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Abstract. We introduce an Automatic Theorem Prover (ATP) of a dual
tableau system for a relational logic for order of magnitude qualitative
reasoning, which allows us to deal with relations such as negligibility,
non-closeness and distance. Dual tableau systems are validity checkers
that can serve as a tool for verification of a variety of tasks in order of
magnitude reasoning, such as the use of qualitative sum of some classes of
numbers. In the design of our ATP, we have introduced some heuristics,
such as the so called phantom variables, which improve the efficiency of
the selection of variables used un the proof.

1 Introduction

Qualitative reasoning (QR) is the area of AI which provides an intermediate level
between discrete and continuous models in order to develop representations for
continuous aspects of the world, such as space, time, and quantity, without
the kind of precise quantitative information needed by conventional analysis
techniques [20].

A form of QR is to manage numerical data in terms of orders of magnitude,
that is, to stratify values according to some notion of scale [7, 14, 16, 19]. Two
approaches to order of magnitude reasoning have been identified in [20]: absolute
order of magnitude, which is represented by a partition of the real line R where
each element of R belongs to a qualitative class and relative order of magnitude,
introducing a family of binary order of magnitude relations which establish dif-
ferent comparison relations in R (e.g., comparability, negligibility, and closeness).
In general, both models need to be combined to capture the relevant information.

The introduction of the logic formalism in QR tries to solve the problem about
the soundness of the reasoning supported by the formalism and to give some
? Partially supported by Spanish projects TIN2006-15455-C03-01 and P6-FQM-02049.
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answers about the efficiency of using that. Several logics have been developed in
different contexts, e.g., spatial and temporal reasoning [1,17,21]. In particular,
logics dealing with order of magnitude reasoning have been developed in [3–5]
by combining the absolute and relative approaches, that is, by defining different
qualitative relations using the intervals provided by a specific absolute order of
magnitude model.

In this paper, we focus our attention on the multimodal propositional logic
L(OM)NCD (from now on, OM for short) presented in [3], which introduces a
sound and complete axiom system to deal with relations such as negligibility,
non-closeness and distance.

We introduce an ATP for a relational proof system in the style of dual
tableaux for the relational logic associated with OM, given in [10]. This system
can be used as a tool for verification of a variety of tasks in order of magnitude
reasoning, such as the use of qualitative sum of some classes of numbers. We
emphasize, that the interaction between the theoretical study and the imple-
mentation of the ATP has contributed in a new style of proving the formulas by
using deduction natural.

Our relational system, is based on the Rasiowa-Sikorski system for the first-
order logic [18] extended to the classical relational logic originated in [15], follow-
ing the ideas presented in [11]. Another approach to relational logics for order
of magnitude reasoning has been given in [6].

An implementation of the proof system for the classical relational logic is
described in [8]. In [9] an implementation of translation procedures from non-
classical logics to relational logic is presented. Moreover, in [2], there is an im-
plementation of the system presented in [6].

The paper is organized as follows: In Section 2, we give a short presentation of
the syntax, semantics, and the axiomatization of the logic OM, for more details
see [3]. In Section 3, we give a survey of the relational logic appropriate for OM
and its dual tableau system, presented in [10]. In Section 4, we show the details
about the ATP with some examples and, finally, in Section 5, some conclusions
and prospects future work are commented.

2 The multimodal logic OM

In this section, we summarize the logic OM introduced in [3]. We consider a
strict linearly ordered set (S, <) 3 divided into seven equivalence classes using
five landmarks chosen depending on the context [20]. The cases with a different
number of classes could be treated similarly.

The system corresponds to the following schematic representation, where
ci ∈ R, being i ∈ {1, 2, 3, 4, 5} such that cj < cj+1, for all j ∈ {1, 2, 3, 4}:

3 For practical purposes, this set could be the real line.



The labels correspond, respectively, to the qualitative classes “negative large”,
“negative medium”, “negative small”, “zero”, “positive small”, “positive medium”,
and “positive large”.

The concepts of order of magnitude, non-closeness, distance and negligibility we
consider in this paper introduce the ‘relative part’ of the approach, which builds
directly on the ‘absolute part’ just presented.
First of all, we define the relation

−→
dα to give the intuitive meaning of a constant

distance, called α. Let (S, <) be a strict linearly ordered set which contains the
constants ci, for i ∈ {1, 2, 3, 4, 5} as defined above. Given n ∈ N, we define

−→
dα as

a relation on S such that, for every x, y, z, x′, y′ ∈ S the following hold:

(i) If x
−→
dα y, then x < y (ii) cj

−→
dα cj+1, for j ∈ {1, 2, 3, 4}

(iii) If x
−→
dα y and x

−→
dα z, then y = z (iv) If x

−→
dα y, x′

−→
dα y

′ and x < x′ then y < y′

In the definition above, we assume for simplicity that every two consecutive
constants are at the same distance, called α. This choice arises from the idea
of taking α as the basic pattern for measuring. It could be easily generalized
by assuming that the distance between two consecutive constants should be a
multiple of α.
Now we define the remaining relations on S. For every x, y ∈ S we define: xomy
if and only if x, y ∈ Eq, where Eq denotes a qualitative class, that is, an element
in the set {nl, nm, ns,c0,ps, pm, pl}. Analogously, we define: xomy whenever
x, y do not belong to the same class. The relations of non-closeness −→nc and
distance −→d , are defined as follows:

x
−→
nc y if and only if either xomy and x < y

or there exists z ∈ S such that z < y and x
−→
dαz

x
−→
d y if and only if there exist z, z′ ∈ S such that z < z′ < y and x

−→
dα

2z.

Notice that
−→
dα

2 =
−→
dα ◦

−→
dα, being ◦ the usual composition of relations.

If we assume that S is a set of real numbers, the intuitive interpretation of non-
closeness relation is that x is non-close to y if, and only if, either x and y have
not the same order of magnitude, or y is obtained from x by adding a medium or
large number. On the other hand, x is distant from y if and only if y is obtained
from x by adding large number.

In order to define the negligibility relation, note that it seems to be reasonable
that if x 6= c3 is neglibible with respect to y, then x is distant to y.
Now, we can give the following definition for all x, y ∈ S: x is negligible with
respect to y (denoted by x

−→
Ny) if and only if either of the following holds:

(i) x = c3 (ii) x ∈ ns ∪ ps and, either y−→d c2 or c4
−→
d y.

Note that item (i) above corresponds to the intuitive idea that zero is negligible
with respect to any real number and item (ii) corresponds to the intuitive idea
that a sufficiently small number is negligible with respect to any sufficiently large



number, independently of the sign of these numbers. This definition ensures that
if x 6= c3 and x

−→
Ny, then either y−→d x or x−→d y.

The relations of non-closeness, distance and negligibility can defined in terms of
<,
−→
dα, their inverses, and the constants ci, for i ∈ {1, 2, 3, 4, 5}, for this reason,

we only consider in our logic, connectives associated to these relations.

The syntax and semantics of OM are defined as usual in modal logics. We consider
modal connectives

−→
� ,�−→

dα
and
←−
� ,�←−

dα
associated to the accessibility relations

<,
−→
dα and their inverses, respectively. The intuitive meaning of the constants ci

is that ci is true only in the constant ci. The sound and complete axiom system
of OM consists of all tautologies of classical propositional logic together with the
following axiom schemata, being i ∈ {1, . . . , 5} and j ∈ {1, . . . , 4}:

K1
−→
�(A→ B)→ (

−→
�A→

−→
�B) K2 A→

−→
�
←−
♦A K3

−→
�A→

−→
�
−→
�A

K4
(−→
�(A ∨ B) ∧

−→
�(
−→
�A ∨ B) ∧

−→
�(A ∨

−→
�B)

)
→ (
−→
�A ∨

−→
�B)

C1
←−
♦ ci ∨ ci ∨

−→
♦ ci C2 ci → (

←−
�¬ci ∧

−→
�¬ci) d1

−→
�A→ �−→

dα
A d2 ♦−→

dα
A→ �−→

dα
A

d3 (♦−→
dα
A ∧
−→
♦ ♦−→

dα
B)→

−→
♦ (A ∧

−→
♦B) d4 cj → ♦−→

dα
cj+1

d5 �−→
dα

(A→ B)→ (�−→
dα
A→ �−→

dα
B) d6 A→ �−→

dα
♦←−
dα

A

The corresponding mirror images of K1–K4 and d1–d6 are also considered as
axioms. We also consider the rules of inference as usual in modal logic.

3 Relational formalization of OM

This section summarizes the more important concepts about relational logics
needed to obtain the relational formalization of our logic, for more details, see [10,
11,15].
The language of the logic RLOM appropriate for expressing OM-formulas consists
of the following pairwise disjoint sets of symbols:

OV = {x, y, z, . . . } - a countably infinite set of object variables;
OC = {ci : i ∈ {1, . . . , 5}} - the set of object constants;
RV = {P,Q, . . . } - a countably infinite set of binary relational variables;
RC = {1, 1′, <, dα} ∪ {Ψi : i ∈ {1, . . . , 5}} - the set of relational constants 4;
OP = {−,∪,∩, ; ,−1} - the set of relational operation symbols.

The set of relational terms RT is the smallest set of expressions including the
set RV ∪ RC of atomic terms and closed with respect to the operation symbols
from OP. The set of RLOM-formulas (or, simply formulas if it is clear from the
context), consists of expressions of the form xPy where x, y ∈ OS = OV ∪ OC
and P ∈ RT.
The semantics of RLOM can be given as usual in relational logic, by using the
previous definitions of our accessibility relations and constants. The respective
semantics of OM and RLOM give us the concepts of OM-validity and RLOM-
validity. Now, we define a translation function in order to have a relationship
4 1 and 1′ represent, respectively, the universal and equality relations.



between these concepts. The translation of OM-formulas into relational terms
starts with a one-to-one assignment of relational variables to the propositional
variables, called τ ′. Then the translation τ of OM-formulas is defined inductively
as follows, being ; and − the composition and opposite of relations, respectively:
τ(p) = τ ′(p); 1, for every propositional variable p.
τ(ci) = Ψi; 1, for every i ∈ {1, . . . , 5}
τ extends to all compound OM-formulas as follows 5:

τ(¬ϕ) = −τ(ϕ) τ(ϕ ∨ ψ) = τ(ϕ) ∪ τ(ψ) τ(ϕ ∧ ψ) = τ(ϕ) ∩ τ(ψ)
τ(ϕ→ ψ) = −τ(ϕ) ∪ t(ψ) τ(

−→
�ϕ) = −(<;−τ(ϕ)) τ(�−→

dα
ϕ) = −(dα;−τ(ϕ))

The following theorem shows the semantical relationship between OM and RLOM:

Theorem 1. For every OM-formula ϕ and for all object variables x and y, ϕ
is OM-valid iff xτ(ϕ)y is RLOM-valid.

Dual tableau systems are determined by axiomatic sets of formulas and rules
which apply to finite sets of formulas. The axiomatic sets take the place of
axioms. There are two groups of rules: the decomposition rules which reflect
definitions of the standard relational operations and the specific rules which
reflect the properties of the specific relations assumed in RLOM-models. The
rules are of the form Φ

Φ1 | ... |Φn , where Φ1, . . . , Φn are finite non-empty sets of
formulas, n ≥ 1, and Φ is a finite (possibly empty) set of formulas. Φ is called
the premise of the rule, and Φ1, . . . , Φn are called its conclusions. A rule is said
to be applicable to a set X of formulas whenever Φ ⊆ X. As a result of an
application of a rule to a set X, we obtain the sets (X \ Φ) ∪ Φi, i = 1, . . . , n.

We say that an object variable in a rule is new whenever it appears in a
conclusion of the rule and does not appear in its premise.

Decomposition rules of RLOM-dual tableau have the following forms, for all object
symbols x, y ∈ OS and for all relational terms P,Q ∈ RT, where z is any object
symbol and w is a new object variable:

(∪)
x(P ∪Q)y

xPy, xQy
(−∪)

x−(P ∪Q)y

x−Py | x−Qy
(∩)

x(P ∩Q)y

xPy | xQy
(−∩)

x−(P ∩Q)y

x−Py, x−Qy

(−)
x−−Py
xPy

(−1)
xP−1y

yPx
(−−1)

x−P−1y

y−Px

(; )
x(P ;Q)y

xPz, x(P ;Q)y | zQy, x(P ;Q)y
z (−; )

x−(P ;Q)y

x−Pw,w−Qy

Specific rules of RLOM-dual tableau have the following forms, for all object sym-
bols x, y ∈ OS, for every atomic relational term R, and for every i ∈ {1, . . . , 5},
where z, v are any object symbols:

5 The translation of the inverse formulas is trivial.



(1′1)
xRy

xPz, xPy | y1′z, xPy
(1′2)

xRy

x1′z, xPy | zPy, xPy

(Irref<)
x < x

(Tran<)
x < y

x < y, x < z|x < y, z < y

(Ci1)
xΨiy | x−Ψiy

(Ci2)
xΨiy

xΨiy, x1′ci
(Ci3)

x−Ψiy
x−Ψiy, x−1′ci

(D1)
x < y

xdαy, x < y
(D2)

x1′y

zdαx, x1′y|zdαy, x1′y
(D3)

x < y

zdαx, x < y|vdαy, x < y|z < v, x < y

A finite set of RLOM-formulas is said to be an RLOM-axiomatic set whenever it
includes either of the following subsets, for any x, y ∈ OS, R ∈ RT, i ∈ {1, . . . , 4}:
(Ax1) {x1′x}, (Ax2) {x1y}, (Ax3) {xRy, x−Ry}, (Ax4) {cidαci+1}, (Ax5) {x < y, y < x, x1′y}.

An RLOM-proof tree for a formula xPy is a tree with the following properties:

– xPy is at the root of this tree;
– each node except the root is obtained by an application of an RLOM-rule to

its predecessor node;
– a node does not have successors whenever it is an RLOM-axiomatic set.

Due to the forms of the rules for atomic formulas, if a node of an RLOM-proof
tree contains an RLOM-formula xPy or x−Py, for some atomic P , then all of its
successors contain this formula as well.
A branch of an RLOM-proof tree is said to be closed whenever it contains a node
with an RLOM-axiomatic set of formulas. A closed tree is an RLOM-proof tree such
that all of its branches are closed. A formula xPy is RLOM-provable whenever
there is a closed proof tree for xPy, which is then referred to as an RLOM-proof
of xPy.
The following main result ensures the correspondence between OM-validity and
RLOM-provability.

Theorem 2 (Soundness and Completeness).
Let ϕ be an OM-formula. Then for all object variables x and y, ϕ is OM-valid
iff xτ(ϕ)y is RLOM-provable.

4 The ATP

We show in broad strokes the implementation realized in Prolog 6 of an ATP
for obtained an automatic Rasiowa-Sikorski proof system associated to the rela-
tional translation RLOM of the multimodal logic of qualitative order of magnitude
reasoning OM.
We have represented the formula xmRiyn as the Prolog fact: rel([1], Ri, xm, yn).
Node [1] denotes the root of the proof tree that the Prolog tool develops when
it applies the rules of the RLOM.
6 See http://www.matap.uma.es/˜ emilio/omr.zip, for a revision of the ATP.



Example 1. The union of expressions xRy∪x−(
−→
dα;−(a; 1))y is translated to the

following facts in Prolog:
rel([1],r,x,y).
rel([1],opposite(comp(dalpha,opposite(comp(a,universal)))),x,y).

Prolog knows the leaf in which it must apply any rule, because the Prolog predi-
cate leaves([[1, . . . , 1], . . . , [1, . . . , k]]) stores the leaves that the tool must close.
Prolog will try to satisfy the relations in the leaf nodes. If the tool can close all
the leaves in the tree, then formula is true.

The rules in RLOM have the following general form:
Φ

Φ1| . . . |Φn
where Φ1, . . . , Φn

are non-empty set of formula and Φ is a finite (possibly finite) set of formula.
Let X a set of formulas, and if Φ ⊆ X then, as said before, the system trans-
form Φ in X \ Φ ∪ Φi, i = 1 . . . , n. That’s to say , if X is represented in the
leaf [i1, i2, . . . , ik], the system divides the the leaf in n new leaves, labeled as
[i1, i2, . . . , ik, ik+1], . . . [i1, i2, . . . , ik, ik+n] and copies (X \ Φ) ∪ Φ1 to the node
[i1, i2, . . . , ik, ik+1], and copies X \ Φ ∪ Φ2 to the node [i1, i2, . . . , ik, ik+2] (see
Figure 1).

(Before) [1]

[. . . ]

[i1,i2,. . . ,ik]

X

. . .

. . .

[1]

[. . . ]

[i1,i2,. . . ,ik]

[i1,i2,. . . ,ik,ik+1]

X \ Φ ∪ Φ1

[i1,i2,. . . ,ik,ik+2]

X \ Φ ∪ Φ2

. . .

. . .

. . .

(After)

Fig. 1. Division of a leaf of the tree.

We have translated the rules for RLOM to clauses in Prolog. For example, for the
union rule (∪):

uni(Leaf):-

rel(Leaf,uni(R,S),X,Y),

new_rule_deduced([rel(Leaf,R,X,Y),rel(Leaf,S,X,Y)]),

\+rule_used(Leaf,uni,[rel(uni(R,S),X,Y)]),

write_rule(’Union’, [rel(Leaf,uni(R,S),X,Y)],

[rel(Leaf,R,X,Y), rel(Leaf,S,X,Y)]),

add_list_of_relations([rel(Leaf,R,X,Y),rel(Leaf,S,X,Y)]).

Any rule of RLOM in Prolog checks the preconditions x(R ∪ S)y in which the
rule is applicable. If the rule fulfils these conditions, we control if the relations



deduced by the rule are new (new rule deduced predicate) and the rule has
not previously applied (rule used predicate), then we write the rule in the
display and store the rule applied. Finally, we apply the rule, that normally
adds some facts to the adequate leaf.
The (D2) rule divides the node labeled Leaf in two new leaves and copy all
formulas of Leaf to the two new ones, by using the predicate divideInLeaves.
The predicate copyToLeaves adds zdαx to the first leaf and adds zdαy to the
second leaf.

d2(Leaf):-

rel(Leaf,equal,X,Y),

\+rule_used(Leaf,d2,[rel(equal,X,Y)]),

any_variable(’d2 (equal) ’,Leaf,[rel(Leaf,equal,X,Y)],Z),!,

divideInLeaves(Leaf,2),

copyToLeaves(Leaf,1,[[rel(Leaf,dalpha,Z,X)]

,[rel(Leaf,dalpha,Z,Y)]],[],ListNewLeaves),

remove_leaf_after_divide(Leaf),

write_and_rule(’d2 (equal) ’, [ rel(equal,X,Z)],

[[ rel(Leaf,dalpha,Z,X)],[rel(Leaf,dalpha,Z,Y)]]

,ListNewLeaves),!.

Now, we show the engine of the ATP. The main predicate in the inference engine
is run engine that examine the first leaf of the tree that the proof system needs
to check and tries to apply the rules to the relations that contains this leaf. The
engine tries first to apply the rules that no divide the leaves and then the rules
that divide the leaves.

new_run_engine:-

leaves([FirstLeaf|Leaves]),

new_apply_rules_in_leaf(FirstLeaf),

new_run_engine,!.

new_run_engine:-

write(’ OK. There are no Leaves in the proof tree. ’),

write(’ VALID. ’),!.

new_apply_rules_in_leaf(FirstLeaf):-

new_one_rule_no_divide(FirstLeaf),!.

new_apply_rules_in_leaf(FirstLeaf):-

new_one_rule_divide(FirstLeaf),!.

new_one_rule_no_divide(FirstLeaf):-

uni(FirstLeaf)-> axiomatic_set;

notinter(FirstLeaf)-> axiomatic_set;

...

new_one_rule_divide(FirstLeaf):-

notuni(FirstLeaf)-> axiomatic_set;

d2(FirstLeaf)-> axiomatic_set;

...

While the tree has opened leaves, new run engine is recursively called. If all
leaves are closed in the proof system, then system informs to the user that the



proof is finished and it is possible to trace (used rules predicate) what rules
have been used in the proof process. The engine of the ATP use the mechanism
of pattern machine of Prolog to detect if exists, in a leaf of the tree, an axiomatic
set, then deletes the corresponding leaf and informs to the user.

axiomatic_set:-

rel(NumLeaf,equal,X,X),

nl,

remove_leaf(NumLeaf,[rel(NumLeaf,equal,X,X)]),!.

.....

In this point, we introduce an important idea which improves the efficiency
of our system. Some rules of the logic need to introduce any object symbol,
that is, either a constant or any of the previously used variables. The ATP
delays the substitution by any of the possible object symbols and introduces
a phantom variable. The system replaces the phantom variable by any of the
possible objects, only when obtains an axiomatic set with this substitution and
then it closes the tree.

We emphasize that this mechanism avoids the process of selecting a possible
variable and checking the validity of the formula in this leaf with this variable. In
that case, it would be necessary to expand the leaf in a enormous sub-tree and,
if the formula could not be proved, to return to the previous leaf by selecting
another variable. The process would be repeated for all possible variables.

The phantom variables prune the search tree in a efficient way. The instan-
tiation of the phantom variable is delayed until the ATP is able to obtain an
axiomatic set. In this moment, the unification of the correct variable is done in
the tree and some sub-trees are closed.
In the following example, we outline how the ATP works and emphasize the use
of the phantom variables for detecting axiomatic sets in an automatic way.

Example 2. In this example, we execute the ATP to prove the axiom d2 of the
system OM. We represent it as follows:

rel([1],opp(comp(dalpha, comp(p, universal))),x,y).
rel([1],opp(comp(dalpha, opp(comp(p, universal)))), x, y).

This example is satisfied by the ATP with the Prolog predicate:

?tad(′axioms \ axiomd2.pl′,′ logaxiomd2.txt′).

The following report in logaxiomd2.txt file is returned:

------>Input file: axioms\axiomd2.pl

leaves([[1]]).

--->Opposite composition Rule

[rel([1],opp(comp(dalpha,comp(p,universal))),x,y)]

_______________________________________________________________________

[rel([1],opp(dalpha),x,z),rel([1],opp(comp(p,universal)),z,y)]

...



[rel([1],comp(p,universal),t,y)]

_________________________________________________________________________

rel([1,1],p,t,t1) | rel([1,2],universal,t1,y)

Found axiomatic set. Leaf: [1,2]

- Axiomatic set: [rel([1,2],universal,t1,y)]

- Deleted relations in Leaf: [1,2]

...

[rel([1,1,1,1,1,1,2,2],opp(p),z,u)]

_________________________________________________________________________

rel([1,1,1,1,1,1,2,2,1],equal,z,t8) | rel([1,1,1,1,1,1,2,2,2],opp(p),t8,u)

Substitute in all relations variable phantom:t8 by t

Substitute in all relations variable phantom:t1 by u

Found axiomatic set. Leaf: [1,1,1,1,1,1,2,2,2]

- Axiomatic set: [rel([1,1,1,1,1,1,2,2,2],opp(p),t8,u),

rel([1,1,1,1,1,1,2,2,2],p,t,t1)]

- Deleted relations in Leaf: [1,1,1,1,1,1,2,2,2]

....

[rel([1,1,1,1,1,1,2,2,1],equal,z,t)]

_________________________________________________________________________

rel([1,1,1,1,1,1,2,2,1,1],dalpha,t9,z)|rel([1,1,1,1,1,1,2,2,1,2],dalpha,t9,t)

Substitute in all relations variable phantom:t9 by x

Found axiomatic set. Leaf: [1,1,1,1,1,1,2,2,1,2]

- Axiomatic set: [rel([1,1,1,1,1,1,2,2,1,2],opp(dalpha),x,t),

rel([1,1,1,1,1,1,2,2,1,2],dalpha,t9,t)]

- Deleted relations in Leaf: [1,1,1,1,1,1,2,2,1,2]

Found axiomatic set. Leaf: [1,1,1,1,1,1,2,2,1,1]

- Axiomatic set: [rel([1,1,1,1,1,1,2,2,1,1],opp(dalpha),x,z),

rel([1,1,1,1,1,1,2,2,1,1],dalpha,x,z)]

- Deleted relations in Leaf: [1,1,1,1,1,1,2,2,1,1]

OK. There are no Leaves in the proof tree. VALID.

Notice that the substitution of the phantom variable t1 has been delayed until
the appearance of variable t8, because in this moment, the leaf can be closed by
replacing t1 and t8 by u and t, respectively. In this case, the last two leaves of
the tree are closed with this unification process.
Finally, we remark that the system has some abduction mechanism. It is capable
to give explanations about what rules have been used to prove a set of relations.
We have the predicate used rules that store knowledge about the reasoning
process of the inference engine. We give below a trace in inverse order of the
proof process:

used_rules([1,1,1,1,1,1,2,2,1],d2,[rel(equal,z,t)]).

used_rules([1,1,1,1,1,1,2,2],equality2,[rel(opp(p),z,u)]).

...

used_rules([1],notcomp,[rel(opp(comp(dalpha,comp(p,universal))),x,y)]).



5 Conclusions and future work

In this paper, we have implemented an ATP for the relational proof system in
the style of dual tableaux for the relational logic associated with the multimodal
propositional logic for order of magnitude qualitative reasoning OM. This system
can be used as a tool for verification of a variety of tasks in order of magnitude
reasoning, such as the use of qualitative sum of some classes of numbers.

Nowadays, we are working in a more intelligent engine for the ATP and
implementing a mechanism that selects what is the better rule by analyzing the
relations and the variables in the tree. Also, we are improving the use of phantom
variables to obtain an ATP more efficient.

The ATP works with depth-first search, at the moment. We are going to
programme a more intelligent engine for the ATP, that combines the depth-first
search with breadth-first search, depending on the analysis of the knowledge
obtained from the formulas.

The goal for the future is to generalize this implementation for different logics
(not only for order of magnitude reasoning). The idea is to develop an ATP
more general that receives as input the description of the logic: constants, rules,
constraints, etc. and renders the translation in a relational system. Moreover,
the ATP will be allowed to prove the validity of any set of formulas of this logic.

Other future works are related to the study of decidability of this logic and,
in the case of positive answer, to obtain decision procedures, by using some of
the ideas presented in this paper. Last, but not least, it is planned to extend our
ATP, in order to be used for model checking and verification of entailment.
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