
Mathematical Logic Quarterly, 20 March 2009

Analyzing completeness of axiomatic functional systems
for temporal×modal logics

Burrieza, A. 1,∗, P. de Guzmán, I. 2,∗∗, and Muñoz-Velasco, E. 2,∗∗∗
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In previous works, we presented a modification of the usual possible world semantics by introducing an in-
dependent temporal structure in each world and using accessibility functions to represent the relation among
them. Different properties of the accessibility functions (being injective, surjective, increasing, etc.) have been
considered and axiomatic systems (called functional) which define these properties have been given. Only a
few of these systems have been proved to be complete. The aim of this paper is to make a progress in the study
of completeness for functional systems. For this end, we use indexes as names for temporal flows and give new
proofs of completeness. Specifically, we focus our attention on the system which defines injectivity, because
the system which defines this property without using indexes was proved to be incomplete in previous works.
The only system considered which remains incomplete is the one which defines surjectivity, even if we consider
a sequence of natural extensions of the previous one.
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1 Introduction

The combination of time and modality appears in the seminal work of Prior [21] in order to study determinism,
by establishing different type of semantics, called Peircean and Ockhamist, where time is conceived as a tree,
each point having one linear past but branching towards the future. The different branches represent alternative
possibilities whereas the unique past represents the necessity of the past, the inevitability of past facts or the
historical necessity [14, 24, 27]. There are other approaches that also combine time and modality to deal with
the historical necessity but not using trees. They are two-dimensional, that is, possible worlds have a temporal
compound [25]. Usual approaches in this way are T × W -frames, where the order of time is the same in all
possible worlds; and Kamp-frames, a generalization of T ×W -frames, where each world has its own order of
time. Moreover, Kamp-frames are technically equivalent to a generalization of trees, called bundled trees.

In this area, we have developed a semantic approach (called functional), based on possible world semantics, by
considering each world provided with its own flow of time. We use accessibility functions to connect these flows
in a frame (called functional frame [9–12]) which is a generalization of the Kamp-frames [9]. This approach
follows the tradition of applying non-standard logics in mathematics. We represent basic properties of functions,
such as being injective, surjective, increasing, etc., by means of a combination of modal and temporal logics.
Moreover, we focus our attention in the completeness of the formal systems which represent these properties.
Recent uses of modal logic in mathematical theories follow the two major ideas that dominate the landscape of
modal logic application in mathematics: Gödel’s Provability Semantics and Tarski’s Topologycal Semantics. For
instance, in [4–6], the use of modal logic in Geometry and/or Topology has been studied and the relationship
between modal logics and coalgebras has been considered in [15, 19].

As said in [3], modal logic offers a quantifier free language in order to express mathematical properties. In
our case, we use modal logics to represent the properties of accessibility functions mentioned above. We have
studied the definability of these properties and the proof of completeness for a system which defines the property
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of totality has been given in [9]. Moreover, the incompleteness of the system which defines the property of being
total and injective was proved. This approach has been enriched in [10, 12] by introducing indexes as names of
temporal flows to represent the worlds where our accessibility functions have their images. The use of names
for possible worlds has its origin in works of Prior, that can be considered the beginning of the Hybrid Logics,
where these names are used in an extended way, with very important advantages (see e.g. [2]). In our case, the
first result obtained with the introduction of these indexes was a proof of completeness for a minimal system for
partial functions.

The objective of this paper is to improve the completeness results of functional axiomatic systems. The main
result is the proof of completeness for the system which defines injectivity. This fact shows the advantages
of using indexed languages, because as said above, an analogous system was proved to be incomplete without
using indexes. The completeness proof for each system is not a trivial extension of the given one for partial
functions in [10], because of the technical problems which arise from the use of any different property need
special attention. For this reason, we give also an Appendix with the completeness result of the system for
increasing functions. The rest of the properties can be treated in a similar way, by taking into account the
specificity of each one. In addition, we show the incompleteness of the system which defines surjectivity and we
also prove the incompleteness of a sequence of systems obtained from the previous one by adding successively
new axioms which appear in a natural way.

From the practical point of view, several works that combine (linear and branched) time with different type of
modalities (spatial, epistemic, etc.) have been arising due to the requirements of Theoretical Computer Science
and Artificial Intelligence. Some examples of this are: spatio-temporal reasoning [18], parallel processes [23],
security protocols [13], verification of multi-agent systems [16], distributed systems [17], design of architectures
of reasoning with mental attitudes [22], cooperation and planning [26], semantics of messages [20], etc. Our
approach is adequate to model interactions between processes with clocks that can be either synchronized or not.

This paper is organized as follows: In Section 2, the language and semantics of the temporal×modal logic
LF(T×W )-I (from now, for simplicity, LI ), introduced in [10, 12] is sketched and the definability of properties
of partial functions such as being non-total, constant, injective, surjective and increasing is given. Moreover,
axiomatic systems for an indexed language dealing with these properties of functions are introduced. In Section
3, we prove the soundness and completeness of the system for injective functions and Section 4 is devoted to
prove the incompleteness of the system which defines surjectivity. Finally, some conclusions and prospectives
of future work are given in Section 5, while in Section 6 an Appendix with the more important details about the
proof of the completeness of the system for increasing functions is given.

2 The logics LI

Let us consider the temporal×modal logic LI = (LI, MI), where I is a denumerable nonempty set of indexes,
LI denotes the language andMI a set of models for LI. Given a set of indexes I, the alphabet of the language
LI consists of a denumerable set V of propositional variables (atoms); the logic constants > (“truth”) and ⊥
(“falsity”), and the Boolean connectives ¬, ∧, ∨, and→; the Priorean temporal connectives F (“at some future
time”) and P (“at some past time”) and a family of unary modal connectives of the form<i>, for i ∈ I (“A is true
in flow i, at the image of the reference instant”). Well-formed formulas (wffs) are generated by the construction
rules of classical propositional logic, adding the following rule: If A is a wff, then FA, PA and <i>A (with
i ∈ I) are wffs. Now, for each i ∈ I, we can also introduce the connectives G,H and [ i ] defined as usual.

Definition 2.1 An ind-functional frame for LI is a tuple ΣI = (W, T ,F) such that:

1. W is a nonempty set of labels (for a set of temporal flows).

2. T = {(Tw, <w) | w ∈W} is a non empty set such that:

• Tw 6= ∅ and <w is a strict linear order on Tw, for all w ∈W ;

• if w 6= w′, then Tw ∩ Tw′ = ∅, for all w,w′ ∈W .

3. F is a set of non-empty functions, called accessibility functions, such that:

(a) each function in F is a partial function from Tw to Tw′ , for some w ∈W and some w′ ∈W ∩ I;
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(b) for an arbitrary pair (w,w′) ∈ W × (W ∩ I), there is (in F) at most one accessibility function from

Tw to Tw′ , denoted by w w′−→ .

Definition 2.2 Let ΣI = (W, T ,F) be an ind-functional frame. The elements of the following disjoint union⋃
w∈W Tw are called coordinates and we will refer to CoordΣ as the set of coordinates of ΣI.

We now introduce some notation and terminology:

• If (A,≤) is a nonempty linearly ordered set and a ∈ A:

[a,→) = {a′ ∈ A | a ≤ a′}; (a,→)={a′ ∈ A | a < a′}. Similarly we define (←, a] and (←, a).

• If f : A −→ B is a nonempty partial function from A to B, Dom(f) represents the domain of f and
X ⊆ A, we define, as usual, f(X) = {f(x) | x ∈ X ∩ Dom(f)}. Particularly, if a 6∈ Dom(f), then
f({a}) = ∅.

• If (A,≤) and (B,≤) are nonempty linearly ordered sets, f : A −→ B a nonempty partial function and
f({a}) = ∅, then: (←, f({a})) = (←, f({a})] = (f({a}),→) = [f({a}),→) = ∅.

Definition 2.3 An ind-functional model for LI is a tuple (Σ, h), where Σ = (W, T ,F) is an ind-functional
frame and h is a function, called functional interpretation, assigning to each atom p ∈ V a subset of CoordΣ. The
functional interpretation h is recursively extended to a function (still denoted by h) defined for all the formulas
of LI, by interpreting the constants and the Boolean in a standard way and satisfying the following conditions:

• h(FA) = {tw ∈ CoordΣI | (tw,→)∩h(A) 6= ∅}; h(PA) = {tw ∈ CoordΣI | (←, tw)∩h(A) 6= ∅)};

• h(<i>A)={tw ∈CoordΣI | w i−→∈ F and
w i−→({tw}) ∩ h(A) 6=∅}.

The concepts of satisfiability, validity and other semantical notions are introduced as usual.

2.1 Definability of properties of functions in LI

In this section, we present a sketch of definability of the properties of functions discussed in this work.

Definition 2.4 Let J be a class of ind-functional frames and K ⊆ J. We say that K is LI - definable in J by
a set of formulas Γ if for every ind-functional frame ΣI ∈ J we have that ΣI ∈ K iff every formula of Γ is valid
in ΣI. If J is the class of all ind-functional frames, we say that K is LI -definable by Γ.

We introduce now the following sets of formulas and notation:

α Sα

non total (Non-Tot)-ind: {P [ i ]⊥ ∨ [ i ]⊥ ∨ F [ i ]⊥ | i ∈ I}
constant (Cons)-ind: {<i>A→ G[ i ]A | i ∈ I}
injective (Inj)-ind: {<i>(HA ∧GA)→ (H[ i ]A ∧ G[ i ]A) | i ∈ I}
surjective (Surj)-ind: {(H[ i ]A ∧G[ i ]A)→ [ i ](HA ∧GA) | i ∈ I}
increasing (Inc)-ind: {<i>(A ∧GA)→ G[ i ]A | i ∈ I}
decreasing (Dec)-ind: {<i>(A ∧HA)→ G[ i ]A | i ∈ I}
strictly increasing (Str-Inc)-ind: {<i>GA→ G[ i ]A | i ∈ I}
stricty decreasing (Str-Dec)-ind: {<i>HA→ G[ i ]A | i ∈ I}

We can now give the following result:

Theorem 2.5 The following class of ind-functional frames is LI -definable by the set of formulas Sα.

{(W, T ,F) | F is a class of α-functions }
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2.2 Functional systems for partial functions

In this section, we introduce the minimal system for partial functions and then several extensions of it dealing
with non-total, constant, injective, surjective and increasing functions. The axioms of system SI -Par are:

1. Those of the minimal system of propositional linear temporal logic Kl.

2. For each i ∈ I, [ i ](A→ B)→ ([ i ]A→ [ i ]B)

3. For each i ∈ I, <i>A→ [ i ]A. (Axiom of Functionality)

4. (λ <i>A ∧ λ′ <i>B)→ λ <i>(A ∧ (PB ∨B ∨ FB))

(Axiom of Confluence)

where:
{
λ = γ1 <j1>γ2 . . . <jn>γn+1, n ∈ N, γi ∈ {F, P, ε}, ji ∈ I
λ′ = γ′1 <k1>γ

′
2 . . . <km>γ

′
m+1, m ∈ N, γ′i ∈ {F, P, ε}, ki ∈ I

and ε denotes the empty chain.

The inference rules of SI-Par are the following:

(MP ) A, A→ B ` B; (RG) A ` GA; (RH) A ` HA; (Ni) A ` [ i ]A (for each i ∈ I).

Remark 2.6 Axiom (3) establishes functionality ensuring the uniqueness of the image. Axiom (4) assures
that we can go to the same temporal flow from distinct paths.
The syntactical concepts of proof, theorem, etc., are defined as usual.

In order to deal with every property α considered previously, we define the extensions of the system SI-Par
by adding the set of formulas Sα. For example, the system SI-Inj will be the extension of SI-Par by adding
the set of formulas (Inj)-ind and similarly for the rest of properties. All of the previous systems are complete
except SI-Surj. For the sake of simplicity, we will focus our attention on the proof of completeness of the
system SI-Inj, because the corresponding system for total injective functions with non indexed connectives
was proved to be incomplete in [9]. Similar proofs can be given for SI-Non-Tot, SI-Cons, SI-Str-Inc and
SI-Str-Dec. Moreover, due to its peculiarity, we present an Appendix at the end of this paper with the most
important details about the proof of completeness of the system SI-Inc. Similar ideas as given in the Appendix
can be applied to the system SI-Dec.

3 Soundness and Completeness of SI-Inj

The proof of soundness is straightforward. Hence, we will focus our attention on completeness. Specifically, we
will provide a proof of completeness by using the step-by-step method (see, for example, [7] and [8] for modal
and temporal systems; and [10] and [9] for functional systems). In this section, we consider the system SI-Inj,
however easy modifications would lead us to obtain the completeness of the system for total injective functions
SI-Tot-Inj 1. As said above, a similar system was proved to be incomplete without using indexes. In this
section, we introduce firstly some general definitions and theorems in this type of proof, then we give the specific
results for our system for injective functions. As we will see, these completeness proofs are not trivial extensions
of the given one for partial functions, because the technical problems which arise from the use of any different
property need special attention.

3.1 Maximally consistent sets in functional systems

Given any system considered in this paper, we will denote byMC the family of maximally consistent sets (from
now on, mc-sets, denoted by Γ1,Γ2 . . . ) of any system considered in this paper. Some familiarity with the basic
properties of mc-sets is assumed. In this section, we introduce some relations in MC which are very useful
for the completeness proofs. To begin with, we consider the following definition that gives the intuitive idea of
connecting coordinates in different temporal flows. It will be useful later in the proof of completeness.

1 This system is defined by extending SI-Par with {<i>(HA ∧GA) → (H <i>A ∧ G <i>A) | i ∈ I}.
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Definition 3.1 Let ΣI = (W, T ,F) be an ind-functional frame and tw, t′w′ ∈ CoordΣI .

1. tw ≺
∼

T

i tw′ iff either w′ = w or w′ = i ∈ I ∩ W and there are some t1w ∈ Tw and t2w′ ∈ Tw′ such that
w i−→ (t1w) = t2w′ .

2. tw ↘ tw′ iff either tw ≺
∼

T

i t′w′ or there are n > 1, i1, . . . , in ∈ I and t1w1
, . . . , tn−1

wn−1
∈ CoordΣI such that

tw ≺
∼

T

i1
t1w1
≺
∼

T

i2
t2w2
≺i3 . . . ≺

∼
T

in−1
tn−1
wn−1

≺
∼

T

in
tw′ .

The previous definition has its analogous for mc-sets. Since their role is identical in both cases, they will be
denoted by the same symbols, namely,≺

∼
T

i and↘. The context will always make it clear which one we refer to.

Definition 3.2 Let i ∈ I, we have the following definitions:

1. Γ1 ≺T Γ2 iff {A | GA ∈ Γ1} ⊆ Γ2. Moreover, Γ1 ∼T Γ2 iff
(

Γ1 ≺T Γ2, or Γ2 ≺T Γ1, or Γ1 = Γ2

)
.

2. Γ1 ≺i Γ2 iff ∅ 6= {A |<i>A ∈ Γ1} ⊆ Γ2.

3. Γ1 ≺
∼

T

i Γ2 iff either Γ1 ∼T Γ2 or there are Γ3,Γ4 ∈MC such that Γ1 ∼T Γ3,Γ3 ≺i Γ4 and Γ4 ∼T Γ2.

4. Γ1 ↘ Γ2 iff either for some i ∈ I, Γ1 ≺
∼

T

i Γ2 or for some n ≥ 1, there are i1, . . . , in ∈ I and
Ω1, . . . ,Ωn ∈MC such that Γ1 ≺

∼
T

i Ω1 ≺
∼

T

i1
Ω2 ≺

∼
T

i2
. . . ≺

∼
T

in
Γ2.

We present now a result which holds for all functional systems under consideration.

Proposition 3.3 The following properties are satisfied:

1. Any consistent set of formulas can be extended to an mc-set (Lindenbaum’s Lemma).

2. If FA ∈ Γ1, there is Γ2 ∈MC such that Γ1 ≺T Γ2 and A ∈ Γ2. Similarly for PA.

3. Let i ∈ I, if <i>A ∈ Γ1 there is Γ2 ∈MC such that Γ1 ≺i Γ2 and A ∈ Γ2.

4. If Γ1 ≺T Γ2 and Γ2 ≺T Γ3, then Γ1 ≺T Γ3.

5. If Γ1 ≺T Γ2 and Γ1 ≺T Γ3, then Γ2 ∼T Γ3. Similarly, if Γ2 ≺T Γ1 and Γ3 ≺T Γ1, then Γ2 ∼T Γ3.

6. Γ1 ∼T Γ2 iff there is γ ∈ {F, P, ε} such that {γA | A ∈ Γ2} ⊆ Γ1.

7. For every i ∈ I, we have that Γ1 ≺i Γ2 iff {A | [ i ]A ∈ Γ1}⊆ Γ2 iff {<i>A | A ∈ Γ2} ⊆ Γ1.

8. If i ∈ I, then Γ1 ≺
∼

T

i Γ2 iff either there exists γ ∈ {F, P, ε} such that {γA | A ∈ Γ2} ⊆ Γ1 or there are
γ1, γ2 ∈ {F, P, ε} such that {γ1 <i>γ2A | A ∈ Γ2} ⊆ Γ1.

Theorem 3.4 Γ1 ↘ Γ2 iff one of the following conditions is satisfied:

(a) there exists γ ∈ {F, P, ε} such that {γA | A ∈ Γ2} ⊆ Γ1;

(b) there are γ1, . . . γn+1 ∈ {F, P, ε} and i1, . . . , in ∈ I, with n ≥ 1, such that:

{γ1 <i1>γ2 . . . <in>γn+1A | A ∈ Γ2} ⊆ Γ1

The following result, called Diamond Theorem, was proved in [10]. It is recalled here because it will be relevant
for the rest of the paper.

Theorem 3.5 Let Γ1,Γ2,Γ3 ∈MC such that:

1. Γ1 ↘ Γ2 and Γ1 ↘ Γ3.

2. There are i ∈ I and Ω1 ∈MC such that
{

2.1) Γ2 ≺i Ω1

2.2) {A |<i>A ∈ Γ3} 6= ∅
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Then, there exists Γ4 ∈ MC such that Γ2 ↘ Γ4 and Γ3 ↘ Γ4. Specifically, there exists Ω2 ∈ MC such that
Γ3 ≺i Ω2 and Ω2 ∼T Ω1.

As usual in the step-by-step completeness method, we introduce a function (called trace) that associates elements
ofMC to coordinates in an ind-functional frame which will allow us to construct the desired model.

Definition 3.6 Let ΣI = (W, T ,F) be an ind-functional frame for a languageLI. A trace of ΣI is a function
ΦΣI : CoordΣI −→ 2LI

such that, for all tw ∈ CoordΣI , the set ΦΣI(tw) is an mc-set.
We introduce now the properties of the trace function in a standard way.

Definition 3.7 Let ΦΣI be a trace of an ind-functional frame ΣI. Then ΦΣI is called:
temporally coherent if, for all tw, t′w ∈ CoordΣI : if t′w ∈ (tw,→), then ΦΣI(tw) ≺T ΦΣI(t′w);
ind-modally coherent if, for all tw, ti ∈ CoordΣI with i ∈W ∩ I:

if ti = w i−→ (tw), then ΦΣI(tw) ≺i ΦΣI(ti);
coherent if it is temporally coherent and ind-modally coherent.
prophetic if it is temporally coherent and, moreover, for all A ∈ LI and all coordinate tw ∈ CoordΣI :

(1) if FA ∈ ΦΣI(tw), there exists t′w ∈ (tw,→) such that A ∈ ΦΣI(t′w);
historic if it is temporally coherent and, moreover, for all A ∈ LI and all coordinate tw ∈ CoordΣI :

(2) if PA ∈ ΦΣI(tw), there exists t′w ∈ (←, tw) such that A ∈ ΦΣI(t′w);
ind-possibilistic if it is ind-modally coherent and, moreover, for all A ∈ LI, all coordinate tw ∈ CoordΣI

and all i ∈W ∩ I:
(3) if <i>A ∈ ΦΣI(tw), there exists ti = w i−→ (tw) such that A ∈ ΦΣI(ti).

Definition 3.8 We say that a conditional sentence of the form (1) (resp., (2) or (3)) used in Definition 3.7
is called a prophetic (resp., historic or ind-possibilistic) conditional for ΦΣI . In general, we will use the
expression conditional for ΦΣI to mean that it is a prophetic, historic or possibilistic conditional for ΦΣI . An
ind-functional trace, ΦΣI , is called full if it is prophetic, historic, and ind-possibilistic.
The following Proposition links the properties of mc-sets to the coherence of traces. It can be easily proved by
combining Definition 3.1 and Definition 3.7.

Proposition 3.9 Let ΦΣI be a coherent trace, for all tw, tw′ ∈ CoordΣI , we have that tw ↘ t′w′ implies
ΦΣI(tw)↘ ΦΣI(t′w′).

In this method for proving completeness, it is necessary to ensure the satisfiability of the different classes of
existential formulas (i.e., <i>A, FA and PA) which may appear in the mc-sets associated to each coordinate.
In order to do so, we present various types of conditionals, in the style of Burgess [8] for temporal logic.

Definition 3.10 Let ΦΣI be a trace of an ind-functional frame ΣI = (W, T ,F).

• Consider a prophetic conditional: If FA ∈ ΦΣI(tw), there is t′w ∈ (tw,→) such that A ∈ ΦΣI(t′w).

We say that it is active, if FA ∈ ΦΣI(tw), but there is no t′w ∈ (tw,→) such that A ∈ ΦΣI(t′w). On the
other hand, we say that it is exhausted if there exists a coordinate t′w ∈ (tw,→) such that A ∈ ΦΣI(t′w).

The case for a historic conditional is defined in a similar way.

• Given an ind-possibilistic conditional: If <i>A∈ΦΣI(tw), there exists ti=
w i−→(tw) such that A∈ΦΣI(ti),

we say that it is active if <i>A ∈ ΦΣI(tw), but there is no ti = w i−→ (tw) such that A ∈ ΦΣI(ti). On the
other hand, the conditional is exhausted if there exists ti = w i−→ (tw) such that A ∈ ΦΣI(ti).

The proof of the following result, called Trace Lemma, is straightforward by induction on complexity of any
formula A.

Lemma 3.11 Let ΦΣI be a full trace of an ind-functional frame ΣI. Let h be an ind-functional interpretation
assigning to each propositional variable, p, the set h(p) = {tw ∈ CoordΣI | p ∈ ΦΣI(tw)}. Then, for any
formula A, we have h(A) = {tw ∈ CoordΣI | A ∈ ΦΣI(tw)}.
In order to prove the completeness of our systems, we need two special classes of ind-functional frames. The
first one corresponds to the intuitive idea that any indexed flow contains the range of some function, while the
second one means that there exists a temporal flow which is connected to the other ones.
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Definition 3.12 An ind-functional frame ΣI = (W, T ,F) is admissible if it satisfies: for all i ∈ W ∩ I, we
have w i−→∈ F for some w ∈W . On the other hand, ΣI is rooted iff there exists some Tw in ΣI such that, for all
Tw′ in ΣI, tw ∈ Tw and tw′ ∈ Tw′ , it holds tw ↘ tw′ .

3.2 Specific results for SI-Inj

First of all, we give a family of theorems in this system.

Lemma 3.13 Every formula of the following set is a theorem of SI-Inj:

{(<i>> ∧ (P <i>A ∨ F <i>A))→<i>(PA ∨ FA) | i ∈ I}

We now use the previous Lemma to prove the following two results which give a sort of injectivity for mc-sets.

Proposition 3.14 If Γ1 ≺T Γ2, Γ1 ≺i Γ3 and Γ2 ≺i Γ4, then either Γ3 ≺T Γ4 or Γ4 ≺T Γ3.

P r o o f. Let us suppose Γ1 ≺T Γ2, Γ1 ≺i Γ3 and Γ2 ≺i Γ4. If Γ3 6≺T Γ4 and Γ4 6≺T Γ3, then there are
formulas A and B such that GA∧¬B ∈ Γ3 and ¬A∧GB ∈ Γ4. Let α = ¬A∧GB; then, given that Γ1 ≺T Γ2

and Γ2 ≺i Γ4, we have F <i>α ∈ Γ1. On the other hand, since Γ1 ≺i Γ3 we obtain <i>> ∈ Γ1. Now by using
Lemma 3.13, we obtain <i>(Pα ∨ Fα) ∈ Γ1, and again by Γ1 ≺i Γ3, we have Pα ∨ Fα ∈ Γ3, which easily
leads us to a contradiction.

The following result can be proved easily, by using the previous one and Proposition 3.3(2).

Proposition 3.15 Consider Γ1,Γ2,Γ3 ∈MC, then we have:

1. If Γ1 ≺T Γ2, <i>> ∈ Γ2 and Γ1 ≺i Γ3, then there exists Γ4 ∈ MC such that Γ2 ≺i Γ4 and also either
Γ3 ≺T Γ4 or Γ4 ≺T Γ3.

2. If Γ1 ≺T Γ2, <i>> ∈ Γ1 and Γ2 ≺i Γ3, then there exists Γ4 ∈ MC such that Γ1 ≺i Γ4 and also either
Γ3 ≺T Γ4 or Γ4 ≺T Γ3.

The following picture gives the intuitive idea about the previous result. Our purpose is to preserve the injectivity:

The previous Propositions will be the key to prove the following result, called Exhausting Lemma, which is
fundamental to prove the completeness of our system. In order to ensure a better reading, we give the proof of
the Exhausting Lemma after the main Theorem of Completeness.

Theorem 3.16 Let ΦΣI
1

be a coherent trace of a finite, injective 2, admissible and rooted ind-functional frame
ΣI

1 , and let (α) be a conditional for ΦΣI
1

which is active. Then there is a finite, injective, admissible and rooted
ind-functional frame ΣI

2 , extension of ΣI
1 , and a coherent trace ΦΣI

2
of ΣI

2 , extension of ΦΣI
1

, such that (α) is a
conditional for ΦΣI

2
which is exhausted.

2 that is, every accessibility function is injective.
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Theorem 3.17 If a formula A ∈ LI is valid in the class of ind-functional frames:

{(W, T ,F) | F is a class of injective functions}

then A is a theorem of SI-Inj.

P r o o f. It suffices to show that given a consistent formula A, this formula is satisfiable. To accomplish this
task, we shall construct a modelM = (ΣI, h) where ΣI is an injective ind-functional frame.

We begin with a finite ind-functional frame ΣI
0 = (W0, T0,F0), where:

W0 = {w0}, with w0 /∈ I; T0 = {({tw0},∅)}; F0 = ∅

The corresponding trace ΦΣI
0

, defined as ΦΣI
0
(tw0) = Γ0, being Γ0 an mc- set containing A (Lindenbaum’s

Lemma). It is straightforward that the an ind-functional ΣI
0 is a finite, injective, admissible and rooted ind-

functional frame and that its trace ΦΣI
0

is coherent. Now, we want to obtain a denumerable chain of finite,
injective, admissible and rooted ind-functional frames ΣI

0 ,Σ
I
1 , . . . ,Σ

I
n . . . whose union is the ind-functional

frame ΣI, and a denumerable sequence of corresponding traces, ΦΣI
0
,ΦΣI

1
, . . . ,ΦΣI

n
, . . ., whose union is ΦΣI .

For this goal, we provide an enumeration A0, A1, . . . of all the existential formulas of LI, i.e., of the form FB,
PB, <i>B, in which every formula occurs infinitely many times. Once we have constructed the base case of
both ΣI

0 and ΦΣI
0

, we proceed inductively as follows: assume that ΣI
n = (Wn, Tn,Fn) and ΦΣI

n
(with n ≥ 0)

are defined. If no conditionals are active, then we stop the construction of finite ind-functional frames, and
ΣI = ΣI

n and ΦΣI = ΦΣI
n

. Otherwise, we have to define ΣI
n+1 and ΦΣI

n+1
. For this purpose, consider the finite

set CoordΣI
n

and the existential formula An of the enumeration characterized above. Let C ⊆ CoordΣI
n

be the
set of coordinates, c, such that “An ∈ ΦΣI

n
(c)” is the antecedent of an active conditional. Then, we have two

possible situations:

1. If C = ∅, then we establish ΣI
n+1 = ΣI

n and ΦΣI
n+1

= ΦΣI
n

, and continue the process considering the
existential formula An+1.

2. If C = {c1, . . . , cm}, for each ci ∈ C, we consider the active conditional Ci whose antecedent is just
An ∈ ΦΣI

n
(ci). So, by Theorem 3.16 (Exhausting Lemma), we obtain a sequence ΣI

n1
, . . ., ΣI

nm
of finite,

injective, admissible and rooted ind-functional frames such that ΣI
n ⊆ ΣI

n1
⊆ . . . ⊆ ΣI

nm
, and a corre-

sponding sequence of coherent traces ΦΣI
n1
, . . . ,ΦΣI

nm
such that ΦΣI

n
⊆ ΦΣI

n1
⊆ . . . ⊆ ΦΣI

nm
, so that

each conditional active Ci (for 1 ≤ i ≤ m) is exhausted after constructing ΣI
ni

and ΦΣI
ni

. Now, we set

ΣI
n+1 = ΣI

nm
and ΦΣI

n+1
= ΦΣI

nm
.

The above process, ensures that:

• ΣI is an injective ind-functional frame.

• ΦΣI is coherent, because each trace of the corresponding frames in the sequence, that is, ΦΣI
0
⊆ ΦΣI

1
⊆

. . . ⊆ ΦΣI
n
. . ., is guaranteed to be coherent. Moreover, ΦΣI is prophetic, historic and ind-possibilistic

and, therefore, it is also full. In effect, although a given trace ΦΣI
k

in that sequence is not guaranteed to be
prophetic and historic and ind-possibilistic, by applying the Exhausting Lemma, any conditional which is
active for ΦΣI

k
will become exhausted.

Now, we define the model (ΣI, h), where h(p) = {tw ∈ CoordΣI | p ∈ ΦI
Σ(tw)}, and the Trace Lemma ensures

the satisfiability of the formula A under consideration. This completes the proof.

Finally, let us prove the Exhausting Lemma.

P r o o f. Let ΦΣI
1

be a coherent trace of a finite, injective, admissible and rooted ind-functional frame, ΣI
1 =

(W1, T1,F1), and let (α) be a conditional for ΦΣI
1

which is active. We want to construct a finite, injective,
admissible and rooted ind-functional frame, ΣI

2 = (W2, T2,F2), extension of ΣI
1 , and also to define a coherent
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trace ΦΣI
2

, extension of ΦΣI
1

, in which the conditional (α) is exhausted. If (α) is either a prophetic or historic
conditional, then such a construction is carried out by following the standard way in temporal logic (see [8]). So,
let us consider only the case in which (α) is an ind-possibilistic conditional.

Assume i ∈ I and let (α) be the following active ind-possibilistic conditional for ΦΣI : If <i>A ∈ ΦΣI
1
(tw),

there is ti = w i−→ (tw) such that A ∈ ΦΣI
1
(tw). Thus, we have that < i > A ∈ ΦΣI

1
(tw), but there is no

ti = w i−→ (tw) such that A ∈ ΦΣI
1
(tw). Now, we have to consider two cases: (I) i /∈W1 and (II) i ∈W1.

(I) If i /∈W1, then, by item 3 of Proposition 3.3, there exists an mc-set, Γ, such that ΦΣI
1
(tw) ≺i Γ and A ∈ Γ.

Now, we need a new temporal flow labeled with i, Ti, which requires extending W1 and, also, introducing a
new coordinate ti associated with Γ so that ti = w i−→ (tw). Thus, ΣI

2 = (W2, T2,F2), extension of ΣI
1 , and

ΦΣI
2

, extension of ΦΣI
1

are defined as follows:

• W2 = W1 ∪ {i};
• T2 = T1 ∪ {(Ti, <i)}, where (Ti, <i) = ({ti},∅);

• F2 = F1 ∪ {
w i−→}, where w i−→= {(tw, ti)};

• ΦΣI
2

= ΦΣI
1
∪ {(ti,Γ)}.

The ind-functional frame ΣI
2 , as defined, is indeed a finite ind-functional frame. More specifically, since

(Ti, <i) is linear, it is immediate that the linearity of the temporal flows is preserved and the introduction
of w i−→, as defined, preserves condition (3) in Definition 2.1 about the set of functions. Moreover, since
i is the unique label introduced, the properties of ΣI

2 of being admissible and rooted are also preserved.
Furthermore, ΣI

2 is an injective ind-functional frame, since the only new flow is Ti and only tw has an
image in Ti. It is also immediate that ΦΣI

2
is coherent.

(II) If i ∈W1, we consider the following situations: (II.1) w i−→∈ F1; (II.2) w i−→6∈ F1

(II.1) In this case, let ti be the minimum3 of w i−→ (Tw) and t′w a coordinate such that ti = w i−→ (t′w). Then,
by coherence of ΦΣI

1
, we have ΦΣI

1
(t′w) ≺i ΦΣI

1
(ti) and, as t′w ∈ (←, tw) ∪ (tw,→), by coherence again,

we have ΦΣI
1
(tw) ≺T ΦΣI

1
(t′w) or ΦΣI

1
(t′w) ≺T ΦΣI

1
(tw). Now, by Proposition 3.15, there exists an mc-set

Γ such that ΦΣI
1
(tw) ≺i Γ and either ΦΣI

1
(ti) ≺T Γ or Γ ≺T ΦΣI

1
(ti). Assume ΦΣI

1
(ti) ≺T Γ, the other

possibility can be treated similarly. Then, if we consider the number s of successors of ti, we have two
posibilities: (II.1.a) s = 0; (II.1.b) s > 0.

(II.1.a) If s = 0, then a new coordinate t′i, i.e., t′i /∈ CoordΣI
1

, is introduced to be associated to Γ and,
thus, we have to extend ΣI

1 and ΦΣI
1

as follows:
• W2 = W1;
• T2 = (T1 − {(Ti, <i)}) ∪ {(T ′i , <′i)}, where T ′i = Ti ∪ {t′i} and
<′i =<i ∪{(ti, t′i)} ∪ {(t∗i , t′i) | t∗i <i ti};

• F2 =(F1 − {
w i−→}) ∪ { w i−→

′
}, where w i−→

′
= w i−→ ∪{(tw, t′i)}; (*)

• ΦΣI
2

= ΦΣI
1
∪ {(t′i,Γ)}. (**)

Notice that ΣI
2 , as defined, is an ind-functional frame. Also it is admissible and rooted, since so is ΣI

1 ,
andW2 = W1. For proving the injectivity of the functions inF2, there is only a new coordinate, namely

t′i = w i−→
′

(tw), being w i−→
′

the extension of the injective function w i−→∈ F1. On the other hand, if we
take into account Proposition 3.3(4), the proof of the coherence of ΦΣI

2
is straightforward.

(II.1.b) If s > 0, let t1i be the immediate successor of ti. Then, since we have, by hypothesis, that
ΦΣI

1
(ti) ≺T Γ and, by coherence, that ΦΣI

1
(ti) ≺T ΦΣI

1
(t1i ), it follows from item 5 of Proposition 3.3

that some of the following cases hold: (A) Γ = ΦΣI
1
(t1i ); (B) Γ ≺T ΦΣI

1
(t1i ); (C) ΦΣI

1
(t1i ) ≺T Γ.

(A) If Γ = ΦΣI
1
(t1i ) holds, there are two situations to be considered if injectivity is to be preserved:

3 In fact, we could consider any coordinate. We have chosen the minimum for the sake of intelligibility.
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(A1) t1i 6∈
w i−→ (Tw) and (A2) t1i ∈

w i−→ (Tw).

(A1) In this case, we only have to extend the accessibility function w i−→ in order to ensure that the image
of tw is t1i .
It is straightforward that ΣI

2 is a finite, admissible and rooted ind-functional frame and that ΦΣI
2

is

coherent. On the other hand, injectivity is preserved because w i−→ is injective and t1i 6∈
w i−→ (Tw).

(A2) If t1i ∈
w i−→ (Tw), then t1i = w i−→ (t1w), for some t1w ∈ Tw. Thus, by Proposition 3.14, applied to

ΦΣI
1
(tw),ΦΣI

1
(t1w),ΦΣI

1
(t1i ) and Γ, we get again at least one of the two remaining possibilities consid-

ered, namely: (B) Γ ≺T ΦΣI
1
(t1i ); (C) ΦΣI

1
(t1i ) ≺T Γ.

(B) If Γ ≺T ΦΣI
1
(t1i ), we have ΦΣI

1
(ti) ≺T Γ ≺T ΦΣ1(t1i ) and we introduce a new coordinate, t′i, to

be associated to Γ and located between ti and t1i . F2 and ΦΣI
2

are defined as in case (II.1.a), i.e., as in
(*) and (**), respectively.
It is easy to see that ΣI

2 and ΦΣI
2

satisfy the required properties as in previous cases.

(C) If ΦΣI
1
(t1i ) ≺T Γ, then we have to consider the immediate successor of t1i , if any. If it does not

exist, then we reason, with respect to t1i , as in case (II.1.a). Otherwise, let t2i be the immediate successor
of t1i ; then, the process for t1i can be repeated for t2i .
By iterating this process, at most s times, we get the desired result.

Finally, the case (II.2) has to be considered:
(II.2) Let us suppose that w i−→ is not defined in F1. Since ΣI

1 is admissible, there will be some temporal flow,

Tw′ , with w′ 6= w and w′ i−→∈ F1. Let ti be the minimum of w
′ i−→ (Tw′) and consider tw′ such that w

′ i−→ (tw′) = ti.
Thus, ΦΣI

1
(tw′) ≺i ΦΣI

1
(ti). Now, by definition of ΣI

1 again (as it is rooted), we have three subcases:
(II.2.a) ΦΣI

1
(tw)↘ ΦΣI

1
(tw′);

(II.2.b) ΦΣI
1
(tw′)↘ ΦΣI

1
(tw);

(II.2.c) there exists a flow Tw′′ , with w′′ 6= w and w′′ 6= w′, and
there exists tw′′ ∈ Tw′′ such that:

ΦΣI
1
(tw′′)↘ΦΣI

1
(tw) and ΦΣI

1
(tw′′)↘ΦΣI

1
(tw′).

(II.2.a): Given that ΦΣI
1
(tw) ↘ ΦΣI

1
(tw), by the Diamond Theorem, there exists an mc-set Γ such that

ΦΣI
1
(tw) ≺i Γ and Γ ∼T ΦΣI

1
(ti). Thus, we may have, once again, one of the following three situations:

(II.2.a.1) Γ = ΦΣI
1
(ti); (II.2.a.2) ΦΣI

1
(ti) ≺T Γ; (II.2.a.3) Γ ≺T ΦΣI

1
(ti).

Here, we can proceed as in case (II.1)4 by considering the number of successors (or predecessors) of ti. Thus,
since in (II.2.a.1), (II.2.a.2), and (II.2.a.3) it is the case that w i−→ 6∈ F1, in the extensions of F1 we will obtain that
F2 = F1 ∪ {

w i−→}. More specifically, in subcase (II.2.a.1) we will obtain w i−→= {(tw, ti)}, whereas in subcases
(II.2.a.2) and (II.2.a.3), we will have that w i−→ (tw) is situated, respectively, on the right and on the left of ti.

(II.2.b): Given that ΦΣI
1
(tw′)↘ ΦΣI

1
(tw′), the Diamond Theorem ensures that there exists an mc-set Γ such

that ΦΣI
1
(tw) ≺i Γ and Γ ∼T ΦΣI

1
(ti). Thus, as in (II.2.a), we have three subcases which can be discussed by

applying the same reasoning.
(II.2.c): If there exists a flow Tw′′ , with w′′ 6= w and w′′ 6= w′, and there exists tw′′ ∈ Tw′′ such that

ΦΣI
1
(tw′′)↘ΦΣI

1
(tw) and ΦΣI

1
(tw′′)↘ΦΣI

1
(tw′), once again by Diamond Theorem, there exists an mc-set Γ

such that ΦΣI
1
(tw) ≺i Γ and Γ ∼T ΦΣI

1
(ti) and the reasoning applied in (II.2.a) is also applicable to the

present case. This ends the proof of the lemma.

We study in the following section the only remaining case of incompleteness in our approach.

4 However, if Γ = ΦΣI
1

(ti) and injectivity has to be preserved, it is not necessary, unlike in (II.1.b), to consider subcases (A1) and (A2),

since we have two different functions.
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4 Incompleteness of the system SI-Surj

The incompleteness of this system can be obtained by giving a formula X valid in the class Ksurj of all ind-
functional frames where every function is surjective, which is not a theorem of SI-Surj. To do this, we will
prove the following:

1. Consider i ∈ I. Let X be the formula <i> (PP> ∨ FF>) → (PFF> ∨ FF>). Then, X is valid in
the class Ksurj . In fact, Ksurj is the class of all ind-functional frames for SI-Surj, that is, the class of all
ind-functional frames in which every theorem of SI-Surj is valid.

2. There exists a modelM such that:

(a) Every theorem of SI-Surj is valid inM.

(b) There exists an instance of X which is not valid inM.

Now, a reasonable question arises: What happens if we add the previous formula X to our system SI-Surj ?
The answer is that the resulting system is also incomplete. In fact, we prove in this section that non only the
system SI-Surj is incomplete, but also that an increasing sequence of systems, obtained by extending SI-Surj
in a natural way are also incomplete. To begin with, we give the following definition.

Definition 4.1 If γ ∈ {P, F} and n is a positive integer, we denote by γn the string formed by the repetition
times of γ. We will call (Θn)I the set of formulas {<i>(Pn> ∨ Fn>)→ (PFn> ∨ Fn>) | i ∈ I}.

Notice that the role of formulas of the form <i> (Pn> ∨ Fn>) → (PFn> ∨ Fn>) is to establish a lower
bound of the number of elements of the linear order under consideration. Concretely, the condition expressed by
this kind of formulas is a necessary condition for surjectivity: if there are at least n points in the set of images,
then there are at least n points in the set where the domain is defined. In particular, the formula X given at the
beginning of this section is an element of (Θ2)I. We can introduce now the following sequence of systems:

Definition 4.2 Let n be a positive integer, then the system SI-Surj-Θ-(n) is defined as follows:{
for n = 1: SI-Surj
for n > 1: SI-Surj-Θ-(n-1) ∪ (Θn)I

The following Propositions are needed in order to obtain the result of incompleteness of this sequence of systems.
The first one is a direct consequence of the above comment about the role of formulas in (Θn)I.

Proposition 4.3 For each positive integer n, all formulas in (Θn)I are valid in the class of ind-functional
frames Ksurj = {ΣI = (W, T ,F) | F is a class of surjective functions}.

Proposition 4.4 For every positive integer n, Ksurj is the class of all ind-functional frames for SI-Surj-Θ-(n).

P r o o f. SI-Surj is sound with respect to Ksurj and, by Definition 4.2, we have that SI-Surj-Θ-(n) is a
system obtained as an extension of SI-Surj by adding the formulas (Θk)I for k = 2, . . . , n, which are all valid
in Ksurj , by Proposition 4.3. Thus Ksurj is a class of ind-functional frames for SI-Surj-Θ-(n). Moreover, the
definability proved in Theorem 2.5 lead us finally to conclude that Ksurj is the class of all ind-functional frames
for SI-Surj-Θ-(n).

Proposition 4.5 Let n be a positive integer. The formulas (Θn+1)I are not theorems of SI-Surj-Θ-(n).

P r o o f. We fix i ∈ I and let Ψ = (W, T ,F) be a tuple such that:

• W = {w, i};

• T = {(Tw, <w), (Ti, Ri)}, where Tw = {1w, ..., (n + 1)w}; <w is a restriction of the usual strict linear
order relation on the set of natural numbers, and Ti = {1i}, Ri = Ti × Ti;

• F = {fwi} where fw0 : Tw → Ti with fwi(1w) = · · · = fwi((n+ 1)w) = 1i.

Notice that Ψ is not an ind-functional frame as given in Definition 2.1, because Ri is not a strict linear order.
We now give a modelM, based on Ψ, such that:
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1. Every theorem of SI-Surj-Θ-(n) is valid inM.

2. <i>(Pn+1> ∨ Fn+1>)→ (PFn+1> ∨ Fn+1>) is not valid inM.

For our purpose, it suffices to consider any arbitrary modelM = (Ψ, h).

Let us prove (1): It is easy to see that the axiom schemata of SI-Surj are valid in M and that the rules
preserve validity. We omit details. We focus our attention in the formulas ok kind (Θk)I for k < n+1. Consider
any such k and i ∈ I. So we deal with < i> (P k> ∨ F k>) → (PF k> ∨ F k>). Take mw ∈ Tw such
that 1 ≤ m ≤ n + 1. If m = 1, then mw ∈ h(F k>) because <w is a strict linear order relation on Tw and
there are k points to the right of 1w in Tw. If m > 1, then mw ∈ h(PF k>) since 1w <w mw. In any case,
mw ∈ h(PF k> ∨ F k>) and the proof of validity is finished.

Let us prove now (2): The formula Pn+1>∨Fn+1> is true at 1i in the modelM under consideration, because
Ri is reflexive. Thus, <i>(Pn+1>∨Fn+1>) is true at 1w. However, since (Tw, <w) is a strict linear order with
only (n+ 1) elements, the formula PFn+1>∨Fn+1> is false at 1w and, therefore, <i>(Pn+1>∨Fn+1>)→
(PFn+1> ∨ Fn+1>) is not valid inM.

The previous Propositions 4.3, 4.4 and 4.5 allow us to state our desired result of incompleteness.

Theorem 4.6 For each positive integer n, the system SI-Surj-Θ-(n) is incomplete.

5 Conclusions and Future Work

Following the tradition of using non-standard logics to study different mathematical theories, we have proposed a
combination of modal and temporal logics in order to obtain axiomatic systems dealing with several properties of
functions. We have proved the soundness and completeness of the indexed systems introduced in previous works
which deal with injective and with increasing accessibility functions. Similar proofs can be given for the rest of
the properties considered except for surjectivity. In fact, we have shown not only that the system obtained with
the formulas which define this property is incomplete, but also that there exist a sequence of natural extensions of
this system that remains incomplete. As a future work, we are studying the completeness of the system obtained
by extending SI-Surj by adding all the formulas considered in the previous sequence. Another possibility would
be to consider double indexes in order to represent the domain and image of each accessibility function. Other
future works are related to the extension of this approach to more properties of accessibility functions, and the
consideration of non-deterministic operators, in the line of [1, 11].
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[12] A. Burrieza, I. P. de Guzmán and E. Muñoz. Functional systems in the context of temporal×modal logics with indexed
flows. International Journal of Computer Mathematics. To appear, 2009.

[13] C. Dixon, M.C. Fernández Gago, M. Fisher and W. van der Hoek. Temporal Logics of Knowledge and their Applications
in Security. Electronic Notes in Theoretical Computer Science, 186: 27-42, 2007.

[14] V. Goranko and A. Zanardo. From Linear to Branching-Time Temporal Logics: Transfer of Semantics and Definability.
Logic Journal of the IGPL, 15(1): 53-76, 2007.

[15] A. Kurz and A. Palmigiano. Coalgebras and Modal Expansions of Logics. Electronic Notes in Theoretical Computer
Science, 106: 243-259, 2004.

[16] A. Lomuscio and F. Raimondi. Automatic verification of multi-agent systems by model checking via ordered binary
decision diagrams, Journal of Applied Logic, 5(2): 235-251, 2007.

[17] C. Montangero and L. Semini. Distributed States Logic. Proceedings Ninth International Symposium on Temporal
Representation and Reasoning (TIME’02), pp. 55-57, 2002.

[18] A. Morales, I. Navarrete and G. Sciavicco. Using Temporal Logic for Spatial Reasoning: Temporalized Propositional
Neighborhood Logic, Lecture Notes in Computer Science, 4739: 313-320, 2007.

[19] A. Palmigiano. A coalgebraic view on positive modal logic. Theoretical Computer Science, 327, Issues 1-2: 175-195,
2004.

[20] R. Parik, R. and R. Ramanujan. A knowledge based semantics of messages. Journal of Logic, Language and Informa-
tion, 12 (4): 453-467, 2003.

[21] A. Prior. Past, Present and Future. Clarendon Press, Oxford, 1967.
[22] A.S. Rao and M.P. Georgeff. BDI agents: From theory to practice. In Proceedings of the First International Conference

on Multi-Agent Systems (ICMAS’95), 312-319, San Francisco, CA, USA. The MIT Press: Cambridge, MA, USA, 1995.
[23] J. Reif and A. Sistla. A multiprocess network logic with temporal and spatial modalities. Journal of Computer and

System Sciences, 30: 41-53, 1985.
[24] M. Reynolds. An Axiomatization of Prior’s Ockhamist Logic of Historical Necessity, Advances in Modal Logic, 4:

355-370, 2003.
[25] R.H. Thomason. Combinations of tense and modality. In D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical

Logic, Vol.2: Extensions of Classical Logic, 135-65. Reidel, Dordrecht, 1984.
[26] W. van der Hoek and M. Wooldridge.Cooperation, knowledge, and time: Alternating-time temporal epistemic logic and

its applications. Studia Logica, 75(1): 125-157, 2003.
[27] A. Zanardo. Quantification over Sets of Possible Worlds in Branching-Time Semantics. Studia Logica, 82(3): 379-400,

2006.

6 APPENDIX: Completeness for SI-Inc

As said above, we consider this case due to its peculiarity. We present here only the results which are substantially
different from the presented ones the case of injective functions.

Lemma 6.1 Every formula of the following set is a theorem of SI-Inc:

{(<i>> ∧ F <i>A)→<i>(A ∨ FA), (<i>> ∧ P <i>A)→<i>(PA ∨A) | i ∈ I}

Proposition 6.2 If Γ1 ≺T Γ2,Γ1 ≺i Γ3 and Γ2 ≺i Γ4, then we have that Γ3 ≺T Γ4 or Γ3 = Γ4.
Proposition 6.3 If Γ1 ≺T Γ2, Γ1 ≺i Γ3 (resp., Γ2 ≺i Γ3) and <i>> ∈ Γ2 (resp., <i>> ∈ Γ1), then there

exists Γ4 ∈MC such that Γ2 ≺i Γ4 (resp., Γ1 ≺i Γ4) and either Γ3 ≺T Γ4 (resp., Γ4 ≺T Γ3) or Γ3 = Γ4.
In order to preserve the increasing property for mc-sets, we have to make a more subtle reasoning than the given
one in the injective case, because of the apparition of equality in the definition of this property. To begin with,
we present the following result.

Proposition 6.4 If Γ1 ≺T Γ ≺T Γ2, <i>> ∈ Γ,Γ1 ≺i Γ3,Γ2 ≺i Γ3 and Γ3 6≺T Γ3, then we have Γ ≺i Γ3.
Notice that the hypothesis Γ3 6≺T Γ3 is the key in the proof of the Proposition above. As a consequence of this,
we have to impose that the traces in our construction hold the following property:

(Pinc) For all w ∈W and i ∈ I such that w i−→∈ Fw and every coordinates tw, t′w ∈ Dom( w i−→) such that
tw 6= t′w, we have that: If w i−→ (tw) = w i−→ (t′w), then ΦΣI

k
( w i−→ (tw)) 6≺T ΦΣI

k
( w i−→ (t′w))

We can now prove the corresponding Exhausting Lemma for our system.
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Theorem 6.5 Let ΦΣI
1

be a coherent trace of a finite, increasing, admissible and rooted ind-functional frame
ΣI

1 which verifies the property (Pinc), and let (α) be a conditional for ΦΣI
1

which is active. Then there is an
extension of ΣI

1 , called ΣI
2 , which is finite, increasing, admissible, rooted and also verifies the property (Pinc).

Moreover, there is a coherent trace ΦΣI
2

of ΣI
2 , extension of ΦΣI

1
, such that (α) is a conditional for ΦΣI

2
which is

exhausted.

P r o o f. Assume that i ∈ I and consider an active ind-possibilistic conditional for ΦΣI , that is, suppose
< i>A ∈ ΦΣI

1
(tw), but there is no ti = w i−→ (tw) such that A ∈ ΦΣI

1
(tw). We only consider the case

i ∈ W1 and w i−→ is defined in F1, the rest of the cases can be reasoned similarly to Theorem 3.16. We have two
possibilities:

(a) there are only elements of (←, tw) with image in Ti.

(b) there are only elements of (tw,→) with image in Ti.

(c) there are elements of (←, tw) and of (tw,→) with image in Ti.

If we have the first possibility of (a) ((b) is reasoned similarly), let t′w be the maximum of the elements of
(←, tw) with image in Ti and denote t′i = w i−→ (t′w). Then, by using Proposition 6.3, there exists Γ ∈ MC such
that ΦΣI

1
(tw) ≺i Γ. Now, we have the following subcases: (a.1 )ΦΣI

1
(t′i) ≺T Γ; (a.2 )ΦΣI

1
(t′i) = Γ.

If (a.1) holds, then ΣI
2 extends ΣI

1 by considering the number s of successors of t′i as in Theorem 3.16. On
the other hand, if (a.2) holds but we are not in case (a.1), that is ΦΣI

1
(t′i) = Γ but ΦΣI

1
(t′i) 6≺T Γ 5, we extend our

ind-functional frame with the condition that the image of tw is t′i.
Finally, let us suppose that possibility (c) holds. Let t′w be the maximum of the elements of (←, tw) with

image in Ti and let t′′w be the minimum of the elements of (tw,→) with image in Ti. Let us denote t′i = w i−→ (t′w)
and t′′i = w i−→ (t′′w). It is clear that we have any of the following possibilities: (c.1) t′i <i t

′′
i (c.2) t′i = t′′i .

If we have (c.1), by Proposition 6.3, there exists Γ ∈ MC such that ΦΣI
n
(tw) ≺i Γ and, we have any of the

following subcases: (i) ΦΣI
1
(t′i) ≺T Γ; (ii) ΦΣI

1
(t′i) = Γ.

If (i) holds, by Proposition 6.2, we have also that either Γ ≺T ΦΣI
1
(t′′i ) or Γ = ΦΣI

1
(t′′i ). If the first possibility

holds, we have to extend ΣI
1 with a new element which belongs to (t′i, t

′′
i ) which has to be associated to Γ, as in

Theorem 3.16. Otherwise, that is, if Γ 6≺T ΦΣI
1
(t′′i ) and, as a consequence, Γ = ΦΣI

1
(t′′i ), we extend w i−→ such

that the image of tw is t′′i . On the other hand, if we have (ii) ΦΣI
1
(t′i) 6≺T Γ, we extend w i−→ such that the image

of tw is t′i. Finally, if (c.2) holds, by hypothesis property (Pinc) holds 6 for ΦΣI
1

, that is, ΦΣI
n
(t′i) 6≺T ΦΣI

1
(t′′i ),

hence we can use Proposition 6.4. As a consequence of this, we can extend w i−→ such that the image of tw is t′i,
and we reason as in previous cases.

As a consequence, we have the Completeness Theorem for SI-Inc:
Theorem 6.6 If a formula A ∈ LI is valid in the class of ind-functional frames

{(W, T ,F) | F is a class of increasing functions}

then A is a theorem of SI-Inc.

5 This assumption is very important, in order to preserve the property (Pinc).
6 This is the key step where we need this property.
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