
Relational approach for a logic
for order of magnitude qualitative reasoning
with negligibility, non-closeness and distance
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Abstract. We present a relational proof system in the style of dual
tableaux for a multimodal propositional logic for order of magnitude
qualitative reasoning to deal with relations of negligibility, non-closeness,
and distance. This logic enables us to introduce the operation of qual-
itative sum for some classes of numbers. A relational formalization of
the modal logic in question is introduced in this paper, i.e., we show
how to construct a relational logic associated with the logic for order-
of-magnitude reasoning and its dual tableau system which is a validity
checker for the modal logic. For that purpose, we define a validity pre-
serving translation of the modal language into relational language. Then
we prove that the system is sound and complete with respect to the
relational logic defined as well as with respect to the logic for order of
magnitude reasoning. Finally, we show that in fact relational dual tableau
does more. It can be used for performing the four major reasoning tasks:
verification of validity, proving entailment of a formula from a finite set
of formulas, model checking, and verification of satisfaction of a formula
in a finite model by a given object.

Keywords: relational logics, dual tableau systems, multimodal propositional
logic, order-of-magnitude qualitative reasoning

1 Introduction

Qualitative reasoning (QR) is the area of AI which tries to develop representation
and reasoning techniques that enable a program to reason about the behaviour
of physical systems, without the kind of precise quantitative information needed
by conventional analysis techniques [31]. QR provides an intermediate level be-
tween discrete and continuous models [28], when we have to represent continuous
aspects of the world, such as space, time, and quantity, which support reasoning
with very little information [11].



A form of QR is to manage numerical data in terms of orders of magni-
tude [8, 9, 19, 24, 27]. Order of magnitude representations stratify values accord-
ing to some notion of scale, for instance, by including hyperreal numbers [24],
numerical thresholds [19], and logarithmic scales [21]. Three issues faced by all
these formalisms are the conditions under which many small effects can combine
to produce a significant effect, the soundness of the reasoning supported by the
formalism, and the efficiency of using them. Order of magnitude reasoning has
been developed from two points of view [29]: Absolute Order of Magnitude,
which is represented by a partition of the real line R, where each element of R
belongs to a qualitative class, and Relative Order of Magnitude, introducing a
family of binary order of magnitude relations which establish different compari-
son relations in R (e.g., comparability, negligibility, and closeness). We combine
both in our approach, that is, we define different relations using the qualitative
classes which appear in a specific absolute order of magnitude model.

The introduction of a logical approach in QR tries to solve the problem
about the soundness of the reasoning supported by the formalism and it aims
to give some answers about the efficiency of using that. Logics dealing with QR
have been defined in many situations [1, 2, 25, 30], for example, for spatial and
temporal reasoning. In particular, logics for order of magnitude reasoning have
been studied in [4,5,7]. In this paper, we focus our attention on the multimodal
propositional logic L(OM)NCD (from now on, OM for short) presented in [4],
which introduces a logic to deal not only with negligibility and order of magni-
tude relations, but also with non-closeness and distance. This logic enables us
to introduce the operation of qualitative sum for some classes of numbers and,
in some way, to consider the problem about the conditions under which many
small effects can combine to produce a significant effect.

Our definitions of non-closeness and negligibility are based in the election of
5 landmarks. This election was made following the ideas presented in [27,28] and
has many advantages such as the possibility of distinguishing between medium
and large numbers. Possible applications of the logic OM can be considered in the
field of modelling physical systems where we need to abstract the value domain
of continuous variables into a finite set of qualitative values [4, 28].

It is well known that one of the main advantages in the use of the logic
formalism is the possibility of having automated deduction systems. For this
reason, we present a relational proof system in the style of dual tableaux for
the relational logic associated to OM. We prove its soundness and completeness
and we show how it can be used for performing the four major reasoning tasks:
verification of validity, verification of entailment, model checking, and verifica-
tion of satisfaction. The relational system presented in the paper is founded on
Rasiowa-Sikorski system (RS) for the first-order logic [26] extended with the
rules for equality predicate as presented in [16]. The election of this method
has many advantages [18]. Namely, it provides a clear-cut method of generat-
ing proof rules from the semantics and the resulting deduction system is well
suited for automated deduction purposes. Moreover, it provides a standard and
intuitively simple way of proving completeness by constructing a model from
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the syntactic resources of the tree built during the proof search process which
falsifies the non-provable formula. It enables an almost automatic way of trans-
forming a complete dual tableau proof tree into a complete Gentzen calculus
proof tree. Furthermore, for each particular theory we need only to expand the
basic relational logic with specific relational constants and/or operators satisfy-
ing the appropriate axioms, then we design specific rules corresponding to given
properties of a logic and we adjoin them to the core set of the rules. Hence,
we need not implement each deduction system from the scratch, we should only
extend the core system with a module corresponding to a specific part of a logic
under consideration.

We apply the method known for various non-classical logics [22] in the con-
struction of the system for OM. First, we construct a relational logic RLOM

appropriate for expressing formulas of the logic OM. For that purpose, we define
a validity preserving translation of OM-language into relational language. Then
we construct a sound and complete deduction system based on dual tableaux
for the relational logic RLOM so that it provides a validity checker for the modal
logic in question. Finally, we extend this validity checker in order get a system
for verifying entailment, model checking and verification of satisfaction. The re-
lational logic RLOM is based on the relational logic of binary relations which is a
logical counterpart to the class of full relation algebras [17,22]. The proof system
developed in the paper is the extension of dual tableau for the relational logic
of binary relations originated in [23], see also [17,22].

Other approaches to relational logics for order of magnitude reasoning have
been presented in [6, 13] The first one only uses 3 qualitative classes, while the
second one defines 5. Both papers introduce different notions of negligibility,
however they do not consider any relation such as non-closeness nor distance.

Some implementations of these systems have been done. In [10] there is an
implementation of the proof system for the classical relational logic and in [12]
an implementation of translation procedures from non-classical logics to rela-
tional logic is presented. Focusing our attention on logics for order of magnitude
reasoning, in [15] a theorem prover for the logic presented in this paper has been
developed. Moreover, in [3] an implementation of the logic presented in [6] has
been presented.

This paper is organized as follows: In Section 2, we define the syntax, se-
mantics, and the axiomatization of the logic OM. In Section 3, we develop the
relational logic appropriate for OM and a validity preserving translation for it.
In Section 4 we present a complete relational proof system for logics in question.
In Section 5, we show that the presented relational proof system can be used
for verification of entailment, model checking, and verification of satisfaction of
formulas of the logic OM. Finally, in Section 6, some conclusions and future work
are commented.

3



2 The multimodal logic OM

In this section we present the logic OM introduced in [4]. We consider a strict
linearly ordered set (S, <) 3 divided into seven equivalence classes using five
landmarks chosen depending on the context [20,28]. The system corresponds to
the following schematic representation, where ci ∈ S, being i ∈ {1, 2, 3, 4, 5} such
that cj < cj+1, for all j ∈ {1, 2, 3, 4}:

c1 c2 c3 c4 c5

nl nm ns 0 ps pm pl

In this paper we consider the following set of qualitative classes:

nl = (−∞, c1), nm = [c1, c2) ns = [c2, c3), 0 = {c3}

ps = (c3, c4], pm = (c4, c5], pl = (c5,+∞)

As it could be expected, the labels correspond to “negative large”, “negative
medium”, “negative small”, “zero”, “positive small”, “positive medium”, and
“positive large”, respectively.

After presenting the ‘absolute part’ of our approach, we introduce the ‘rela-
tive part’ with the concepts of order of magnitude, non-closeness, distance and
negligibility. Firstly, we define the relation d to give the intuitive meaning of a
constant distance. Let (S, <) be a strict linearly ordered set which contains the
constants ci, for i ∈ {1, 2, 3, 4, 5} as defined above. We define d as a relation on
S such that, for every x, y, z, x′, y′ ∈ S the following hold:

(i) If x d y, then x < y
(ii) cj d cj+1, for j ∈ {1, 2, 3, 4}.
(iii) If x d y and x d z, then y = z.
(iv) If x d y, x′d y′ and x < x′ then y < y′.

In the definition above, we assume for simplicity that every pair of consecutive
constants are at the same distance. However, the consideration of constants at
different distance is a straightforward generalization that does not change the
essence of our approach.

We now define the remaining relations on S. Let us consider (S, <) be defined
as above. For every x, y ∈ S we define the order of magnitude relation such that
xomy if and only if x, y ∈ Eq, where Eq denotes a qualitative class, that is, an
3 For practical purposes, this set could be the real line.
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element in the set {nl, nm, ns, 0,ps, pm, pl}. Analogously, we define: xomy
whenever x, y do not belong to the same class. The relations of non-closeness,
nc, and distance, d, are defined as follows, where d2 = d ◦ d, being ◦ the usual
composition of relations:

xnc y if and only if either xomy and x < y
or there exists z ∈ S such that z < y and x d z,

xdy if and only if there exists z ∈ S such that z < y and x d2z.

If we assume that S is a set of real numbers, the intuitive interpretation of the
non-closeness relation is that x is non-close to y if and only if either x and y
do not have the same order of magnitude or y is obtained from x by adding a
positive medium or large number. On the other hand, x is distant from y if and
only if y is obtained from x by adding positive large number.

In order to define the negligibility relation, we assume that if a non-zero
element x is negligible with respect to y, then either x is distant to y or y is
distant to x. Hence, we give the following definition for all x, y ∈ S: x is negligible
with respect to y (denoted by xny) if and only if either of the following holds:

(i) x = c3 (ii) x ∈ ns ∪ ps and, either ydc2 or c4dy.

Let us observe that item (i) above corresponds to the intuitive idea that zero is
negligible wrt any real number and item (ii) corresponds to the intuitive idea
that a sufficiently small number is negligible wrt any sufficiently large number,
independently of the sign of these numbers. This definition ensures that if x 6= c3
and xny, then either xdy or ydx.

Notice that the relations nc,d and n can be defined in terms of <, d, their
inverses, and the constants. For this reason, from now on, we will only consider
the last mentioned relations.

Let us introduce now the syntax and semantics of the logic OM. Consider a
multimodal propositional language with a family of modal operators determined
by accessibility relations. Expressions of the language are constructed with sym-
bols from the following pairwise disjoint sets:

V - a set of propositional variables;
C = {ci | i ∈ {1, 2, . . . , 5}} - the set of specific constants;
{<, d} - the set of accessibility relational constants;
{¬,∧,∨,→} ∪ {�−→R ,�←−R : R ∈ {<, d}} - the set of propositional operations.

As usual in modal logic, we use ♦−→R , ♦←−R as abbreviations for ¬�−→R¬ and ¬�←−R¬,
respectively, where ←−R is the inverse of relation −→R, for R ∈ {<, d}.

The set of OM-formulas is the smallest set including V ∪ C and closed on
propositional operations.

For the semantics, we define an OM-model as a tupleM = (U,m), where U is
a non-empty set, whose elements are called states, and m is a meaning function
satisfying the following conditions:
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1. m(p) ⊆ U , for every p ∈ V;
2. m(c) ∈ U , for every c ∈ C;
3. m(<) is a strict linear ordering on U , that is, for all s, s′, s′′ ∈ U the following

conditions are satisfied:

(Irref) (s, s) 6∈ m(<),
(Tran) if (s, s′) ∈ m(<) and (s′, s′′) ∈ m(<), then (s, s′′) ∈ m(<),
(Lin) (s, s′) ∈ m(<) or (s′, s) ∈ m(<) or s = s′;

4. m(d) is a binary relation on U such that for all s, s′, s′′, s′′′ ∈ U , we have:

(i) m(d) ⊆ m(<),
(ii) (m(cj),m(cj+1)) ∈ m(d), for j ∈ {1, 2, 3, 4},
(iii) If (s, s′), (s, s′′) ∈ m(d), then s′ = s′′,
(iv) If (s, s′), (s′′, s′′′) ∈ m(d), and (s, s′′) ∈ m(<), then (s′, s′′′) ∈ m(<).

Remark 1. Note that item 4 reflects the definition of relation d presented above.

Let ϕ be an OM-formula and letM = (U,m) be an OM-model. The satisfaction
of ϕ in M by a state s, M, s |= ϕ for short, is defined inductively as follows,
where R ∈ {<, d}:

M, s |= p iff s ∈ m(p), for any p ∈ V;
M, s |= c iff s = m(c), for any c ∈ C;
M, s |= ¬ϕ iff not M, s |= ϕ;
M, s |= (ϕ ∨ ψ) iff M, s |= ϕ or M, s |= ψ;
M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ;
M, s |= (ϕ→ ψ) iff M, s |= ¬ϕ ∨ ψ;
M, s |= �−→Rϕ iff for all s′ ∈ U , (s, s′) ∈ m(R) implies M, s′ |= ϕ;
M, s |= �←−Rϕ iff for all s′ ∈ U , (s′, s) ∈ m(R) implies M, s′ |= ϕ

An OM-formula ϕ is said to be satisfiable whenever there exist an OM-modelM
and a state s ∈ U such thatM, s |= ϕ. An OM-formula ϕ is true in an OM-model
M = (U,m) whenever ϕ is satisfied in M by all states s ∈ U . An OM-formula
ϕ is OM-valid, denoted by |= ϕ, whenever it is true in all OM-models.

In the subsequent part of this section the axiomatization of the logic OM is
presented. From now on, the connectives �−→< , �←−< , ♦−→< , and ♦←−< are denoted

by −→� , ←−� , −→♦ , ←−♦ , respectively.

The sound and complete axiom system of OM consists of all tautologies of clas-
sical propositional logic together with the following axiom schemata [4]:

Axiom schemata for modal connectives:

K1 −→�(A→ B)→ (−→�A→ −→�B)
K2 A→ −→�←−♦A
K3 −→�A→ −→�−→�A
K4

(−→
�(A ∨B) ∧ −→�(−→�A ∨B) ∧ −→�(A ∨ −→�B)

)
→ (−→�A ∨ −→�B)
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Axiom schemata for constants:

C1 ←−♦ ci ∨ ci ∨
−→
♦ ci, where i ∈ {1, . . . , 5}

C2 ci → (←−�¬ci ∧
−→
�¬ci), being i ∈ {1, . . . , 5}

Axiom schemata for specific modal connectives:

d1 −→�A→ �−→
d
A.

d2 ♦−→
d
A→ �−→

d
A

d3 (♦−→
d
A ∧ −→♦ ♦−→

d
B)→ −→♦ (A ∧ −→♦B)

d4 cj → ♦−→
d
cj+1, where j ∈ {1, . . . , 4}

d5 �−→
d

(A→ B)→ (�−→
d
A→ �−→

d
B)

d6 A→ �−→
d

♦←−
d
A.

The corresponding mirror images of K1–K4 and d1–d6 are also considered as
axioms.

Rules of Inference:

(MP) Modus Ponens for →
(R−→�) If ` A then ` −→�A
(R←−�) If ` A then ` ←−�A

Remark 2. Notice that axioms d1–d4 reflect syntactic definition of relation d.

3 Relational formalization of OM

The language of the logic RLOM appropriate for expressing OM-formulas consists
of the following pairwise disjoint sets of symbols:

OV = {x, y, z, . . .} - a countably infinite set of object variables;
OC = {ci : i ∈ {1, . . . , 5}} - the set of object constants;
RV = {P,Q, . . .} - a countably infinite set of binary relational variables;
RC = {1, 1′, <, d} ∪ {Ψi : i ∈ {1, . . . , 5}} - the set of relational constants;
OP = {−,∪,∩, ; ,−1} - the set of relational operation symbols.

The set of relational terms RT is the smallest set of expressions including the set
RA = RV∪RC of atomic terms and closed with respect to the operation symbols
from OP. The set FR of RLOM-formulas (or, simply formulas if it is clear from the
context), consists of expressions of the form xPy, where x, y ∈ OS = OV ∪ OC
and P ∈ RT.

An RLOM-model is a pair M = (U,m), where U is a non-empty set and m is
a meaning function defined as follows:

1. m(c) ∈ U , for every c ∈ OC;
2. m(P ) ⊆ U × U , for any P ∈ RV;
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3. m(1′) is an equivalence relation on U ;
4. m(1′);m(P ) = m(P );m(1′) = m(P ), for every P ∈ RA (extensionality

property);
5. m(1) = U × U ;
6. m(<) is a binary relation on U such that for all s, s′, s′′ ∈ U the following

conditions are satisfied:
(Irref) (s, s) 6∈ m(<),
(Tran) if (s, s′) ∈ m(<) and (s′, s′′) ∈ m(<), then (s, s′′) ∈ m(<),
(Lin) (s, s′) ∈ m(<) or (s′, s) ∈ m(<) or (s, s′) ∈ m(1′);

7. m(Ψi) = {(s, s′) ∈ U × U : (s,m(ci)) ∈ m(1′)}, for every i ∈ {1, . . . , 5};
8. m(d) is a binary relation on U such that, for all s, s′, s′′, s′′′ ∈ U :

(i) m(d) ⊆ m(<),
(ii) (m(cj),m(cj+1)) ∈ m(d), for j ∈ {1, . . . , 4},

(iii) If (s, s′), (s, s′′) ∈ m(d), then (s′, s′′) ∈ m(1′),
(iv) If (s, s′), (s′′, s′′′) ∈ m(d), and (s, s′′) ∈ m(<), then (s′, s′′′) ∈ m(<).

9. m extends to all the compound relational terms as follows:
m(−P ) = m(1) ∩ −m(P ),
m(P ∪Q) = m(P ) ∪m(Q),
m(P ∩Q) = m(P ) ∩m(Q),
m(P−1) = m(P )−1,
m(P ;Q) = m(P );m(Q).

An RLOM-modelM = (U,m) is said to be standard wheneverm(1′) is the identity
on U , that is m(1′) = {(x, x) : x ∈ U} 4. A standard RLOM-model is referred
to as an RL∗OM-model. A valuation in an RLOM-model M = (U,m) is a function
v: OS→ U such that v(c) = m(c), for every c ∈ C. Let xPy be an RLOM-formula
and let M = (U,m) be an RLOM-model. A formula xPy is said to be satisfied
in M by v whenever (v(x), v(y)) ∈ m(P ). A formula xPy is true in M if it is
satisfied in M by all valuations v. xPy is said to be RLOM-valid, if it is true in
all RLOM-models. Moreover, a formula is said to be RL∗OM-valid whenever it is
true in all standard models.

The following result is well known:

Proposition 1. For every RLOM-formula ϕ:

ϕ is RLOM-valid iff ϕ is RL∗OM-valid.

The translation of OM-formulas into relational terms starts with a one-to-one
assignment of relational variables to the propositional variables. Let τ ′ be such
an assignment. Then the translation τ of OM-formulas is defined inductively as
follows:

τ(p) = τ ′(p); 1, for any propositional variable p ∈ V;
τ(ci) = Ψi; 1, for any i ∈ {1, . . . , 5};

4 Note that in standard models m(<) is a strict linear ordering on U
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τ(¬ϕ) = −τ(ϕ);
τ(ϕ ∨ ψ) = τ(ϕ) ∪ τ(ψ);
τ(ϕ ∧ ψ) = τ(ϕ) ∩ τ(ψ);
τ(ϕ→ ψ) = −τ(ϕ) ∪ τ(ψ);

and for R ∈ {<, d}:

τ(�−→Rϕ) = −(R;−τ(ϕ));
τ(�←−Rϕ) = −(R−1;−τ(ϕ)).

Notice that every OM-formula ϕ is associated to the relational term τ(ϕ), which
is a right ideal relation i.e., a relation Q that satisfies Q = Q; 1.

The translation τ is defined so that it preserves validity of formulas.

Proposition 2. Let ϕ be an OM-formula. Then for every OM-model M =
(U,m) there exists an RL∗OM-model M′ = (U,m′) with the same universe as
in M such that for all s, s′ ∈ U the following holds:

(∗)M, s |= ϕ iff (s, s′) ∈ m′(τ(ϕ)).

Proof. Let ϕ be an OM-formula, let M = (U,m) be an OM-model. Then we
define an RL∗OM-model M′ = (U,m′) as follows:

m′(1) = U × U ;
m′(1′) is an identity on U ;
m′(τ(p)) = {(x, y) ∈ U × U : x ∈ m(p)}, for every propositional variable p;
m′(ci) = m(ci), for every i ∈ {1, . . . , 5};
m′(Ψi) = {x ∈ U ′ : (x,m′(ci)) ∈ m′(1′)} × U , for every i ∈ {1, . . . , 5};
m′(R) = m(R), for R ∈ {<, d};
m′ extends to all the compound terms as in RLOM-models.

Clearly, the model defined above is an RL∗OM-model. Now we prove (∗) by induc-
tion on the complexity of formulas. Let s, s′ ∈ U .

Let ϕ := p, for p ∈ V. Then M, s |= p iff s ∈ m(p) iff (s, s′) ∈ m′(τ(p)), since
m′(τ(p)) is a right ideal relation.

Let ϕ := ci, for some i ∈ {1, . . . , 5}. ThenM, s |= ci iff s = m(ci) iff (s,m(ci)) ∈
m′(1′) iff (s, s′) ∈ m′(Ψi; 1) iff (s, s′) ∈ m′(τ(ci)).

Let ϕ := ψ ∨ ϑ. Then M, s |= ψ ∨ ϑ iff M, s |= ψ or M, s |= ϑ iff (by
the induction hypothesis) (s, s′) ∈ m′(τ(ψ)) or (s, s′) ∈ m′(τ(ϑ)) iff (s, s′) ∈
m′(τ(ψ)) ∪m′(τ(ϑ)) iff (s, s′) ∈ m′(τ(ψ ∨ ϑ)).

Let ϕ := �−→Rψ, for some R ∈ {<, d}. Note that by the induction hypothesis,
for all t, s′ ∈ U the following holds: M, t |= ψ iff (t, s′) ∈ m′(τ(ψ)). Therefore:
M, s |= ϕ iff for all t ∈ U , if (s, t) ∈ m(R), then M, t |= ψ iff (by the induction
hypothesis) for all t ∈ U , if (s, t) ∈ m′(R), then (t, s′) ∈ m′(τ(ψ)) iff (s, s′) ∈
m′(−(R;−τ(ψ))) iff (s, s′) ∈ m′(τ(ϕ)).

The proofs of the remaining cases are similar. ut
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Proposition 3. Let ϕ be an OM-formula. Then for every RL∗OM-model M′ =
(U,m′) there exists an OM-model M = (U,m) with the same universe as in M′
such that for all s, s′ ∈ U condition (∗) of Proposition 2 holds.

Proof. Let ϕ be an OM-formula, let M′ = (U,m′) be an RL∗OM-model. Then we
define an OM-model M = (U,m) as follows:

– m(p) = {(x ∈ U : for some y ∈ U , (x, y) ∈ m′(τ(p))}, for every proposi-
tional variable p;

– m(ci) = m′(ci), for every i ∈ {1, . . . , 5};
– m(R) = m′(R), for R ∈ {<, d}.

It is easy to see that the model defined above is an OM-model. Condition (∗)
can be proved similarly as in Proposition 2. ut

Proposition 4. Let ϕ be an OM-formula. Then for every OM-model M there
exists an RLOM-model M′ such that for all object variables x and y the following
holds:

(∗∗)M |= ϕ iff M′ |= xτ(ϕ)y.

Proof. Let ϕ be an OM-formula and let M = (U,m) be an OM-model. Then
we define an RLOM-model M′ = (U,m′) as in the proof of Proposition 2. Let x
and y be any object variables. AssumeM |= ϕ. Suppose there exists a valuation
v in M′ such that M′, v 6|= xτ(ϕ)y. Then (v(x), v(y)) 6∈ m′(τ(ϕ)). However,
by Proposition 2, models M and M′ satisfy: M, v(x) |= ϕ iff (v(x), v(y)) ∈
m′(τ(ϕ)). Therefore, M, v(x) 6|= ϕ, and hence M 6|= ϕ, a contradiction Assume
M′ |= xτ(ϕ)y. Suppose there exists s ∈ U such that M, s 6|= ϕ. Let s′ be
any element of U . By Proposition 2 the following holds: M, s |= ϕ iff (s, s′) ∈
m′(τ(ϕ)). Let v be a valuation in M′ such that v(x) = s and v(y) = s′. Since
M, s 6|= ϕ, (v(x), v(y)) 6∈ m′(τ(ϕ)). Thus, M′, v 6|= xτ(ϕ)y, and hence M′ 6|=
xτ(ϕ)y, a contradiction. ut

Due to Proposition 3, the following can be proved similarly as Proposition 4.

Proposition 5. Let ϕ be an OM-formula. Then for every RL∗OM-modelM′ there
exists an OM-model M such that for all object variables x and y, condition (∗∗)
of Proposition 4 holds.

From Propositions 4 and 5 we obtain the following theorem that shows the
semantic relationship between OM and RLOM:

Theorem 1. For every OM-formula ϕ and for all object variables x and y the
following conditions are equivalent:

1. ϕ is OM-valid;
2. xτ(ϕ)y is RLOM-valid.
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Proof. (→) Let ϕ be OM-valid. Suppose xτ(ϕ)y is not RLOM-valid. Then there
exists an RL∗OM-model M such that M 6|= xτ(ϕ)y. By Proposition 5, there is
an OM-model M′ such that M′ 6|= ϕ, which contradicts the assumption of OM-
validity of ϕ.
(←) Let ϕ be an OM-formula such that xτ(ϕ)y is RLOM-valid. Suppose ϕ is not
OM-valid. Then there exists an OM-modelM such thatM 6|= ϕ. By Proposition
4, there exists an RL∗OM-modelM′ such thatM′ 6|= xτ(ϕ)y, a contradiction. ut

4 Relational dual tableau for RLOM

The proof system for logic RLOM presented in this section belongs to the family
of dual tableau systems. Dual tableau systems are determined by axiomatic sets
of formulas and rules which apply to finite sets of formulas. The axiomatic sets
take the place of axioms. There are two groups of rules: the decomposition rules,
which reflect definitions of the standard relational operations, and the specific
rules which reflect the properties of the specific relations assumed in RLOM-
models. The rules have the following general form:

(∗) Φ

Φ1 | . . . |Φn
where Φ1, . . . , Φn are finite non-empty sets of formulas, n ≥ 1, and Φ is a fi-
nite (possibly empty) set of formulas. Φ is called the premise of the rule, and
Φ1, . . . , Φn are called its conclusions. A rule of the form (∗) is said to be appli-
cable to a set X of formulas whenever Φ ⊆ X. As a result of an application of
a rule of the form (∗) to a set X, we obtain the sets (X \ Φ) ∪ Φi, i = 1, . . . , n.
As usual, any concrete rule will always be presented in a short form, that is we
will omit set brackets. We say that an object variable in a rule is new whenever
it appears in a conclusion of the rule and does not appear in its premise.

Figure 1 shows the decomposition rules of RLOM-dual tableau, for all object
symbols x, y ∈ OS and for all relational terms P,Q ∈ RT. Specific rules of
RLOM-dual tableau are given in Figure 2, for all object symbols x, y ∈ OS, for
every atomic relational term P , for every i ∈ {1, . . . , 5}, where z, t are any object
symbols.
A finite set of RLOM-formulas is said to be an RLOM-axiomatic set whenever it
includes either of the following subsets, for any x, y ∈ OS, P ∈ RT:

(Ax1) {x1′x}; (Ax2) {x1y}
(Ax3) {xPy, x−Py}; (Ax4) {cj d cj+1}, for any j ∈ {1, . . . , 4}
(Ax5) {x < y, y < x, x1′y}.

A finite set of RLOM-formulas {ϕ1, . . . , ϕk} is said to be an RLOM-set whenever for
every RLOM-modelM and for every valuation v inM there exists i ∈ {1, . . . , k}

such that M, v |= ϕi. A rule
Φ

Φ1 | . . . |Φn
, n ≥ 1, is RLOM-correct whenever for

every finite set X of RLOM-formulas the following holds: X ∪Φ is an RLOM-set if
and only if X ∪ Φi is an RLOM-set for every i ∈ {1, . . . , n}.
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(∪)
x(P ∪Q)y

xPy, xQy
(−∪)

x−(P ∪Q)y

x−Py |x−Qy

(∩)
x(P ∩Q)y

xPy |xQy (−∩)
x−(P ∩Q)y

x−Py, x−Qy

(−)
x−−Py
xPy

(−1)
xP−1y

yPx
(−−1)

x−P−1y

y−Px

(; )
x(P ;Q)y

xPz, x(P ;Q)y | zQy, x(P ;Q)y
z is any object symbol

(−; )
x−(P ;Q)y

x−Pw,w−Qy w is a new object variable

Fig. 1. Decomposition rules

(1′1)
xPy

xPz, xPy | y1′z, xPy
(1′2)

xPy

x1′z, xPy | zPy, xPy

(Irref<)
x < x

(Tran<)
x < y

x < y, x < z|x < y, z < y

(Ci1)
xΨiy | x−Ψiy

(Ci2)
xΨiy

xΨiy, x1′ci

(Ci3)
x−Ψiy

x−Ψiy, x−1′ci
(D1)

x < y

x d y, x < y

(D2)
x1′y

z dx, x1′y|z d y, x1′y
(D3)

x < y

z dx, x < y|t d y, x < y|z < t, x < y

Fig. 2. Specific rules
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Due to the semantics we obtain the following:

Proposition 6.

1. The decomposition rules are RLOM-correct.
2. The specific rules are RLOM-correct.
3. The axiomatic sets are RLOM-sets.

Proof. By way of example we prove correctness of the rule (D3). It is easy to
see that for every set X of RLOM-formulas, if X ∪ {x < y} is an RLOM-set,
then X ∪ {zdx, x < y} , X ∪ {wdy, x < y}, and X ∪ {z < w, x < y} are
RLOM-sets as well. For the other direction, assume that X ∪ {zdx, x < y} ,
X ∪ {wdy, x < y}, and X ∪ {z < w, x < y} are RLOM-sets. Suppose X ∪ {x < y}
is not an RLOM-set. Then there exist an RLOM-model M and a valuation v in
M such that for every ϕ ∈ X, M, v 6|= ϕ and M, v 6|= x < y. Therefore,
(v(x), v(y)) 6∈ m(<). On the other hand, by the assumption, (v(z), v(x)) ∈ m(d),
(v(w), v(y)) ∈ m(d), and (v(z), v(w)) ∈ m(<). Thus, by the condition (iv) of
RLOM-models, (v(x), v(y)) ∈ m(<), a contradiction.

The proof of correctness of the remaining rules are similar. ut

An RLOM-proof tree for xPy is a tree with the following properties:

– the formula xPy is at the root of this tree;
– each node except the root is obtained by an application of an RLOM-rule to

its predecessor node;
– a node does not have successors whenever it is an RLOM-axiomatic set.

Remark 3. Due to the forms of the rules for atomic formulas, if a node of an
RLOM-proof tree contains an RLOM-formula xPy or x−Py, for some atomic P ,
then all of its successors contain this formula as well.

A branch of an RLOM-proof tree is said to be closed whenever it contains a node
with an RLOM-axiomatic set of formulas. A closed tree is an RLOM-proof tree such
that all of its branches are closed. A formula xPy is RLOM-provable whenever
there is a closed proof tree for xPy, which is then referred to as an RLOM-proof
of xPy.

By Proposition 6, we obtain the soundness of RLOM-dual tableau:

Theorem 2 (Soundness of RLOM). Let ϕ be an RLOM-formula. If ϕ is RLOM-
provable, then it is RLOM-valid.

Since RLOM-validity implies RL∗OM-validity, we obtain the following:

Corollary 1. If ϕ is RLOM-provable, then it is RL∗OM-valid.
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As usual in the proof theory a concept of completeness of a non-closed proof
tree is needed. Intuitively, completeness of a non-closed tree means that all the
rules that can be applied have been applied. By abusing the notation, for any
branch b and for any set of formulas X, by X ∈ b (resp. X 6∈ b) we mean that
every formula from X belongs to b (resp. does not belong to b).

A branch b of a proof tree is said to be complete whenever for all x, y ∈ OS, for
all P,Q ∈ RT, and for every i ∈ {1, . . . , 5} it satisfies the following completion
conditions:

Cpl(∪) (resp. Cpl(−∩)) If x(P ∪ Q)y ∈ b (resp. x−(P ∩ Q)y ∈ b), then both
xPy ∈ b and xQy ∈ b (resp. x−Py ∈ b and x−Qy ∈ b);
Cpl(∩) (resp. Cpl(−∪)) If x(P ∩ Q)y ∈ b (resp. x−(P ∪ Q)y ∈ b), then either
xPy ∈ b or xQy ∈ b (resp. either x−Py ∈ b or x−Qy ∈ b);
Cpl(−) If x(−−P )y ∈ b, then xPy ∈ b;
Cpl(−1) If xP−1y ∈ b, then yPx ∈ b;
Cpl(−−1) If x−P−1y ∈ b, then y−Px ∈ b;
Cpl(;) If x(P ;Q)y ∈ b, then for every object symbol z, either xPz ∈ b or zQy ∈ b;
Cpl(−;) If x−(P ;Q)y ∈ b, then for some object variable w, both x−Pw ∈ b
and w−Qy ∈ b;
Cpl(1′1) If xPy ∈ b, for some atomic relational term P , then for every object
symbol z, either xRz ∈ b or y1′z ∈ b;
Cpl(1′2) If xPy ∈ b, for some atomic relational term P , then for every object
symbol z, either x1′z ∈ b or zPy ∈ b;
Cpl(Ci1) Either xΨiy ∈ b or x−Ψiy ∈ b;
Cpl(Ci2) If xΨiy ∈ b, then x1′ci ∈ b;
Cpl(Ci3) If x−Ψiy ∈ b, then x−1′ci ∈ b.
Cpl(Irref<) For every object symbol x, x < x ∈ b;
Cpl(Tran<) If x < y ∈ b, then for every object symbol z, either x < z ∈ b or
z < y ∈ b;
Cpl(D1) If x < y ∈ b, then x d y ∈ b;
Cpl(D2) If x1′y ∈ b, then for every object symbol z, either z dx ∈ b or z d y ∈ b;
Cpl(D3) If x < y ∈ b, then for all object symbols z and t, either z dx ∈ b or
t d y ∈ b or z < t ∈ b.

An RLOM-proof tree is said to be complete whenever all of its branches are
complete. A complete non-closed branch is said to be open.

As we said in the introduction, there is a standard and intuitively simple way of
proving completeness. Thus, given a tree of a non-provable formula, we construct
a model by means of syntactic resources of the tree. Then, we show that the
model defined in this way falsifies a non-provable formula.

Let b be an open branch of an RLOM-proof tree. A branch structureMb is a pair
Mb = (U b,mb), such that:
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U b = OS;
mb(ci) = ci, for every i ∈ {1, . . . , 5};
mb(P ) = {(x, y) ∈ U b × U b : xPy 6∈ b}, for every P ∈ RA;
mb extends to all the compound relational terms as in RLOM-models.

Proposition 7 (Branch Model Property). A branch structureMb = (U b,mb)
determined by an open branch of an RLOM-proof tree is an RLOM-model.

Proof. We need to show that Mb satisfies conditions 1-9 of RLOM-models. The
conditions 1-5 and 9 can be proved in a standard way, as usual in relational dual
tableaux (see [14]). Now we prove that Mb satisfies the conditions 6-8.

For 6, note that by the completion condition Cpl(Irref<), x < x ∈ b for every
x ∈ U b. Thus (x, x) 6∈ mb(<) for every x ∈ U b, and hence mb(<) satisfies the
condition (Irref). Assume (x, y) ∈ mb(<) and (y, z) ∈ mb(<), that is x < y 6∈ b
and y < z 6∈ b. Suppose (x, z) 6∈ mb(<). Then x < z ∈ b and by the completion
condition Cpl(Tran<), x < y ∈ b or y < z ∈ b, a contradiction. Therefore
mb(<) satisfies the condition (Tran). Moreover, for all x, y ∈ U b, x < y 6∈ b or
y < x 6∈ b or x1′y 6∈ b, since otherwise b would be closed. Thus, (x, y) ∈ mb(<) or
(y, x) ∈ mb(<) or (x, y) ∈ mb(1′), therefore mb(<) satisfies the condition (Lin).

For 7, assume (x, y) ∈ mb(Ψi), that is xΨiy 6∈ b. By Cpl(Ci1), x−Ψiy ∈ b.
Then, by Cpl(Ci3), we have x−1′ci ∈ b. Thus, x1′ci 6∈ b, since otherwise b would
be closed. Therefore, (x,mb(ci)) ∈ mb(1′). Reciprocally, assume (x,mb(ci)) ∈
mb(1′), then x1′ci 6∈ b. Suppose (x, y) 6∈ mb(Ψi), that is xΨiy ∈ b. Then, by
Cpl(Ci2), x1′ci ∈ b, a contradiction.

For 8, conditions (i)-(iv) can be proved similarly by using, respectively, com-
pletion conditions Cpl(D1)-Cpl(D3). By way of example, we prove (ii) and (iv).
Note that since {ci d ci+1} is an RLOM-axiomatic set for every i ∈ {1, . . . , 4},
cidci+1 6∈ b. Thus, (ci, ci+1) ∈ mb(d), for every i ∈ {1, . . . , 4}. Hence, the con-
dition (ii) is satisfied. Now assume that (z, x) ∈ mb(d), (w, y) ∈ mb(d), and
(z, w) ∈ mb(<), which means that z dx 6∈ b, w d y 6∈ b, and z < w 6∈ b. Suppose,
(x, y) 6∈ mb(<), that is x < y ∈ b. Then, by Cpl(D3), either z dx ∈ b or w d y ∈ b
or z < w ∈ b, a contradiction. ut

Let vb be a valuation in Mb defined as vb(x) = x, for every x ∈ OS. Now we
prove the following:

Proposition 8 (Satisfaction in Branch Model Property). Let b be an open
branch of an R proof tree. Then for every RLOM-formula ϕ the following holds:

(∗) If Mb, vb |= ϕ, then ϕ 6∈ b.

Proof. The proof is by induction on the complexity of relational terms. For
atomic relational terms R, note that (∗) follows directly from the definition of
M. By way of example, we show that (∗) holds for terms of the form R;S, where
R,S are relational terms. AssumeMb, vb |= x(R;S)y, that is there exists z ∈ U b
such that (x, z) ∈ mb(R) and (z, y) ∈ mb(S). By the induction hypothesis we
obtain xRz 6∈ b and zSy 6∈ b. Suppose x(R;S)y ∈ b. By the completion condition
Cpl(;), for every z ∈ U b, either xRz ∈ b or zSy ∈ b, a contradiction. ut
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Given a branch structure Mb = (U b,mb), we define the quotient model Mb
q =

(U bq ,m
b
q) as follows:

U bq = {‖x‖ : x ∈ U b}, where ‖x‖ is an equivalence class of mb(1′) generated
by x;
mb
q(ci) = ‖ci‖, for every i ∈ {1, . . . , 5};

mb
q(P ) = {(‖x‖, ‖y‖)) ∈ U bq × U bq : (x, y) ∈ mb(R)}, for every P ∈ RA;

mb
q extends to all the compound relational terms as in RLOM-models.

Remark 4. Since mb(1′) is an equivalence relation satisfying the extensionality
property, the definition of mb

q(P ) is correct, that is, the following condition is
satisfied: If (x, y) ∈ mb(R) and (x, z), (y, t) ∈ mb(1′), then (z, t) ∈ mb(P ).

It is easy to see that mb
q(1
′) is the identity on U bq . Therefore we obtain the

following:

Proposition 9. Let b be an open branch of an RLOM-proof tree. The quotient
model Mb

q = (U bq ,m
b
q) is a standard RLOM-model.

Let vbq be a valuation in Mb
q such that vbq(x) = ‖x‖, for every x ∈ OS. Then the

following can be easily proved:

Proposition 10. Let b be an open branch of an RLOM-proof tree. Then for every
RLOM-formula ϕ the following holds: Mb, vb |= ϕ if and only if Mb

q, v
b
q |= ϕ.

The above propositions enable us to prove the completeness of a relational dual
tableau for RLOM.

Theorem 3 (Completeness of RLOM). Let ϕ be an RLOM-formula. If ϕ is
RL∗OM-valid, then it is RLOM-provable.

Proof. Assume ϕ is RL∗OM-valid. Suppose ϕ is not RLOM-provable, that is there
is no closed RLOM-proof tree for ϕ. Let b be an open branch of a complete RLOM-
proof tree for ϕ. Since ϕ ∈ b, by Proposition 8, the branch model Mb does not
satisfy ϕ. By Proposition 10, ϕ is not satisfied in the quotient modelMb

q by vbq.
Since Mb

q is a standard RLOM-model (by Proposition 9), ϕ is not RL∗OM-valid, a
contradiction. ut

By Theorems 2, 3, and Corollary 1 we obtain the following main theorem:

Theorem 4 (Soundness and Completeness of RLOM). Let ϕ be an RLOM-
formula. Then the following conditions are equivalent:

1. ϕ is RLOM-valid;
2. ϕ is RL∗OM-valid;
3. ϕ is RLOM-provable.

Finally, by the above and Theorem 1 we get:
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Theorem 5 (Soundness and Completeness of OM).
Let ϕ be an OM-formula. Then for all object variables x and y the following
conditions are equivalent:

1. ϕ is OM-valid;
2. xτ(ϕ)y is RLOM-provable.

Example
Consider OM-formula ϕ = ♦−→

d
p → �−→

d
p (axiom d2). The translation of ϕ to

the relational term is τ(ϕ) = −(d; (P ; 1)) ∪ −(d;−(P ; 1)), where τ ′(p) = P ,
for some relational variable P . Figure 3 presents a closed RLOM-proof tree for
xτ(ϕ)y which, by Theorem 5, proves OM-validity of ϕ. In each node of the tree,
we underline the formula to which a rule has been applied, and we indicate only
those formulas that are essential for the construction of the tree.

5 Entailment, model checking and verification of
satisfaction

The relational logic can be used to verify the entailment in the logic OM. The
method is based on the following fact. Let Q1, . . . , Qn, Q be binary relations on
a set U and let 1 = U ×U . It is known that Q1 = 1, . . . , Qn = 1 imply Q = 1 iff
(1;−(Q1 ∩ . . .∩Qn); 1)∪Q = 1. It follows that for every RLOM-modelM,M |=
xQ1y, . . . ,M |= xQny implyM |= xQy iffM |= x(1;−(Q1∩ . . .∩Qn); 1)∪Q)y
which means that entailment in RLOM can be expressed in its language. This
method can be used for verification of entailment in OM-logic. Namely, OM-
formulas ϕ1, . . . , ϕn imply an OM-formula ϕ iff x(1;−(τ(ϕ1)∩ . . .∩ τ(ϕn)); 1)∪
τ(ϕ))y is RLOM-valid, for all object variables x and y. This, in turn, is equivalent
to RLOM-provability of the formula x(1;−(τ(ϕ1) ∩ . . . ∩ τ(ϕn)); 1) ∪ τ(ϕ))y.

The relational logic can also be used for model checking in finite OM-models. Let
M = (U,m) be a fixed OM-model with a finite universe U and let ϕ be an OM-
formula. It is easy to prove that there exists an RLOM-model N = (U, n) with a
finite universe of the same cardinality as U such that for all object variables x
and y, the problem M |= ϕ is equivalent to the problem N |= xτ(ϕ)y. For the
latter, we consider an instance RLN ,ψ of the logic RLOM, where ψ denotes xτ(ϕ)y.
Its language provides a code of model N and formula ψ, and in its models the
syntactic elements of ψ are interpreted as in the model N . This coding leads
to a relational logic which has precisely one model. Therefore its proof system
enables us to verify the truth of ψ in model N .

The vocabulary of the logic RLN ,ψ consists of the following pairwise disjoint
sets: a countable infinite set of object variables; a finite set {ca : a ∈ U} ∪ C of
object constants such that constants ca uniquely name elements of model M in
such a way that if a 6= b, then ca 6= cb; a set {Q : Q is an atomic subterm of
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x−(d; (P ; 1)) ∪ −(d;−(P ; 1))y

?
(∪)

x−(d; (P ; 1))y, x−(d;−(P ; 1))y

?(−; )× 2 and (−), w1, w2 new variables

x−dw1, w1−(P ; 1)y, x−dw2, w2(P ; 1)y

?
(−; ), w3 new variable

x−dw1, w1−Pw3, w3−1y, x−dw2, w2(P ; 1)y

�����

PPPPPPq(; ) with w3

w31y, . . .
closed

x−dw1, w1−Pw3, x−dw2, w2Pw3, . . .

��
���

PPPPPq(1′2) with w1

w1Pw3, w1−Pw3, . . .
closed

x−dw1, x−dw2, w21′w1, . . .

���
��

PPPPPq(D2) with x

x−dw2, x dw2, . . . x−dw1, x dw1, . . .
closed closed

Fig. 3. An RLOM-proof of axiom d2
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τ(ϕ)} ∪ {1, 1′} of relational constants; and the set {−,∪,∩, ; ,−1 } of relational
operations. An RLN ,ψ-model is a pair N ′ = (U ′, n′), where

U ′ = U ;
n′(ca) = a, for any object constant ca;
n′(c) = n(c), for every c ∈ C;
n′(Q) = n(Q), for any atomic subterm Q of τ(ϕ);
n′(1), n′(1′) are defined as in RLOM-models;
n′ extends to all the compound terms as in RLOM-models.

A valuation in N ′ is a function v assigning object symbols to elements of U ′

such that v(c) = n′(c), for every object constant c. Observe that any valuation
v in model N ′ restricted to object variables and object constants from C is
a valuation in model N . Moreover, the above definition implies that for every
atomic subterm Q of τ(ϕ) and for all object variables x and y, N , v |= xQy
iff N ′, v |= xQy. Therefore, it is easy to prove that n′(τ(ϕ)) = n(τ(ϕ)). Since
the universe and the interpretation of all the syntactic elements of the RLN ,ψ-
language are fixed, such an RLN ,ψ-model N ′ is unique. Therefore, RLN ,ψ-validity
is equivalent to the truth in a single RLN ,ψ-model N ′, that is the following holds:

Proposition 11. Let N and ψ be as above. Then for every RLN ,ψ-formula ϑ,
the following statements are equivalent:

1. N |= ϑ;
2. ϑ is RLN ,ψ-valid.

In particular, for ϑ := ψ this theorem states that validity of ψ in RLN ,ψ-logic is
equivalent to the truth of ψ in model N . Consequently, it is equivalent to the
truth of ϕ in M.

The relational dual tableau for RLN ,ψ consists of the rules and axiomatic sets
of RLOM-system adapted to the language of RLN ,ψ, and. moreover, the specific
rules and axiomatic sets presented in Figures 4 and 5, respectively. The rule
(−Qab) expresses a definition of a relation −Q, for any atomic subterm Q of
τ(ϕ). The rule (1′) expresses that the object variables represent elements of the
universe of modelM. The rule (a 6= b) says that different elements of modelM
are represented by different object constants. Axiomatic sets provide a code of
atomic subterms of τ(ϕ).

Theorem 6 (Soundness and Completeness of RLN ,ψ). Let N and ψ be as
above. Then for every RLN ,ψ-formula ϑ the following conditions are equivalent:

1. ϑ is RLN ,ψ-provable;
2. ϑ is RLN ,ψ-valid.

The proof of the above theorem can be found in [14]. Due to Theorem 6 and
Proposition 11 we obtain the following:
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For any atomic subterm Q of τ(ϕ) and for any object symbols x, y:

(−Qab)
x−Qy

x1′ca, x−Qy | y1′cb, x−Qy

for any a, b ∈ U such that (a, b) 6∈ n(Q)

(1′)
x−1′c1 | . . . |x−1′cn

where {c1, . . . , cn}, n ≥ 1, is the set of all new object constants

(a 6= b)
ca1′cb

for any a, b ∈ U such that a 6= b

Fig. 4. Specific rules of RLN ,ψ-dual tableau

Theorem 7 (Model Checking). Let M, ϕ, ψ, and N be as above. Then the
following statements are equivalent:

1. M |= ϕ;
2. ψ is RLN ,ψ-provable.

Similarly, we can use the relational system for the verification of satisfaction in
a fixed finite OM-model. Let M = (U,m) be a finite OM-model, let a be an
element of U and let ϕ be an OM-formula. It can be proved that there exist an
RLOM-model N = (U, n) with the same universe as inM and a valuation va in N
such that va(x) = a, and M, a |= ϕ iff N , va |= xτ(ϕ)y. A proof of this fact can
be found in [14]. Then for all b ∈ U , the problem ‘M, a |= ϕ?’ is equivalent to
the problem ‘(a, b) ∈ n(τ(ϕ))?’. In order to obtain the relational formalization
of the latter we use the logic RLN ,ψ defined above, where ψ denotes xτ(ϕ)y. The
following is proved in [14]:

Proposition 12. Let M, ϕ, and a be as above. Then for every b ∈ U , the
following statements are equivalent:

1. M, a |= ϕ;
2. (a, b) ∈ n(τ(ϕ));
3. caτ(ϕ)cb is RLN ,ψ-valid.

By the above proposition and Theorem 6 we obtain the following:

Theorem 8 (Satisfaction). Let M, ϕ, and a be as above. Then for every
b ∈ U , the following statements are equivalent:

1. M, a |= ϕ;
2. caτ(ϕ)cb is RLN ,ψ-provable.
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For every atomic subterm Q of τ(ϕ) and for any a, b ∈ U :

{caQcb}, if (a, b) ∈ n(Q);

{ca−Qcb}, if (a, b) 6∈ n(Q).

Fig. 5. RLN ,ψ-axiomatic sets

6 Conclusions and future work

In this paper, we have introduced a relational proof system in the style of dual
tableaux for the relational logic associated with the multimodal propositional
logic for order of magnitude qualitative reasoning OM. We have proved its sound-
ness and completeness. Moreover, we have shown how this proof system can be
used for verification of validity, verification of entailment, model checking, and
verification of satisfaction in finite models.

The goal for the future is to study the decidability of the logic OM. In the
case of positive answer it is natural to look for a decision procedure for the logic
OM based on relational dual tableau.
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14. Golińska-Pilarek, J., and Or lowska, E., Dual Tableaux: Foundations, Method-
ology, Case Studies. A draft of the book 2009.

15. Golińska-Pilarek, J., Mora, A. and Muñoz-Velasco, E., An ATP of a Rela-
tional Proof System for Order of Magnitude Reasoning with Negligibility, Non-
Closeness and Distance. Lecture Notes in Artificial Intelligence Vol. 5351, pp.
128-139. Springer, 2008.
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