Matemáticas III

GIE

Abstract

Selección de ejercicios de examen de diversas universidades americanas y europeas.

I. Multivariable calculus

1. Consider the function

$$
F(x, y, z)=z \sqrt{x^{2}+y}+2 \frac{y}{z} .
$$

The point $P_{0}:(1,3,2)$ lies on the surface $F(x, y, z)=7$. Find the equation of the tangent plane to the surface $F=7$ at P_{0}. If starting at P_{0} a small change were to be made in only one of the variables, which one would produce the largest change (in absolute value) in F ?
2. For each of the following functions, determine whether or not it is differentiable at $(0,0)$. Justify your answers.

$$
\begin{aligned}
& f(x, y)= \begin{cases}x^{2} y^{2}\left(x^{2}+y^{2}\right)^{-1} & \text { if }(x, y) \neq(0,0), \\
0 & \text { if }(x, y)=(0,0),\end{cases} \\
& g(x, y)= \begin{cases}x^{2}\left(x^{2}+y^{2}\right)^{-1} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)\end{cases}
\end{aligned}
$$

3. For the following function from $\mathbb{R}^{2} \rightarrow \mathbb{R}$, give with proof the set of points at which it is differentiable:

$$
g(x, y)=\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}}
$$

if at least one of x, y is not 0 , and $g(0,0)=0$.
4. Show that the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
f(x, y, z)=\left(x-y-z, x^{2}+y^{2}+z^{2}, x y z\right)
$$

is differentiable everywhere and find its differential map. Stating accurately any theorem that you require, show that f has a differentiable local inverse at a point (x, y, z) if and only if

$$
(x+y)(x+z)(y-z) \neq 0
$$

5. Consider the function

$$
f(x, y)=x^{2}+y^{2}-\frac{1}{2} x^{4}-2 x^{2} y^{2}-\frac{1}{2} y^{4} .
$$

Find the critical points of $f(x, y)$. Determine the type of each critical point and sketch contours of constant $f(x, y)$ and plot $z=f(x, y)$.
6. Let $f(x, y)=x+4 y+\frac{2}{x y}$. Find the critical points of $f(x, y)$. Use the second-derivative test to test the critical points found.
7. A rectangular box is placed in the first octant with one corner at the origin and the three adjacent faces in the coordinate planes. The opposite point $P:(x, y, z)$ is constrained to lie on the paraboloid $x^{2}+y^{2}+z=1$. Which P gives the box of gratest volume? One could use Lagrange multipliers to maximize the volume $V=x y z$ with the constraint $x^{2}+y^{2}+z=1$.

II. PDE

1. Let a be a positive constant. By considering the lines $y=a\left(x-x_{0}\right)$ for constant x_{0}, or otherwise, show that any solution of the equation

$$
\frac{\partial f}{\partial x}+a \frac{\partial f}{\partial y}=0
$$

is of the form $f(x, y)=F(y-a x)$ for some function F.
2. Let a be a positive constant. Solve the equation

$$
\frac{\partial f}{\partial x}+a \frac{\partial f}{\partial y}=f^{2}
$$

subject to $f(0, y)=g(y)$ for a given function g.
3. Check that $u(x, t)=\frac{1}{(1+4 t)^{1 / 2}} \exp \left(-\frac{x^{2}}{1+4 t}\right)$ is the solution of the Heat problem:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, u=\exp \left(-x^{2}\right) \text { at } t=0
$$

with $-\infty<x<\infty$ and $t>0$.

