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We present a relational proof system in the style of dual tableaux for the relational logic
associated with a multimodal propositional logic for order of magnitude qualitative reasoning
with a bidirectional relation of negligibility. We study soundness and completeness of the
proof system and we show how it can be used for verification of validity of formulas of the
logic.
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1. Introduction

The use of models to represent different scientific and engineering situations leads to
qualitative reasoning as a good possibility when the traditional numerical methods
are limited. Qualitative Reasoning (QR) provides an intermediate level between
discrete and continuous models. A form of QR is to manage numerical data in
terms of orders of magnitude (see, for example, [12, 14]). Two approaches to order
of magnitude reasoning have been identified in [15]: Absolute Order of Magnitude,
which is represented by a partition of the real line R, where each element of R
belongs to a qualitative class and Relative Order of Magnitude, introducing a
family of binary order of magnitude relations which establish different comparison
relations in R (e.g., comparability, negligibility and closeness). In general, both
models need to be combined to capture all the relevant information.

Several logics have been defined to use QR in different contexts, e.g. spatial and
temporal reasoning [1, 16]. In particular, logics dealing with order of magnitude
reasoning have been developed in [3, 4] by combining the absolute and relative
approaches, that is, defining different qualitative relations by using the intervals
provided by a specific absolute order of magnitude model.

In this paper, we focus our attention on the multimodal propositional logic
L(MQ)N presented in [3], which uses the absolute order of magnitude model with
the real line divided into seven intervals to define a binary relation of negligibility.
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This negligibility relation is bidirectional, that is it allows us to compare positive
and negative numbers. Moreover, this relation has good properties with respect to
the sum and product of real numbers, which is very useful in the applications (see,
for example [12]).

The main difference between our logic approach for order of magnitude reasoning
and the given one in [4] is the definition of negligibility and the division of the real
line into seven classes. These facts allows us to have more possible comparisons by
introducing the classes of medium numbers (for more details, see section 4 in [3].

It is well known that one of the main advantages in the use of the logic formal-
ism is the possibility of having automated deduction systems. For this reason, we
present a deduction system in the style of relational dual tableaux for the mul-
timodal logic considered in the paper, for which no other systems are known in
the literature. Relational dual tableaux are powerful tools for performing the four
major reasoning tasks: verification of validity, verification of entailment, model
checking, and verification of satisfaction. We prove that the system presented in
the paper enables us to verify validity of formulas of the logic in question.

In the construction of the system, we apply the method known for various non-
classical logics, (see e.g., [11]). Firstly, we construct a relational logic appropriate
for the multimodal logic L(MQ)N . Then, we define a validity preserving translation
from the language of L(MQ)N to the language of the relational logic. Finally, we
construct a complete and sound relational proof system for the relational logic
appropriate for L(MQ)N . The relational logic considered in this paper is based on
the classical relational logic of binary relations with relational constants 1 and 1′,
which provides a means for proving the identities valid in the class of full relation
algebras (see e.g., [8, 11]). The proof system developed in the paper is an extension
of the proof system for the classical relational logic. In constructing deduction rules
of the system, we follow the general principles of defining relational deduction rules.

The election of this method has many advantages (see [10]): a clear-cut method
of generating rules of the system from semantics, the resulting deduction system
well suited for automated deduction purposes, a standard and intuitively simple
way of proving completeness by constructing a counter-model for a non-provable
formula out of its non closed decomposition tree in a relational proof system and
an almost automatic way of transforming a complete relational proof system into
a complete Gentzen calculus system.

Another approach to relational logics for order of magnitude reasoning has been
presented in [5].

The existence of automated deduction systems gives the possibility of implemen-
tation. An implementation of a proof system for the classical relational logic can be
found at [6]. An implementation of translation procedures from non-classical logics
to relational logic is presented in [7]. Focusing our attention on logics for order of
magnitude reasoning, a theorem prover for the system introduced in [5] has been
given in [2].

The paper is organized as follows: In Section 2, we define the syntax, seman-
tics and the axiomatization of the logic L(MQ)N . In Section 3, we develop the
relational logic appropriate for L(MQ)N and a validity preserving translation for
it. In section 4, a sound and complete relational proof system is given. Finally, in
Section 5, some conclusions and future work are commented.
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2. The multimodal logic L(MQ)N

As we have said in the introduction, we are going to work with the logic L(MQ)N

presented in [3]. This logic uses an absolute order of magnitude model which con-
siders the real line R divided into seven equivalence classes using five landmarks,
where α, β are two positive real numbers (chosen depending on the context under
consideration) such that α <R β, being ≤R the usual order in R.

NL NM NS PS

0

PM PL

-b -a +a +b

The seven intervals are defined by NL = (−∞,−β), NM = [−β,−α), NS = [−α, 0),
[0] = {0}, PS = (0, α], PM = (α, β] and PL = (β,+∞).

The labels correspond to “negative large”, “negative medium”, “negative small”,
“zero”, “positive small”, “positive medium”, and “positive large”, respectively.
From this partition of the real line, we define the following negligibility relation.
Given α, β ∈ R, such that 0 <R α <R β, we say that x is negligible with respect to
y, in symbols xNR y, iff, we have one of the following possibilities:

(i) x = 0 (ii) x ∈ NS ∪ PS and y ∈ NL ∪ PL

Note that item (i) above corresponds to the intuitive idea that 0 is negligible with
respect to any real number and item (ii) corresponds to the intuitive idea that
a number sufficiently small is negligible with respect to any number sufficiently
large, independently of the sign of these numbers. For this reason, we say that our
negligibility relation is bidirectional.

Using the idea of the previous definition, we construct a logic where the five
landmarks −β, −α, 0, α, and β are replaced, respectively, by the following elements
of its language: c1, c2, c3, c4, and c5, while the negligibility relation N is defined
as an accessibility relation obtained from these landmarks.

2.1. Syntax of L(MQ)N

We consider the language of L(MQ)N as a multimodal propositional language with
a family of modal operators determined by accessibility relations. Expressions of
the language are constructed with symbols from the following pairwise disjoint sets:

• V a set of propositional variables,
• C = {ci | i ∈ {1, . . . , 5}} a set of specific constants,

• {¬,∧,∨,→,
→
�,
←
�,�N ,�N} the set of propositional operations and the spe-

cific modal connectives,
where

→
� and �N represent, respectively, the modal connectives for accessibility

relations < and N and
←
�,�N are their inverses. 1

The set For of L(MQ)N -formulas is the smallest set satisfying the following con-
ditions:

(1) V ∪ C ⊆ For,

1As usual in modal logic, we use
→
♦ ,
←
♦ , ♦N , ♦N as abbreviations of ¬

→
� ¬, ¬

←
� ¬, ¬�N¬, and ¬�N¬,

respectively.
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(2) If ϕ,ψ ∈ For, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ,
→
� ϕ,

←
� ϕ, �Nϕ and

�Nϕ ∈ For.

2.2. Semantics of L(MQ)N

We define the basic concepts of the semantics of our logic.
An L(MQ)N -model is a tuple M = (U,<,N,m), where U is a non-empty set and
m is a meaning function satisfying the following conditions:

(1) m(p) ⊆ U for p ∈ V,
(2) < is a strict linear ordering on U , that is, for all s, s′, s′′ ∈ U the following
conditions are satisfied:

(Irref) s 6< s,
(Trans) if s < s′ and s′ < s′′, then s < s′′,
(Lin) s < s′ or s′ < s or s = s′,

(3) m(ci) ∈ U for every i ∈ {1, . . . , 5}, and m(ci) < m(ci+1) for every i ∈
{1, . . . , 4},
(4) N is a relation on U , defined by N = G1 ∪G2 ∪G3 ⊆ U × U , where:
G1 = {(s, s′) : s = m(c3)},
G2 = {(s, s′) : (λ or µ) and (γ or δ) and ζ},
G3 = {(s, s′) : (λ or µ) and (γ or δ) and η}, being λ := (m(c2) < s), µ :=
(s = m(c2)), γ := (s < m(c4)), δ := (s = m(c4)), ζ := (s′ < m(c1)) and
η := (m(c5) < s′).

Note that item (4) reflects semantically our definition of negligibility.

Let ϕ be an L(MQ)N -formula and let M = (U,<,N,m) be an L(MQ)N -model.
The satisfaction of ϕ inM by s ∈ U , ((M, s) |= ϕ for short), is defined as usual for
propositional connectives. The definition for the direct modal connectives is given
as follows:

• (M, s) |=
→
� ϕ iff for all s′ ∈ U , s < s′ implies (M, s′) |= ϕ,

• (M, s) |=
←
� ϕ iff for all s′ ∈ U , s′ < s implies (M, s′) |= ϕ,

• (M, s) |= �Nϕ iff for all s′ ∈ U , (s, s′) ∈ N implies (M, s′) |= ϕ,
• (M, s) |= �Nϕ iff for all s′ ∈ U , (s′, s) ∈ N implies (M, s′) |= ϕ.

We say that an L(MQ)N -formula ϕ is satisfiable if, and only if, there exist an
L(MQ)N -model M and s ∈ U such that (M, s) |= ϕ. An L(MQ)N -formula ϕ is
true in an L(MQ)N -model M = (U,m) whenever (M, s) |= ϕ for all s ∈ U . An
L(MQ)N -formula ϕ is L(MQ)N -valid, denoted by |= ϕ whenever it is true in all
L(MQ)N -models.

2.3. Axiom system for L(MQ)N

The axiom system for L(MQ)N consists of all the tautologies of classical proposi-
tional logic together with the following axiom schemata:

Axiom schemata for modal connectives:

K1
→
� (ϕ→ ψ)→ (

→
� ϕ→

→
� ψ) K2 ϕ→

→
�
←
♦ ϕ K3

→
� ϕ→

→
�
→
� ϕ

K4 (
→
� (ϕ ∨ ψ)∧

→
� (
→
� ϕ ∨ ψ)∧

→
� (ϕ∨

→
� ψ))→ (

→
� ϕ∨

→
� ψ)

Axiom schemata for constants: (being i ∈ {1, . . . , 5} and j ∈ {1, . . . , 4})
C1

←
♦ ci ∨ ci∨

→
♦ ci C2 ci → (

←
� ¬ci∧

→
� ¬ci) C3 cj →

→
♦ cj+1

Axiom schemata for negligibility connectives:
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N1 �N (ϕ→ ψ)→ (�Nϕ→ �Nψ) N2 ϕ→ �N ♦Nϕ

N3 (
←
� ϕ ∧ ϕ∧

→
� ϕ)→ �Nϕ N4 (

→
♦ c2∨

←
♦ c4)→ �N (ϕ ∧ ¬ϕ)

N5 c3 → (�Nϕ→ (
←
� ϕ ∧ ϕ∧

→
� ϕ)) N6 (¬c3 ∧ (c2 ∨ (

←
♦ c2∧

→
♦ c4) ∨ c4))→ �N (

→
♦ c1∨

←
♦ c5)

N7
(
¬c3 ∧ (c2 ∨ (

←
♦ c2∧

→
♦ c4) ∨ c4)

)
→

(
�Nϕ→ (

←
� (
→
♦ c1 → ϕ)∧

→
� (
←
♦ c5 → ϕ)

)
We also consider as axioms the corresponding mirror images of axioms K1-K4, and
axioms N1-N3. Moreover, we consider the following Rules of Inference:
(MP) Modus Ponens (R

→
�) If ` ϕ then `

→
� ϕ (R

←
�) If ` ϕ then `

←
� ϕ

This system was proved to be complete in [3].

3. The relational logic R(MQ)N

In this section we present the relational logic R(MQ)N appropriate for expressing
formulas the multimodal logic L(MQ)N .

The classical relational logic of binary relations is a logical counterpart to the
class RRA of (representable) relation algebras introduced by Tarski. The formulas
of the relational language are intended to represent statements saying that two
objects are related. The logic R(MQ)N is an extension of the classical relational
logic. Relational terms of R(MQ)N are built from atomic terms with relational
operations. The set RA of atomic relational terms is the union of the non-empty set
RV of relational variables and the set RC = {1, 1′, <,N}∪{Ψ1, . . . ,Ψ5} of relational
constants. The set of all relational terms is denoted by RT. The operations are the
Boolean operations of union (∪), intersection (∩), and complement (−) and the
specific relational operations of composition (P ;Q = {(x, y) : ∃z(xPz∧zQy)}) and
converse (P−1 = {(x, y) : yPx}).
The relational constants include 1 and 1′, interpreted as the universal relation and
an equivalence relation satisfying the extensionality property (i.e., P ; 1′ = P = 1′;P
for any relation P ), respectively.
Notice that 1′ is not necessarily the equality relation.
R(MQ)N -formulas are of the form xPy, where P is a relational term and x, y

are object symbols. The set OS of object symbols is the union of the set OV of
object variables and the set OC = {c1, . . . , c5} of object constants.
If ϕ(x, y) is a formula xRy, then by −ϕ(x, y) we denote the formula x−Ry.
With the R(MQ)N -language a class of R(MQ)N -models is associated. An
R(MQ)N -model is a structure M = (U,m), where U is a non-empty set and
m is a meaning function such that m(1) = U × U ,
m(1′) is an equivalence relation on U such that every relation R on U satisfies
m(1′);R = R;m(1′) = R;
m(Q) ⊆ U ×U , for every atomic relational term Q, and the following conditions

hold:

(1) m(<) is an irreflexive and transitive relation on U such that for all s, s′, s′′ ∈ U :

(Lin) (s, s′) ∈ m(<) or (s′, s) ∈ m(<) or (s, s′) ∈ m(1′),

(2) m(ci) ∈ U and (m(ci),m(ci+1)) ∈ m(<), for i ∈ {1, . . . , 5},

(3) m(Ψi) = {(s, s′) ∈ U × U : (s,m(ci)) ∈ m(1′)},

(4) m(N) is a relation on U , defined by m(N) = G′1 ∪G′2 ∪G′3 ⊆ U × U , where:

G′1 = {(s, s′) : (s,m(c3)) ∈ m(1′)},
G′2 = {(s, s′) : (λ′ or µ′) and (γ′ or δ′) and ζ′},
G′3 = {(s, s′) : (λ′ or µ′) and (γ′ or δ′) and η′}, being λ′ := ((m(c2), s) ∈ m(<)), µ′ := ((s,m′(c2) ∈
m(1′)), γ′ := ((s,m(c4)) ∈ m(<)), δ′ := ((s,m′(c4)) ∈ m(1′)), ζ′ := ((s′,m(c1)) ∈ m(<)) and
η′ := ((m(c5), s′) ∈ m(<)).

(5) m′ extends to all the compound relational terms as usual, that is:

m′(−R) = m(1) ∩ −m′(R) m′(R−1) = m′(R)−1 m′(R;S) = m′(R);m′(S)

m′(R ∩ S) = m′(R) ∩m′(S) m′(R ∪ S) = m′(R) ∪m′(S)
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Notice that item (4) represents the definition of our negligibility relation.
An R(MQ)N -model M′ = (U ′,m′) is said to be standard whenever m′(1′) is the
identity on U ′, that is m′(1′) = {(x, x) : x ∈ U ′} 1. The class of standard models
is denoted by R∗(MQ)N and we use in this paper the term standard model or
R∗(MQ)N -model indistinctly.

In fact, we prove that R(MQ)N -models and standard R(MQ)N -models are
modally equivalent, i.e., the classes of their valid formulas coincide. A valua-
tion in an R(MQ)N -model M′ = (U ′,m′) is a function v : OS → U ′ such that
v(ci) = m′(ci), for every i ∈ {1, . . . , 5}. Let xRy be an R(MQ)N -formula and
let M′ = (U ′,m′) be an R(MQ)N -model. A formula xRy is said to be satisfied
in M′ by v (M′, v |= xRy for short) whenever (v(x), v(y)) ∈ m′(R). A formula
xRy is true in M′ if it is satisfied in M′ by all valuations v. xRy is said to be
R(MQ)N -valid, if it is true in all R(MQ)N -models. Moreover, a formula is said to
be R∗(MQ)N -valid whenever it is true in all standard models.
Now, we develop the validity preserving translation function t : For → RT assigning
relational terms to modal formulas. We start with an assignment t′ of relational
variables to all propositional variables, t′(p) = Rp where Rp ∈ RV. Then we define:

t(p) = t′(p); 1, for every propositional variable p ∈ V,

t(ci) = Ψi; 1, for every i ∈ {1, . . . , 5}.

t extends to all compound L(MQ)N -formulas as follows:
t(¬ϕ) = −t(ϕ) t(ϕ ∨ ψ) = t(ϕ) ∪ t(ψ) t(ϕ ∧ ψ) = t(ϕ) ∩ t(ψ)

t(ϕ→ ψ) = −t(ϕ) ∪ t(ψ) t(
→
� ϕ) = −(<;−t(ϕ)) t(

←
� ϕ) = −(<−1;−t(ϕ))

t(�Nϕ) = −(N ;−t(ϕ)) t(�Nϕ) = −(N−1;−t(ϕ))

The translation is defined so that it preserves validity of formulas, that is the
following holds:

Theorem 3.1 : For every L(MQ)N -formula ψ and for all object variables x and
y, we have that ψ is L(MQ)N -valid iff xt(ψ)y is R(MQ)N -valid.

4. Relational proof system for R(MQ)N

The proof system for logic R(MQ)N presented in this section belongs to the family
of dual tableau systems. Dual tableau systems are founded on Rasiowa-Sikorski
deduction system for classical first order logic without identity (see [13]). The
aim of Rasiowa and Sikorski was to present a system which, in contrast with the
Gentzen system that required the cut rule in the proof of completeness, was cut
free. Rasiowa-Sikorski system is a validity checker, i.e., the rules preserve and reflect
validity of disjunctions of their premises and conclusions. As shown in [9], Rasiowa-
Sikorski proof system for first-order logic with identity is dual to its tableau system.
Recall that tableau systems are unsatisfiability checkers, i.e., the rules preserve and
reflect unsatisfiability of conjunction of their premises and conclusions. Moreover,
it is known that every proof in a dual tableau system can be easily converted into
a proof in Gentzen style deduction system (see [10]).

Dual tableau systems are determined by axiomatic sets of formulas and rules which
apply to finite sets of formulas. The axiomatic sets take the place of axioms. There
are two groups of rules: the decomposition rules, which reflect properties of standard
relational operations and the specific rules which reflect properties of the specific
relations imposed in R(MQ)N -models. Given a formula, the decomposition rules

1Note that in standard models m′(<) is a strict linear ordering on U ′.
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of the system enable us to transform it into simpler formulas, while the specific
rules enable us to replace a formula by some other formulas. The rules have the
following general form:

(rule)
Φ(x)

Φ1(x1, u1, w1) | . . . |Φn(xn, un, wn)

where Φ(x) is a finite (possibly empty) set of formulas whose object symbols are
among the elements of set(x), where x is a finite sequence of object symbols and
set(x) is a set of elements of sequence x; every Φj(xj , uj , wj), 1 ≤ j ≤ n, is a
finite non-empty set of formulas, whose object symbols are among the elements of
set(xj) ∪ set(uj) ∪ set(wj), where xj , uj , wj are finite sequences of object symbols
such that set(xj) ⊆ set(x), set(uj) consists of the variables that may be instantiated
to arbitrary object symbols when the rule is applied (usually to the object symbols
that appear in the set to which the rule is being applied), set(wj) consists of
the variables that must be instantiated to pairwise distinct new variables (not
appearing in the set to which the rule is being applied) and distinct from any
variable of sequence uj . A rule of the previous form is the n-fold branching rule,
where the j-th branch is the set Φj(xj , uj , wj). A rule can be applied to a finite
set of formulas X whenever Φ(x) ⊆ X. As a result of an application of a rule of
the form (rule) to a finite set X, we obtain the sets (X \ Φ(x)) ∪ Φj(xj , uj , wj),
j = 1, . . . , n.

We say that an object variable in a rule is new whenever it appears in a conclusion
of the rule and does not appear in a set to which the rule is applied. The rules
of the system presented below guarantee that whenever a node contains xTy or
x−Ty, for some atomic relational term T , then all of its successors contain this
formula as well. Thus, all variables of a given node occur in its successor nodes.

Let x, y,∈ OS and R,S ∈ RT. Decomposition rules of the system have the following
forms, for any object symbol z and for a new object variable w:

(∪)
x(R ∪ S)y

xRy, xSy
(−∪)

x−(R ∪ S)y

x−Ry | x−Sy
(;)

x(R;S)y

xRz, x(R;S)y|zSy, x(R;S)y

(∩)
x(R ∩ S)y

xRy|xSy
(−∩)

x−(R ∩ S)y

x−Ry, x−Sy
(−;)

x−(R;S)y

x−Rw,w−Sy

(−)
x−−Ry
xRy

(−1)
xR−1y

yRx
(−−1)

x−R−1y

y−Rx

Let x, y, z ∈ OS, R ∈ RA and i ∈ {1, . . . , 5}. Specific rules have the following forms,
for any object symbol z:

(1′1)
xRy

xRz, xRy|y1′z, xRy
(1′2)

xRy

x1′z, xRy|zRy, xRy

(Irref<)
x < x

(Tran<)
x < y

x < y, x < z|x < y, z < y

(Ci1)
xΨiy | x−Ψiy

(Ci2)
xΨiy

xΨiy, x1′ci

(Ci3)
x−Ψiy

x−Ψiy, x−1′ci

(N1)
xNy | x−Ny

(N2)
xNy

xNy,H1(x, y)|xNy,H2(x, y)|xNy,H3(x, y)
(N3)

x−Ny
x−Ny,−K1(x, y)| . . . |x−Ny,−K7(x, y)

where Hm(x, y) and Kl(x, y), m ∈ {1, 2, 3}, l ∈ {1, . . . , 7}, are defined as follows:

K1(x, y) := n1(x, y) K2(x, y) := n2(x, y), n5(x, y)
K3(x, y) := n2(x, y), n4(x, y) K4(x, y) := n3(x, y), n5(x, y)
K5(x, y) := n3(x, y), n4(x, y) K6(x, y) := n6(x, y), n7(x, y), n5(x, y)
K7(x, y) := n6(x, y), n7(x, y), n4(x, y)
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H1(x, y) := n1(x, y), n2(x, y), n3(x, y), n6(x, y)
H2(x, y) := n1(x, y), n2(x, y), n3(x, y), n7(x, y)
H3(x, y) := n1(x, y), n4(x, y), n5(x, y)

−Kl(x, y) := (−nk(x, y))nk(x,y)∈Kl(x,y), for l ∈ {1, . . . , 7}

being:

n1(x, y) := c31′x n2(x, y) := c41′x n3(x, y) := c21′x n4(x, y) := c5 < y
n5(x, y) := y < c1 n6(x, y) := c2 < x n7(x, y) := x < c4

Notice that the previous notation respond to the idea of expressing rules (N2)
and (N3) in an easy way, following the definition of our negligibility relation.

A finite set of formulas is R(MQ)N -axiomatic whenever it includes either of the
following subsets, for all x, y ∈ OS, i ∈ {1, . . . , 4}, and for every R ∈ RT:

(Ax1) {x1′x} (Ax2) {x1y} (Ax3) {xRy, x−Ry} (Ax4) {ci < ci+1} (Ax5) {x < y, y < x, x1′y}

In what follows, we present the sketch of the proof of the soundness and complete-
ness of the system in question.

A finite set of R(MQ)N -formulas {xR1y, . . . , xRny} is said to be an R(MQ)N -
set whenever for every R(MQ)N -model M′ and for every valuation v in M′ there

exists i ∈ {1, . . . , n} such thatM′, v |= xRiy. A rule
Φ

Φ1| . . . |Φn
isR(MQ)N -correct

whenever for every finite set X of R(MQ)N -formulas X ∪Φ is an R(MQ)N -set iff
X ∪ Φj is an R(MQ)N -set for every j ∈ {1, . . . , n}.

Proposition 4.1:
1. The R(MQ)N -rules are R(MQ)N -correct.
2. The R(MQ)N -axiomatic sets are R(MQ)N -sets.

AnR(MQ)N -proof tree for anR(MQ)N -formula ϕ is a tree with this formula at the
root of the tree such that each node except the root is obtained by an application
of an R(MQ)N -rule to its predecessor node and a node does not have successors
whenever it is an R(MQ)N -axiomatic set.
A branch of an R(MQ)N -proof tree is said to be closed whenever it contains a node
with an R(MQ)N -axiomatic set of formulas. A closed tree is an R(MQ)N -proof
tree such that all of its branches are closed. A formula ϕ is R(MQ)N -provable
whenever there is a closed proof tree for ϕ.

As usual in proof theory, a concept of completeness of a non-closed proof tree is
needed. Intuitively, completeness of a non-closed tree means that all the rules that
can be applied have been applied. By abusing the notation, for any branch b and
for any set of formulas X, by X ∈ b (resp. X 6∈ b) we mean that every formula
from X belongs to b (resp. does not belong to b).

Completion Conditions
A branch b of a proof tree is said to be complete whenever for all x, y ∈ OS it
satisfies the following completion conditions:
Cpl(∪) (resp. Cpl(−∩)) If x(R∪ S)y ∈ b (resp. x−(R∩ S)y ∈ b), then both xRy ∈ b (resp. x−Ry ∈ b) and
xSy ∈ b (resp. x−Sy ∈ b).
Cpl(∩) (resp. Cpl(−∪)) If x(R ∩ S)y ∈ b (resp. x−(R ∪ S)y ∈ b), then either xRy ∈ b (resp. x−Ry ∈ b) or
xSy ∈ b (resp. x−Sy ∈ b).
Cpl(−) If x(−−R)y ∈ b, then xRy ∈ b.
Cpl(−1) If xR−1y ∈ b, then yRx ∈ b.
Cpl(−−1) If x−R−1y ∈ b, then y−Rx ∈ b.
Cpl(;) If x(R;S)y ∈ b, then for every z ∈ OS, either xRz ∈ b or zSy ∈ b.
Cpl(−;) If x−(R;S)y ∈ b, then for some w ∈ OV, both x−Rw ∈ b and w−Sy ∈ b.
Cpl(1′1) If xRy ∈ b for some R ∈ RA, then for every z ∈ OS, either xRz ∈ b or y1′z ∈ b.
Cpl(1′2) If xRy ∈ b for some R ∈ RA, then for every z ∈ OS, either x1′z ∈ b or zRy ∈ b.
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Cpl(Ci1) Either xΨiy ∈ b or x−Ψiy ∈ b.
Cpl(Ci2) If xΨiy ∈ b then x1′ci ∈ b.
Cpl(Ci3) If x−Ψiy ∈ b then x−1′ci ∈ b.
Cpl(Irref<) For every x ∈ OS, x < x ∈ b.
Cpl(Tran<) If x < y ∈ b, then for every z ∈ OS, either x < z ∈ b or z < y ∈ b.
Cpl(N1) Either xNy ∈ b or x−Ny ∈ b.
Cpl(N2) If xNy ∈ b then there exists m ∈ {1, 2, 3} such that Hm(x, y) ∈ b.
Cpl(N3) If x−Ny ∈ b then there exists l ∈ {1, . . . , 7} such that −Kl(x, y) ∈ b.

An R(MQ)N -proof tree is said to be complete iff all of its non-closed branches are
complete. A complete non-closed branch is said to be open. It can be easily proved
that for every R(MQ)N -formula there exists a complete R(MQ)N -proof tree for
it.

As said in the introduction, there is a standard and intuitively simple way of proving
completeness by constructing a counter-model for a non-provable formula out of
its non closed decomposition tree.

Let b be an open branch of an R(MQ)N -proof tree. A branch structure Mb is a
structure Mb = (U b,mb) such that U b = OS, mb(ci) = ci, for every i ∈ {1, . . . , 5},
mb(R) = {(x, y) ∈ U b × U b : xRy 6∈ b}, for every R ∈ RA, and mb extends to
all the compound relational terms as in R(MQ)N -models. Observe that for every
open branch b of an R(MQ)N -proof tree, a branch structure Mb = (U b,mb) is an
R(MQ)N -model.

Let us consider a valuation vb in the branch model Mb defined as vb(x) = x for
every x ∈ OS. Then we get:

Proposition 4.2: Let b be an open branch of an R(MQ)N -proof tree. For every
R(MQ)N -formula ϕ, if Mb, vb |= ϕ, then ϕ 6∈ b.

The above proposition can be proved by the induction on the complexity of rela-
tional terms by using the completion conditions.

Given Mb = (U b,mb) a branch structure, the quotient model is an R(MQ)N -
modelMb

q = (U bq ,m
b
q) such that U bq = {‖x‖ : x ∈ U b}, where ‖x‖ is an equivalence

class of mb(1′) generated by x, mb
q(ci) = ‖ci‖, for i ∈ {1, . . . , 5}, and mb

q(R) =
{(‖x‖, ‖y‖)) ∈ U bq × U bq : (x, y) ∈ mb(R)}, for every R ∈ RA. Since mb(1′) is an
equivalence relation satisfying the extensionality property, the definition of mb

q(R)
is correct, that is if (x, y) ∈ mb(R) and (x, z), (y, t) ∈ mb(1′), then (z, t) ∈ mb(R).
Moreover, the quotient model is a standard R(MQ)N -model and for the valuation
vbq in Mb

q defined as vbq(x) = ‖x‖, for x ∈ OS, the following holds:

Proposition 4.3: For every R(MQ)N -formula ϕ, Mb, vb |= ϕ iff Mb
q, v

b
q |= ϕ.

By the above propositions we obtain the main theorem:

Theorem 4.4 Soundness and Completeness of R(MQ)N:
For every R(MQ)N -formula ϕ, ϕ is R(MQ)N -provable iff ϕ is R(MQ)N -valid iff
ϕ is R∗(MQ)N -valid.

Proof : Soundness of the system follows from Proposition 4.1. Therefore, if a for-
mula ϕ is R(MQ)N -provable, then it is R(MQ)N -valid, hence it is also R∗(MQ)N -
valid. For completeness, assume a formula ϕ is an R∗(MQ)N -valid and suppose it
is not R(MQ)N -provable. Let b be an open branch of a complete R(MQ)N -proof
tree for ϕ. Then, by Proposition 4.2, ϕ is not satisfied in the branch structureMb

by vb. Hence, by Proposition 4.3, it is not satisfied in a standard R(MQ)N -model
Mb

q by vbq, a contradiction with R∗(MQ)N -validity of ϕ. � �

Finally, by the above and Theorem 3.1 we obtain:
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Theorem 4.5 Relational Soundness and Completeness of L(MQ)N: For every
L(MQ)N -formula ψ and for all object variables x and y, the following holds:

ψ is L(MQ)N -valid iff xt(ψ)y is R(MQ)N -provable

We finish this section with an example of validity checking. Consider the formula
ϕ := ♦Nc3. It is easy to check that this formula is L(MQ)N -valid. The translation
of ϕ to the relational term is t(ϕ) = −−(N−1;−−(Ψ3; 1)). The following picture
presents a closed R(MQ)N -proof tree. It shows R(MQ)N -provability of the rela-
tional formula xτ(ϕ)y, and by Theorem 4.5, it proves L(MQ)N -validity of ϕ. In
each node of the proof tree, we underline the formula to which a rule has been
applied.

x−−[N−1;−−(Ψ3; 1)]y

?
(−)

x[N−1;−−(Ψ3; 1)]y

�
����

H
HHHj(; ) with c3

c3−−(Ψ3; 1)y, . . .

?(−)

c3(Ψ3; 1)y, . . .

�����

HHHHj(; ) with y

c3Ψ3y, . . .

?
(C32)

c31′c3, . . .

closed

y1y, . . .

closed

xN−1c3, . . .

?
(−1)

c3Nx, . . .

��
��

?

HH
Hj(N2)

c31′c3, . . .

closed

c31′c3, . . .

closed

c31′c3, . . .

closed

5. Conclusions and future work

In this paper, we have introduced a relational proof system in the style of dual
tableaux for the relational logic associated with the multimodal propositional logic
for order of magnitude qualitative reasoning L(MQ)N and we have proved its
soundness and completeness. Moreover, we have shown how the proof system can
be used for verification of validity and we have given an example of the relational
proof of validity for a specific formula.

As a future work, our plan is to adapt the implementation [2] to the specific
relational system presented in the paper. We also are thinking about a proof system
without cut-like rules (as ((Irref <), (Ci1) and ((N1)), but at this moment, these
rules have been necessary to prove completeness, and none cut-elimination theorem
is known. On the other hand, we are planning to investigate the decidability of the
logic L(MQ)N and, if the answer is positive, to find a decision procedure, that is,
a complete and sound relational proof system such that all of its proof trees are
finite.
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