(tw) =
{
{min Cl

w(tw)}, if tw ∈ Dom(Cl
w)

∅, otherwise

Now, we have all the necessary elements to define semantics of the connectives
of LI. I will play a notable role in this semantic (as an arsenal of names for
denoting the range of lb-ndos).

Definition 7. A model for LI is an ordered pair MI = (ΣI, h), where:

i) ΣI is a MAT-frame, ΣI = (W,ΛI, T , C,Fex), such that ΛI = W ∩ I. From
now on, ΣI will be called a MAT-frame depending on I.

ii) A function h : V −→ 2Coord
ΣI , assigning each atom p ∈ V a subset of

CoordΣI is called an interpretation.

The interpretation h is recursively extended to a function (still denoted h) defined
on all formulae of LI that satisfies usual conditions for boolean and temporal
connectives. Moreover, for our special modal connectives, we have:

h(<i>A) =
{
{tw ∈ CoordΣI | Ci

w(tw) ∩ h(A) 6= ∅} if i ∈ ΛI,
∅ otherwise;

h(<i>minA) =
{
{tw ∈ CoordΣI | mi(tw) ∩ h(A) 6= ∅} if i ∈ ΛI,
∅ otherwise;

h(<i>ex A) =

{
{tw ∈ CoordΣI | w i−→ex (tw) ∩ h(A) 6= ∅} if i ∈ ΛI,
∅ otherwise;



Remark 3. As expressed in Remark 1, w i−→ex (tw) is considered as a subset of Ti.

Now, we have the necessary elements for the formal definition of the concepts
validity, truth and satisfiability.

Definition 8. We say that a formula A of LI is satisfiable if there exists a
modelMI = (ΣI, h) for LI, and tw ∈ CoordΣI such that tw ∈ h(A); in this case
we also say that A is true at tw. A is said to be valid in a modelMI = (ΣI, h)
for LI, if A is true at every coordinate in the model, that is, if h(A) = CoordΣI .
Let ΣI be a MAT-frame depending on I. We say that A is valid in ΣI, if A is
valid in every model MI = (ΣI, h). Let K be a class of MAT-frames depending
on I. We say that A is valid in the class K if A is valid in all MAT-frames
ΣI ∈ K. If K is the class of all MAT-frames depending on I, then we simply
say that A is valid.

The following example allows us to comment the semantics of the specific modal
connectives. Given a language LI being I = {0, 1}, we define the MAT-frame
depending on I, ΣI = (W,ΛI, T , C,Fex) such that:

• W = {w, 1}, thus by definition we have that ΛI = {1}.
• T = {(Tw, <w), (T1, <1)}, where Tw = {1w, 2w, 3w}, T1 = {11, 21, 31, 41, 51, 61}

and <w, <1 the usual strict linear order relations in Tw and T1, respectively.
• C = {C1

1 , C1
w}, being C1

1 = ∅11, C1
w(1w) = {11, 21, 41, 51}, C1

w(2w) = ∅ and
C1

w(3w) = {51, 61}
• Fex = { 1 1−→ex,

w 1−→ex}, where 1 1−→ex= ∅11 and w 1−→ex is defined by:
w 1−→ex (1w) = {41};

w 1−→ex (2w) = ∅; w 1−→ex (3w) = ∅.

Consequently we have m1(1w) = {11}; m1(2w) = ∅; m1(3w) = {51} and, for
all t1 ∈ T1, m1(t1) = ∅.

If p is a formula, we can define a model (ΣI, h) such that h(p) = {21, 41, 51, 61}.
The following figure represents this model.
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(Tw, <w)
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In this model, statements about truth or falseness of some formulae in coor-
dinates of Tw are collected in the following table:

<1> p is true in 1w and is true in 3w <1> p is false in 2w

<1>min p is true in 3w <1>min p is false in 1w and 2w

<1>ex p is true in 1w <1>ex p is false in 2w and 3w

[ 1 ] p is true in 2w, 3w and in all t1 ∈ T1 [ 1 ] p is false in 1w

[ 1 ]min p is true in 2w, 3w and in all t1 ∈ T1 [ 1 ]min p is false in 1w

[ 1 ]ex p is true in all tw ∈ Tw and in all t1 ∈ T1



In the context of computer network, if we interpret the formula p by the
computer is running a specific program P then, for example, in 1w the formula
F [ 1 ] p is true and H <1>ex p is true in 2w. The first formula means that in a
future state (in this case 3w), all the available states in T1 (51 and 61) will be
running the program P . The second formula means that always in the past of
2w (that is, in 1w) the execution state in T1 (in this case, 41) was running the
program P .

4 The Axiom System SMAT

In this section an axiom system for the language LI is introduced denoted by
SMAT . This system has the following schema of axioms and inference rules.

1. Propositional linear temporal logic schema Kl

2. For each i ∈ I standard modal schemas of axioms:
2.1 [ i ](A→ B)→ ([ i ]A→ [ i ]B).
2.2 [ i ]min(A→ B)→ ([ i ]minA→ [ i ]minB).
2.3 [ i ]ex(A→ B)→ ([ i ]exA→ [ i ]exB).

3. For each i ∈ I, specific schemas of axioms:
3.1 <i>A→<i>min(A ∨ FA)
3.2 <i>minA→ [ i ]minA
3.3 <i>ex(A ∧GA)→ G[ i ]A
3.4 <i>exA→ [ i ]exA
3.5 (λ A ∧ λ′ B)→ λ (A ∧ (PB ∨B ∨ FB)), where:

(†)1 λ = γ1 <j1>minγ2 . . . <jn>min with

γl ∈ {P, F, ε},
jl ∈ I, and
1 ≤ l ≤ n.

(†)2 λ′ = γ′1 <k1>minγ′2 . . . <ks>min with

γ′l ∈ {P, F, ε},
kl ∈ I, and
1 ≤ l ≤ s.

(†)3 jn = ks

3.6 <i>minA→<i>A
3.7 <i>exA→<i>A

The inference rules are propositional linear temporal logic Kl inference rules

together with the rule: For all i ∈ I:
A

[ i ]A
Informal reading of specific modal axioms is the following:

3.1 and 3.2 formalize existence and uniqueness of the minimum available
state, respectively.
3.3 ensures that available states from a given one are lower bounded by
execution states.
3.4 means that if there exists the execution instant then it is unique.



3.5 say that every two access chains to the same time flow (because jn = ks)
through the minima converge.
3.6 and 3.7 ensure that minimum and execution states are available states,
respectively.

Syntactical concepts as Proof or Theorem are defined as usual.

Theorem 1. System SMAT is sound and complete.

The soundness of SMAT can be obtained by proving the validity of the axioms
and taking into account that the inference rules are validity-preserving.

Regarding completeness, a step-by-step proof (see, for example, [2, 4, 6, 7])
can be given in the following terms: Given any consistent formula A , we have to
prove that A is satisfiable. With this purpose, the step-by-step method defines a
MAT-frame Σ and a function ΦΣ which assigns maximal consistent sets to any
coordinate, such that A ∈ ΦΣ(tw) for some tw ∈ CoordΣ . The process to build
such a frame is recursive, successive extensions of the frames are defined until Σ
is obtained.

Due to lack of space, the formal details of soundness and completeness proofs
are left for a longer version of this paper.

5 Conclusions and Future Work

A new combination of modal and temporal logic, called MAT logic has been pre-
sented. This logic allows us to manage communications among systems without
synchronization restrictions. The achievement of this goal has been possible due
to the use of non-deterministic operators among time flows. Together with the
semantic of the MAT logic, defined in an algebraic style, a sound and complete
axiom system SMAT has been introduced.

At the present time, we are looking for formulae whose validity characterizes
important properties for the communications of systems to extend the field of
application of our MAT logic, for example in the planning area.

We are also studying the possibility of increasing the expressivity of MAT-
Logic combining a totally expressive temporal logic (concretely, LN Logic [5])
with a modal logic in the same way used in this paper.

Last bust not least, it is planned to design a method for automated deduction
in MAT-Logic.
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