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Abstract. Temporal reasoning based on intervals is nowadays ubiq-
uitous in artificial intelligence, and the most representative interval
temporal logic, called HS, was introduced by Halpern and Shoham
in the eighties. There has been a great effort in the past in studying
the expressive power and computational properties of the satisfia-
bility problem for HS and its fragments, but only recently HS has
been proposed as a suitable formalism for artificial intelligence ap-
plications. Such applications highlighted some of the intrinsic limits
of HS: sometimes, when dealing with real-life data one is not able to
express temporal relations and propositional labels in a definite, crisp
way. In this paper, following the seminal ideas of Fitting and Zadeh,
among others, we present a fuzzy generalization of HS that partially
solves such problems of expressive power, and we prove that, as in
the crisp case, its satisfiability problem is generally undecidable.

1 Introduction

Temporal reasoning based on intervals has been deeply studied in
the past years. Starting with Allen’s interval algebra for existen-
tial reasoning about sets of events and their relative positions [2],
later sharpened in several studies concerning fragments of the inter-
val algebra with better computational properties [27], the focus has
moved progressively toward the logical level, with the introduction
of Halpern and Shoham’s modal logic for temporal intervals [25],
also called HS, and with the systematic study of classical problems
of fragments of HS, that include sub-logics in which the underlying
temporal structure is constrained [34], the set of modal operators is
restricted [1, 10], the semantics is softened to a reflexive one [33],
the nesting of modal operators is reduced [11], or the propositional
power of the languages is limited [12]; a common denominator to
all such proposals is the crisp semantics of the languages. However,
when HS is used to describe real data, as suggested in [8, 32], the
need to generalize its syntax and semantics emerges in order to im-
prove its ability of describing and working with concrete situations.
For example, while from the point of view of a logician it is perfectly
acceptable that a combination of symptoms such as a period of fever,
followed by a period of headache is described by a crisp formula in
which the two events (fever and headache) have precisely one point
in common (the ending point of the first one, which is equal to the
beginning point of the second one), from the point of view of a physi-
cian such a description may be too restrictive. In particular, followed
by may be represented by the Allen’s relation meets but also, to a cer-
tain extent, by the Allen’s relation overlaps (provided that the over-
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lapping period is not too long), and by the relation /ater (provided
that the distance between the two events is not too long).

Propositional many-valued (or fuzzy) logics (from the early work
of Lukasiewicz, Post, and Tarski) extend Boolean propositional
logic by allowing more than two truth values [23]. Fuzzy modal
logics, at least in the sense we will think of them, were intro-
duced by Fitting [19] and have enjoyed sustained attention in recent
years [7, 14, 22, 40]. Fitting, in particular, gives a very general ap-
proach to fuzzy modal logic in which not only propositions, but also
accessibility relations are not just true or false, but may take different
truth values. On similar basis we introduce here a fuzzy version of
HS. We start by defining the concept of fuzzy linear ordering, follow-
ing Zadeh [41], Bodenhofer [6], Kundu [28], and Ovchinnikov [37].
Then we build, on a fuzzy linear ordering, the classical infrastruc-
ture of Allen’s relations in terms of the fuzzy version of equality and
linear ordering relations (unlike, and more generally than, [18], in
which they are defined on a underlying crisp linear ordering as func-
tions that depend on the distances between points), and, finally, we
give a fuzzy semantics to formule of HS; the resulting logic is called
Fuzzy HS (FHS, for short). Following Fitting, our approach is param-
eterized by a Heyting algebra (which generalizes the Boolean algebra
of truth values), so that both the propositional values and Allen’s re-
lations are relativized to it. As a result, FHS is a very general logic,
whose semantics can be customized by modulating the properties of
the algebra on which it is based. We also study to what extent FHS
is less expressive than HS in terms of frame properties definability
and inter-definability of modal operators, and we prove that its sat-
isfiability problem is still undecidable even under our very general
assumptions.

This work is organized as follows. In Section 2 we revise the cur-
rent literature in fuzzy modal and temporal logic. In Section 3 we re-
call the basic elements of HS. Then, in Section 4 we study the fuzzy
generalization of HS, before concluding.

2 Related Work

Fitting introduces in a systematic way fuzzy modal logics in [19], and,
since then, fuzzy modal logics have been studied by several authors
(see, e.g. [7, 14, 15, 22, 40]). Fitting’s approach, in particular, con-
sists of defining a generalization of a Kripke frame relativized to an
algebra A, so that, given two worlds v, w, the value v Rw for an ac-
cessibility relation R is a value in .4, instead of a Boolean value. As
in classical fuzzy propositional logics, propositional truth values are
relativized to A as well. In this paper, we follow a similar approach,
which can be considered more general than the one presented in [14],
as we use a generic complete Heyting Algebra, instead of a particular
one.

Temporal logics have been studied from a fuzzy point of view to



some extent. For instance, in [5] a model for the representation and
handling of fuzzy temporal references has been presented, and the
concepts of date, time extent, and interval, according to the formal-
ism of possibility theory have been introduced. In [35], the formalism
of Fuzzy Linear Temporal Logic (FLTL) is defined as a generaliza-
tion of propositional linear temporal logic with fuzzy temporal events
and fuzzy temporal states; this logic was extended also to its branch-
ing version. Unlike our approach, FLTL is based on an absolute and
linear time model with a continuous time domain, where fuzzy tem-
poral events are defined as fuzzy numbers. Other attempts to work
with non-Boolean temporal logics include, among others, a study on
model checking fuzzy CTL formul® [16]. Concerning the fuzzyfi-
cation of Allen’s interval algebra, in [18] the authors define fuzzy
Allen’s relations from a fuzzy partition made by three possible fuzzy
relations between dates (approximately equal, clearly smaller, and
clearly greater). Unlike our fuzzy approach, these are specific func-
tions which take their values in the real interval [0, 1]. On the other
hand, in [39], it is shown how temporal reasoning about fuzzy time
intervals can be reduced to reasoning about linear constraints, with-
out using any version of fuzzy Allen’s relations. To the best of our
knowledge, the only previous attempt to define a fuzzy version of
HS is [26], in which a fuzzy extension of HS, suitable for represen-
tation of preferences, has been given, and preference logic operators
are interpreted with a degree o belonging to a finite subset of the real
interval [0, 1]. More recently, it has been presented in [38] a fuzzy
logic whose sentences are Boolean combinations of propositional
variables and Allen’s relations between temporal intervals. However,
they are considered in their classical (crisp) definition and embedded
in the propositional language, and the fuzziness is restricted only to
the interpretation of the formule, which take values, again, in [0, 1]
inR.

3 The Modal Logic of Time Intervals

Syntax and semantics. Let D = (D, <) be a linearly ordered set, in
which we assume that the equality is defined in the standard way (that
is, Vz,y((z = y) & (z < y) & (y < z))), and where we use the
shortcut z < y for x < y & x # y. An interval over D is an ordered
pair [z,y], where z,y € D and z < y. While in the original ap-
proach to interval temporal logic intervals with coincident endpoints
were included in the semantics, in the recent literature they tend to be
excluded except, for instance, in [4] where a two-sorted approach has
been studied. If we exclude the identity relation, there are 12 different
relations between two intervals in a linear order, often called Allen’s
relations [2]: the six relations R4 (adjacent to, or meets), R, (later
than), Rp (begins), Rg (ends), Rp (during), and Ro (overlaps), de-
picted in Figure 1, together with their inverses Ry = (R x)*, for
each X € {A, L, B, E,D,O}. We interpret interval structures as
Kripke structures, with Allen’s relations playing the role of the ac-
cessibility relations. Thus, we associate a universal modality [X] and
an existential modality (X') with each Allen’s relation Rx . For each
X €{A,L,B,E, D, O}, the inverse of the modalities [X] and (X)
are the modalities [X] and (X), corresponding to the inverse rela-
tion R+ of Rx. Halpern and Shoham’s logic, denoted HS [24], is
a multi-modal logic with formule built from a finite, non-empty set
AP of atomic propositions (also referred to as propositional letters),
the classical propositional connectives, and a modal operator for each
Allen’s relation, as follows:

pu=L|p[— [P VE] (X))

In the above grammar, p € AP and X € {A,L,B,E,D,O,
A,L,B,E,D, 5}. The other propositional connectives and con-
stants (e.g., —, and T), as well as the dual modalities (e.g., [A]¢ =
—(A)—¢), can be defined in the standard way. Given a formula
of HS, its inverse formula is obtained by substituting every oper-
ator (X) with its inverse one (X), and the other way around, for
X € {A,L,B,E,D,O}, while its symmetric is obtained by sub-
stituting every operator (X ) with its inverse one (X ), and the other
way around, for X € {4, L,O}, and every (B) (resp., (B)) with

(E) (resp., (E)), and the other way around.

The semantics of HS is given in terms of interval models of the
type:

M = (I(D), V),

where D is a linear order, I(D) is the set of all intervals over D,
and V is a valuation function V. : AP — 2H<D), which assigns to
each atomic proposition p € AP the set of intervals V' (p) on which
p holds. The rruth of a formula ¢ on a given interval [z,y] in an
interval model M is defined by structural induction on formule as
follows:

M, [z,y] IF pif [z,y] € V(p), forp € AP;

M, [z, y] = —pif M, [z, y] I o5

M, [z,y] F ¥V EIf M, [z,y] IFor M, [x,y] IF &

M, [z,y] IF (X if M, [z,t] IF ¢ fora [z,¢] s.t. [z, y|Rx [z, ],

for X € {A,L,B,E,D,0,A,L,B,E,D,O}.

In the recent literature, several computational problems related
to the logic HS have been studied: (i) the satisfiability problem,
analyzed for the full logic in the original work by Halpern and
Shoham [24], in which the authors prove that it is undecidable when
the logic is interpreted in virtually all interesting classes of linearly
ordered sets, and for various fragments (with different computational
behaviours) in, among others, [1, 10, 11, 12, 30, 33, 34]; (ii) the
model checking problem, in [29, 31, 32], and, more recently (iii) dif-
ferent knowledge extraction problems, in [8, 13]. Some fragments of
HS present interesting properties. In the current literature, a syntac-
tical fragment of HS characterized by encompassing only a subset
of modal operators is denoted by the name of its modalities, so that
the fragment with the modalities {X1), ... (X, ) only is denoted by
X1 ...Xy; examples of interesting fragments are AB and the frag-
ment O. The inter-definability among different operators of HS has
been studied at large, with the aim to determine which are, under
given conditions, the expressively different fragments of HS. As a
consequence, by joining the expressive power results in [24] and the
inter-definability result that can be found in [1], one may obtain a
rather complete picture of interesting validities of HS in the case of
a general linear order.

Modelling temporal knowledge. In many different application
fields temporal information can be described by using intervals in-
stead of points. Moreover, temporal databases store the period of va-
lidity of certain tuples as an interval by design, although it has been
argued that not all such information is truly interval-based; think, for
example, in the case of storing the current salary of an employee
during a certain period: that information is really point-based (the
employee has been receiving such a salary every month of the stored
period), and the interval is merely a convenient description. On the
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Figure 1. Allen’s interval relations and HS modalities.

other side, in other domains, intervals are used as primitive, as we
can see in the following examples.

In the medical domain (see, e.g., [8, 32]), patients can be de-
scribed by timelines that collect all relevant pieces of information
about tests, results, symptoms, and hospitalizations that occurred
during the entire observation period, and each of these can be thought
of as intervals; in this case, for instance, we can model the fact that
during a certain period a patient suffered high fever using an interval,
so that in most (but not necessary all) observation moments during
that interval his/her body temperature was, in fact, high. By abstract-
ing the relevant knowledge in this way, we can model non-trivial
relationships between events, such as, for instance, the fact that high
fever occurs during the administration of a certain therapy. As an-
other example, in the natural language processing domain, a context
can be seen as an interval during a conversation in which a particu-
lar topic is being discussed, and, because of its nature, it cannot be
forced to be uninterrupted sequences of instants in which that partic-
ular topic is being discussed, but, instead, it is naturally represented
by abstracted intervals (see, e.g., [36]); for instance, during a conver-
sation between a seller and a potential buyer, the price of the object
to be sold is a possible context, as well as the known advantages of
a particular product over other similar ones. Extracting and elabo-
rating contexts during a conversation is a typical problem in chatbot
design; the ability of automatically identify a context, and therefore
describing in which temporal relations contexts are related to each
other is essential for the elaboration of an answer, or to decide that
human intervention is necessary. As a third example, consider the
smart home environment [3, 17, 21]. In a typical case, sensors are at-
tached to people as well as being strategically placed at several points
within a smart home. Personal sensors describe position, status, and
several other parameters of the person that wears them, while sensors
in the rooms take into account presence, absence, and possible activ-
ities of the subjects. This information is clearly interval-based: the
subject is sleeping (while) on the couch, or while in the kitchen, the
subject started cooking and then went to the living room, are possible
examples of interesting natural language statements that we want to
describe.

4 A Fuzzy Generalization of the Modal Logic of
Time Intervals

Syntax and semantics. Following Fitting, a formula of a fuzzy
modal logic is evaluated in a Heyting Algebra. A Heyting Alge-

bra is a structure A = (A, A,V,—,0,1), where (A, A,V,0,1) is
a bounded distributive lattice with (non-empty) domain A. Recall
that a bounded distributive lattice is a set with internal operations A
(meeri) and V (join), both commutative, associative, and connected
by the absorption law, in which a partial order can be defined:

axXfesalNf=asaVp=0.
The symbols 0 and 1 denote, respectively, least and the greatest ele-
ments of .A. In other words, a Heyting algebra is a bounded distribu-

tive lattice in which the relative pseudo-complement of o w.r.t. 3,
defined as:

Vi{vliaeny =8},

and denoted by a« — [ (it is also called Heyting implication), exists
for every o and 3 [20]. A Heyting algebra is said to be complete if for
every subset S C A, both its least upper bound \/ S and its greatest
lower bound A S exist, and it is said to be a chain if < is total. In the
following we restrict our attention to complete Heyting chains. Typi-
cal realizations of Heyting algebras include the two-element Boolean
algebra, the closed interval [0, 1] in R, and any finite linear chain.

There are several possible definitions of fuzzy linear orders. For
example Zadeh [41], defines a similarity relation in a set, imposing
that it is reflexive, symmetric, and transitive, as well as a notion of
fuzzy ordering, with a form of antisymmetry and fuzzy versions of
totality. Similarly, Bodenhofer [6] advocates for the use of similarity-
based fuzzy orderings, in which the linearity is in a strong form; the
same notion is also used in [28]. On the other hand, in [37] Ovchin-
nikov proposes a notion of fuzzy ordering with a non-strict ordering
relation. A common denominator to all such proposals is the defini-
tion of a very weak fuzzy version of the transitivity property, which
allows one to obtain very general definitions. Among these previous
works, the proposal that is most similar to ours is Zadeh’s, which we
modify to take into account both the fuzzy linear order and the fuzzy
similarity in the same structure. Thus, assuming that 4 is a complete
Heyting algebra with domain A, as discussed above, we start with a
domain D enriched with two functions:

Z,=:DxD— A,
and we say that the structure D = (D, <, =) is a fuzzy strictly lin-
early ordered set if it holds, for every x, y, and z:

5 This is the classical nomenclature in lattice theory, and it should not be
confused with Allen’s relation meets, used in this paper.
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1. =(z,y) =1 < x =y (reflexivity of =);

2. %(m,y) ==(y,x) (symmetry of =);

3. <(z,z) = 0 (irreflexivity of <);

4. <(z,2) = <(z,y) A <(y, 2) (transitivity of <);

5. <(z,y) = 0&<(y, 2) = 0= <(z,2) = O (transfer of <);
6. <(z,y) =0& <(y,x) = 0= =(y,z) = 1 (weak totality);
7. =(x,y) = 0 = <(x,y) < 1 (non-contradiction of < over =),

where we have used, as before, a classical meta-language with quan-
tification, logical implication (=), logical equivalence (<), and log-
ical conjunction &. Observe that the conditions 4 and 5 are indepen-
dent from each other, and that, as expected, the function <is asym-
metric: if we had that both <(z,y) and <(y, z) were positive, then
by transitivity <(z, 2) would be also positive, which is in contradic-
tion with the irreflexivity of < itself. Observe also that by irreflexivity
of < and reflexivity of =, one obtains that <(x,y) > 0 implies that
=(x,y) < 1, that is, that = does not contradict <. Moreover, it is
worth to point out that 4 is the standard transitivity used in fuzzy or-
derings; a stronger version of it, such as, for example, imposing that
<(z, 2) is greater or equal to the join of <(z,y) and <(y, z), would
lead, in fact, to a system that can only be realized in a crisp ordering.

Under such premises we say that, given a set of propositional let-
ters AP and a complete Heyting algebra A, a well-formed fuzzy in-
terval temporal logic (FHS, for short) formula is obtained by the
following grammar:

pu=al|pleVy|eny e =9 | (X)e]| [X]e,

where @« € A, p € AP, and, as in the crisp case, X €

{A,L,B,E,D,O,A,L,B,E,D,O}. We use —p to denote the
formula ¢ — 0.

Given a fuzzy strictly linearly ordered set, we can now define the
set of fuzzy strict intervals in D:

I(D) = {[z,y] | <(z,y) >~ 0}.

Generalizing classical Boolean evaluation, propositional letters are
directly evaluated in the underlying algebra, by defining a valuation
function V' : AP x I(D) — A that generalizes the crisp function
V. Apart from the fuzzyfication of valuations, following Fitting, we
need to define how accessibility relations behave in the fuzzy context.
Unlike classical modal logic, however, in interval temporal logic ac-
cessibility relations are not primitive, but they are defined over the
underlying linear order. The natural definition of fuzzy Allen’s rela-
tions, therefore, is obtained by generalizing the original, crisp defini-
tion, and substituting every = with = and every < with <:

Ra([z,y),[2.1]) = =(y, 2);

Ri([z,9), [2,1]) = <(y, 2);

Rp ([, 9], [2,1]) = =(,2) A (L, y);
Rp([z,y], [, t]) = <(z,2) A =(y,1);
Ro([z,y), [2,1]) = <(z,2) A Z(t,y);
Ro([z,y], [z, t]) = Z(z,2) A Z(2,9) A Z(y, 1)

Now, we say that an A-valued interval model (or fuzzy interval
model) is a tuple of the type:

where D is a fuzzy strictly linearly ordered set that respects the
properties 1-7, and V' is a fuzzy valuation function. We interpret
an FHS formula in a fuzzy interval model M and an interval [z, y]
by extending the valuation V of propositional letters as follows,

where X € {A,L,B,E,D,0,A,L,B,E,D,O} and [z, t] varies

inI(D):

V(e [z,9]) = o

V(e A, [2,y]) = V(e [2,9]) AV (¥, [z, 9));

VeV, [z,y]) = Vg, [z,9]) V V(% [2,y));

V(e =, [2,9]) = Vg, [1,9]) = V(®, [z,9]);

V((X)e,[z,9]) = \/ {Rx([z,9], [2,1]) AV (o, [2, )}
[2,t]

V([XJe, [2,9) = A {Rx([2,9), [21]) > V(e [z 1)}
[2,t]

We say that a formula of FHS ¢ is a-satisfied at an interval [z, y]
in a fuzzy interval model M if V(g,[z,y]) = . The formula ¢ is
a-satisfiable if and only if there exists a fuzzy interval model and an
interval in that model where it is a-satisfied. A formula is satisfiable
if it is a-satisfiable for some a € A, a # 0. A formula is a-valid
if it is c-satisfied at every interval in every model, and valid if it is
1-valid. Observe that since a Heyting algebra, in general, does not en-
compass classical negation, and since our definition of satisfiability
is graded, instead of absolute, then the usual duality of satisfiability
and validity does not hold anymore.

Modelling uncertain temporal knowledge. Let us consider the
three situations described in Section 3, and let us assume, to fix the
ideas, [0, 1] in R as underlying algebra.

Considering, as before, a timeline that describes a patient, using
FHS we can assert that on a certain interval [z, y] high fever has value
0.5, because the patient’s temperature is high, but not high enough
to be sure, and that in some sub-interval [z, t] high fever has value
0.9, because his/her temperature is sufficiently high. Suppose, now
that, therapy has value 1 at some interval [u, v] that is vaguely before
[2, t] and vaguely overlapping [z, y]: this could be modelled by suit-
ably choosing the values of = and < over pairs in {z,y, 2, t, u, v},
and by asserting that high fever occurs (fuzzily) after therapy. Taking
again into consideration the example of modelling a phone conver-
sation between a seller and a potential customer, using FHS we can
describe the inherently imprecise relationship between contexts, as
well as the fact that labelling a context is naturally vague. A context
can be recognized with keywords, but in many situations such an op-
eration cannot be accurately described as Boolean. In our example,
the price context may emerge because of words that refer to currency,
numbers, or cost; similarly, the context advantages may emerge be-
cause of words that include comparisons or quality adjectives, among
others. One can easily design a function that assigns a value to a con-
text in a certain interval, and such value can be represented in FHS
in a natural way: we can then say that price has value, for example,
0.5 on a certain interval [z, y] because two out of four possible key-
words have been detected during that interval. Finally, re-considering
the case of smart home designing, the crisp solution to the inherent
vagueness of the information, such as being in the kitchen, would
be to take arbitrary decisions in the form of threshold, e.g., if the
kitchen sensor is on at least 75% of the instants during the interval
[z, y], then [z, y] is labelled with in kitchen. Using FSH, now we can



simply give in kitchen the value 0.75. In a similar way, we can model
the vagueness in temporal relationships between events, by giving a
non-crisp value to the relation after, for example to assert that the
subject started cooking and (after) went to the living room.

Transfer of validities. As we have mentioned, the logic HS has been
studied in depth, and it is interesting to understand to which extent
its fuzzy version retains its original expressive power and character-
istics. As we shall see, FHS is somewhat weaker than HS in terms
of expressive power, but some familiar properties are preserved; of
those, some depend on the general (Fitting-like) approach to the
fuzzyfication of a modal logic, while some other are related to our
particular choices on the properties 1-7. From [1, 24], we know that:

e HS is a modal normal temporal logic, that is, that the follow-
ing formul®, and their inverse ones, are valid for every X &
{A,L,B,E,D,O}:

— the K axioms: [X](p — ¢) — ([X]p — [X]q);

— the temporal axioms: p — [X](X)p;

e therelations Ry, Rp, Rp, RE, and their inverse ones, are all tran-
sitive, that is, the following formula, and their inverses, are valid:

(D)(D)p = (D)p;
- (B)(B)p = (B)p;
= (L)(L)p = (L)p;

(

E)(E)p = (E)p;

e the following inter-definabilities hold, that is, the following for-
mulas are valid:

(LYp < (A)(A)p, its inverse, and its symmetric version;
- (LYp + (B)[E](B)(E)p and its symmetric version;
— (D)p < (B){E)p, its inverse, and its symmetric version;
(D)p <> (E)(B)p, its inverse, and its symmetric version;
(O)p <> {E){B)p and its symmetric version.

In the first group of properties, FHS retains the full power of HS,
as the following theorem proves.

Theorem 1 FHS is a normal temporal logic, that is, the following
formulee, and their inverse ones, are valid in FHS for every X €
{A,L,B,E,D,O}:

e the Kaxio&;
e p— [X[(X)p.

Proof. The fact that K holds for every relation is a consequence of a
more general result proven in [7].

Now, we prove that the temporal axiom still holds for every
modal operator, using the fact that, in a Heyting algebra, o —
B = 1 if and only if « =< [. Therefore, we prove that for
every X € {A,L,B,E,D ,O,A,L,B,E, D, O}, it holds that
V(X](X)p, [z, y]) = V(p, [x,y]) in every fuzzy model and inter-

val (we stipulate that (X) is equal to (X)). Indeed:

V(XI(X)p, [, y]) =
= /\ {EX([xﬁUL [2,t]) — \/ {EY([th]v [u, v]) A ‘7(177 [u, v])}}

[2:t] [u,v]

= N\ A{Bx([2,9), [28]) = (Bx([z,1], [2,9) AV (P, [2,9])}
[=:t]

= N\ {Bx(lz,y), [z, 1)) = RBx([z,9], [,1]) AV (p, [2,9])}
[2:1]

= V(p, [z, y)).

Observe, in particular, that the last inequality follows from the fact
that, in a Heyting algebra, a = (8 — (8 A «)) (by the definition of
— itself). |

In terms of transitivity of operators, FHS turns out to be sensibly
weaker than HS, as only (D) and its inverse can be proven to be
transitive.

Theorem 2 The following formula and its inverse one are valid in
FHS:

o (D)(D)p — (D)p.

Conversely, the following formulee, and their inverse ones, are not
valid in FHS:

* (B)(B)p — (B)p;
o (L)(L)p — (L)p;
o (E)(E)p = (E)p.

Proof. Let us start by proving that (D)(D)p — (D)p is valid in
FHS. First, observe that, given any fuzzy strictly linearly ordered
set D = (D, <,=) and any three intervals [z,y], [2,t], [u, v]
I(D), it is the case that Rp([z,y], [z,t]) A Rp([z, 1], [u,v])
<(x 2) A <(ty) A <(zu) A Z(v,t) = <(z,u) A <(v,y) =
Rp([z,y], [u,v]), where the inequality holds by the transitivity of
< (property 4 above). Thus, we have that:

V((D)(D)p, [z,y]) =
=\ {Bo(lz.y), [z ) A

m

V ABo [z, 8], [u,v]) AV (p, [u, v]) 1}

[2,t] [u,v]

=\ V {Bo(zyl, [zt) A Ro((z,1], [u,v]) AV (p, [u,v])}
[z,t] [u,v]

= \/ {ED([x’ y]a [u7 ’U]) A ‘7(137 [u> U])}
[u,v]

=V((D)p, [x,y]).

Observe, in particular, that the second equality holds because Heyt-
ing algebras are join infinite distributive.

Now, let us prove that (B) (B)p — (B)p is not valid in FHS. Con-
sider a model M = (I(D), V) with domain D = {0, 1,2,3,4,5},
and let A be the three elements Heyting chain {0 < % =<
1} with =(z,y) = max{0,1 — 3|z — y|} and <(z,y) =
min{1, max{%(y — x),0}}. It is easy to check that both = and <,
SO deﬁnj:d, sati§fy the required conditions.~ Further, consider the val-
uation V with V (p, [2, 3]) = 3 and with V(p, [z, y]) = O for every
interval [z, y] # [2, 3]. It is easy to see that the only significant inter-
vals to be checked in order to obtain V ((B)(B)p, [0, 5]) are [0, 5] ,

[1, 4] and [2, 3], hence:



51 [z ) A\ AR5 (28], [u,0]) A V(p, [u,0])}}

[2,t] [u,v]

,41,12,3)) AV (p,[2,3)
11 1_1
=333y

On the other hand:

V((B)p, 0, 5]) =

= \/{RB

[2,t]

[2:]) AV (p, [2,8])}

= Ri((0,5],[2,3]) A V(p,[2,3]) = (0A 1) A

l\)\»—\

Since V((B)(B)p, [0,5]) = V((B)p, [0, 5]), we have the result. M

Finally, all inter-definability of operators still hold in FHS, but in
only one direction; unfortunately, this means that, unlike HS, no op-
erator can be defined in terms of the others, which, in turn, means
that all fragments of FHS are expressively different, and they may
present different properties.

Theorem 3 The following formule are valid in FHS:

(L)p = (A)(A)p;
(D)p = (B)(E)p;
(D)p = (E)(B)p;
(O)p = (E)(B)p.

Conversely, their right-to-left versions are not valid in FHS; more-
over the following formula and its right-to-left version are not valid
in FHS either:

o (L)p = (B)[E|(B){E)p.

Proof. Let us focus first on proving that (L) — (A){A)¢ s validin
FHS. We begin by noticing that if Ri([z,y), [2,1]) = <(y,2) = 0,
then [y, 2] € I(D), and, so, Ra([z,9), [y, 2]) = =(y,y) = 1 and
Ra(ly, 2], [2,t]) = =(#, z) = 1. Therefore:
V((L)¢, [x,y]) =
=V {Belz,9), [, ) AV(&, [z, 1))}
[z:t]
= \/ {RA([ZC,Z/}, [y 2]) A EA(['!J, 2], [2,t]) A ‘7(¢7 [z, 1))}
[=,¢]
<\ \ {Rale, ) [, o)) A Balu, o], [28]) A V(6 [ )}
[2,t] [u,0]
= \/ {EA([xvy]v [, v]) A \/ {EA([uv v], [z, ]) A ‘7(¢7 [z,t])}}
[u,v] [=1]
= V{(A)(A)¢, [z,y))-

The remaining valid formula can be treated in a similar way.

Now, in order to prove that (AY(A)p — (L)p is not valid, take a
model M = (I(D), V) with domain D = {0,1,2,3,4} and let A
be the three elements Heyting chain {0 < 3 < 1} with =(z,y) =
max{0,1 — 3|z — y[} and <(z,y) = min{1, max{(y — z),0}}.

Then, consider a valuation V such that V(p,[2,4]) = 1 and

V(p,[z,y]) = O for every [x,y] # [2,4]. Then, the only inter-

val [z,y] such that R ([0, 2] [z,y]) = 0is [3 4], and, in par-
3

ticular, R.(]0,2],[3, 4]) = <(2,3) = 1. So V((L)p,[0,2]) =
RL([OLQL [3,4]) A V(p,[3,4]) = % A 0 = 0. On the other
hand, V({(A)(A)p, [0,2]) = Ra([0,2], [1,2]) A (Ra([1,2],[2,4]) A

V(p,[2,4])) = 3 A1 A1 = L. Therefore, VA (A —
(L)p,[0,2]) = £ — 0 =0, and so (A)(A)p — (L) is not valid.
The other right-to-left implications can be shown not to be valid us-

ing similar arguments.

To conclude, let us prove that neither (L)p — (B)[E|(B)(E)p
nor (B)[E|(B){E)p — (L)p is valid, starting with the former.
Consider a model M = (I(D), V) with domain D = {0,3,5,6}
and let, again, A be the three elements Heyting chain {0 <
% =< 1} with =(z,y) = max{0,1 — %|£E — yl} and %(x,y) =
min{1, max{1(y — z),0}}. Then, consider a valuation V' such that
V(p,[5,6]) = 1 and V(p,[z,y]) = O for every [z,y] # [5,6].
Then, the only interval [z,y] such that R.([0,3],[z,y]) = O is
[5,6], and, in particular, Ry ([0,3],[5,6]) = <(3,5) = 1. Then
V({L)p,[0,3]) = R.([0,3],[5,6]) AV (p, [5,6]) = 1. On the other
hand, the only intervals [z,¢] such that R5([0,3],[2,t]) > 0 are
[0, 5] and [0, 6], so, for [z, ¢] varying in {]0, 5], [0, 6]}, it holds:

V((B)[E|(B)(E)p, [0,3]) =
=V {B5(00,3], [z.8]) A V(EI(B)(E)p, [2,1])}-

[2:t]

The only intervals [u,v] such that Rg([0,5],[z,y]) > O are
[3,5], 3, 6], and [5, 6], so for [u,v] varying in {[3, 5], [3, 6], [5, 6]},
we have: we have:

Similarly, it can be proved that V([E)(B)(E)p,[0,6]) = 0;
hence V((B)|E](B)(E)p,[0,3]) = 0. Therefore, V((L)p —

(B)[E)(B){(E)p,[0,3]) = 1 — 0 = 0, proving that
(LYp — (B)[E](B)(E)p is not valid. In order to prove that
(B)IEIB){E)p — (L)p is not valid either, take a model
M = (I(D),V) with domain D = {0, 5,1,3} and set A

as the Heyting chain {0 < I <

as above, =(z,y) = max{0,1 —

< 2 < 1}. Define,
sle = yl} and <(z,y) =
x),0}}. Consider now a valuation V' such

N

min{1, max{3 (y
that V (p, [z,y]) = 0 for every [z,y] € I(D). This implies that
V({L)p,[0,1]) = 0. On the other hand, Ry, ([0, 1],[1,3]) = 3
and, for all [z, y] € I(D) it happens that Rz ([1, 3], [z,y]) = 0. This

implies that V((B)[E)(B)(E)p, [0, 1]) # 0 and, as recalled above,
V((L)p, [0, 2]) = 0, proving that (B)[E|(B)(E)p — (L)p is not
valid. |

Undecidability of the satisfiability problem. In the fuzzy case, the
satisfiability problem is not uniquely defined. On the one hand, the



fuzzy 1-satisfiability problem corresponds to the satisfiability prob-
lem in the crisp case; more in general, this holds for the fuzzy a-
satisfiability problem for a given «, solving which immediately re-
duces to solving the 1-satisfiability problem. On the other hand, the
a-satisfiability problem (which is the one corresponding to our def-
inition in Section 4, and asks the question of whether a given for-
mula is satisfiable at any degree at all) does not have an immediate
crisp counterpart: this is the one studied in this section. The satis-
fiability problem for crisp HS has been studied in a comprehensive
way [1, 10, 11, 12, 30, 33, 34]. Without syntactical or semantical re-
strictions, it is generally undecidable, regardless the properties of the
underlying linear order and, in addition, it remains undecidable for
most syntactical fragments of HS. As we have seen in the previous
section, the taxonomy of expressively different syntactical fragments
of FHS is very different from that of HS; however, the negative com-
putational properties still transfer from included to including frag-
ments. In other words, if any satisfiability problem is undecidable
for a syntactical fragment FX, ... X, of FHS under a certain hy-
pothesis, then so is the same problem for full FHS under the same
hypothesis. Let us consider the particular case of the fragment FO
(i.e., the fuzzy counterpart of the HS fragment O) of FHS, whose
crisp counterpart has been studied in [9]. Observe that every formula
of the fragment O, modulo writing 0 for L. and ¢ — 0 for ¢, is, in
fact, a formula of FO. Now, we want to show that a formula ¢ of the
fragment O of HS is satisfiable if and only if its fuzzy counterpart is
a-satisfiable in FHS.

Theorem 4 Let ¢ be a formula of the fragment O of (crisp) HS.
Then,  is satisfiable in the class of all linear orders if and only its
fuzzy counterpart is a-satisfiable in the class of all fuzzy linear orders
for some o = 0, o € A.

Proof. The left-to-right direction follows easily, by observing that
any interval model M = (I(ID), V') can be seen as a fuzzy interval
model M = (I(D), V) with D = (D, <, =), where <(z,y) = 1
ifr < yand <(x,y) = 0, otherwise, =(x,y) = 1 if z = y and
=(z,y) = 0, otherwise, and V (p, [z,y]) = 1if [z,y] € V(p) and
V(p, [z,y]) = 0, otherwise.

Conversely, suppose that, for some fuzzy model M = (I(D), V')
with D = (D, <, =) based on a Heyting chain .4, and some [x,y] €
(D), we have V (¢, [z,y]) = a > 0. Consider the interval model
M = (I(D), V) obtained from M by setting D = (D, <), where
z < yif and only if <(z,y) # 0, and V(p) = {[z,y] € I(D) |
17(p, [z,y]) # 0}. Itis easy to check (using the irreflexivity, transi-
tivity, transfer and weak totality of <, as well as and the reflexivity of
=) that D = (D, <), so defined, is, in fact, a linear order. Moreover,
I(D) = I(D). Observe, now, that for all [z, y], [z, ] € I(D) it is the
case that [z, y|Ro |z, t] if and only if Ro([z, ], [,t]) # 0. To see
this, suppose that [z, y]|Ro[z,t]. Then z < z < y < t and so, by
definition of <, we have <(z, 2), <(z, %), <(y,t) # 0 and, since .A
is a chain, Ro ([z, 9], [2,1]) = <(z, 2)A<(z, y) A< (y, t) # 0. Con-
versely, suppose that Ro ([z, 9], [z, t]) # 0, i.e., <(z,2) A<(z,y) A
<(y,t) # 0. This implies that <(=, z), <(z,y), <(y,t) # 0. So,
by definition, we must have z < z < y < ¢, and, hence, that
[z, y]Ro|z,t]. Now, we can prove that, for every O-formula ¢, and
every interval [x,y] € I(D), it is the case that [z,y] € V(p) if
and only if V(¢p,[z,y]) # 0. To see this, we proceed by struc-
tural induction on . The base case for propositional variables is
immediate by the definition of V, and the case for L is trivial. The

inductive cases for ¢ of the form 6 A ¥ or 6 V v are straightfor-
ward. Suppose, now, that ¢ is of the form 6 — 1, and suppose that
V(0 — 9, [x,y]) = 0. Then, V (0, [z,y]) = V (¢, [z,y]) = 0, and
hence V (6, [z, y]) # 0 while V (1, [z,3]) = 0 (because we are as-
suming that A is a chain). By the inductive hypothesis, [z, y] € V (8)
and [z,y] € V(¢), so [z, y] € V(8 — ¢). Conversely, suppose that
V(0 — o lzyl) = (VO,[2.5]) — V(,[5,9])) # 0. Then
either V (0, [z,y]) = 0 = V(¥,[z,y]), or V(¥, [z,y]) # 0. In
both cases, the inductive hypothesis yields [z,y] € V(8 — ).
Now, consider the case in which ¢ is of the form (O), and sup-
pose that [z,y] € V((O)). So, there is an interval [z,t] € I(D)
such that [z,y]Rolz,t] and [z,t] € V(¢). As we have proved
before, we have that Ro([z,y],[z,t]) # 0 and, by the induc-
tive hypothesis, V (¢, [z,t]) # 0. Therefore V((O), [z,y]) =

V{Ro([z,y], [z ) AV (e, [2,]) | [2,t] € [(D)} # 0. Conversely,
suppose that V((0)4), [z,y]) = V{Ro ([, yl, [z, t)) AV (e, [2,1]) |
[2,t] € I(D)} # 0. Then, there must be an interval [z,t] € I(D)
such that Ro ([, 9], [2,]) # 0 and V (¢, [2,1]) # 0. As we have
seen above, this means that [z, y|Ro [z, t] and, by the inductive hy-
pothesis, [z,t] € V(¢), so [z,y] € V((O)9). The case for ¢ of the
form [O]1) can be proved using a similar argumentation. |

Corollary 1 The satisfiability problem for FHS interpreted in the
class of all fuzzy linear orders is undecidable.

The satisfiability problem for HS and its fragments has been studied
in particular classes of linearly ordered sets, such as the class of all
finite linearly ordered sets, the class of all strongly discrete linearly
ordered sets, and so on. For most of cases, the computational prop-
erties are unaffected by the additional conditions of the underlying
linear order, at least for classes with at least one arbitrarily long lin-
ear order. The fragment O, among others, is undecidable in all such
cases. The investigation of the satisfiability problem for (fragments
of) FHS with respect to different linear orders would require first to
identify a set of axioms characterizing the fuzzy counterpart of each
of these classes of linear orders (along the line of the set of axioms
1-7 provided here for the class of all linear orders).

5 Conclusions

We proposed a fuzzy generalization of the interval logic HS, defining
its syntax, semantics, and discussing its expressive power by compar-
ing it to the one of crisp HS. We have studied the decidability status
of its satisfiability problem, which turned out to be undecidable at
least in the case in which the underlying algebra is a chain. While
fuzzy modal logics were proposed more than twenty years ago, this
is the first systematic definition of a fuzzy version of HS that follows
the seminal, general approach indicated by Fitting. The result is a
very powerful logic with the potential to be applicable in a number
of contexts.

There are several open questions concerning FHS. First, we have
proved that the satisfiability problem for FHS is undecidable in the
class of all fuzzy linear orders when the underlying algebra is a chain,
and asking the same question in the general case of Heyting algebras,
and for other classes of linear orders would be very natural. More-
over, it would be important to understand whether the general unde-
cidability of fragments of HS can be transferred to the fragments of
FHS, and under which hypothesis. Furthermore, the need of FHS ori-
gins from modern applications of interval temporal logics in the con-
text of information extraction. These include interval model check-
ing, used to verify temporal datasets, temporal rule extraction, and



temporal decision tree extraction; adapting these algorithms to the
case of FHS is an open, and non-trivial, problem.
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