Matemáticas II

GIE

Abstract

Selección de ejercicios de examen de diversas universidades americanas y europeas.

I. One variable

1. (a) Find an integral formula for the arc length of the curve $y=2 \sqrt{x+1}$ for $0 \leq x \leq 1$. Do not evaluate.
(b) Find an integral formula for the surface area of the curve in part (a) rotated around the x-asis. Simplify the integrand and evaluate the integral.
2. Estimate the following to two decimal places: $\sin (\pi+1 / 100)$ and $\sqrt{101}$.
3. Find the equation of the line tangent to the graph of $x^{2} y^{2}+y^{3}=2$ at the point $(1,1)$ on the graph. Give the equation in the form $y=m x+n$.
4. Let $F(x)=\int_{0}^{x} e^{-t^{2}} d t$.
(a) Find $F^{\prime}(1)$ and $F^{\prime \prime}(1)$.
(b) Express $\int_{1}^{2} e^{-u^{2} / 4} d u$ in terms of values of $F(x)$.
5. Define what it means for a function $f: \mathbb{R} \rightarrow$ \mathbb{R} to be differentiable at a point $a \in \mathbb{R}$. If f is differentiable everywhere on \mathbb{R}, must f^{\prime} be continuous everywhere? Justify your answer.

II. Series

1. For what values of p does $\sum_{n=1}^{\infty} \frac{n}{\sqrt{4+n^{p}}}$ converge? Indicate reasoning.
2. (a) State the Taylor's theorem with the ramainder in Lagrange's form.
(b) Suppose that $e: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function such that $e(0)=1$ and
$e^{\prime}(x)=e(x)$ for all $x \in \mathbb{R}$. Use the result of (a) to prove that

$$
e(x)=\sum_{n \geq 0} \frac{x^{n}}{n!} \text { for all } x \in \mathbb{R}
$$

No property of the exponential function may be assumed.
3. (a) Find by differentiating the function $f(x)=\sqrt{1+x}$ the first four non-zero terms of its Taylor series around $x=0$.
(b) Use the correct answer to (a) to calculate $\sqrt{1.2}$ to four decimal places.
4. Find the Taylor series for $\tan ^{-1} x$ around $x=0$ by using term-by-term differentiation or integration on the appropiate geometric series. Give enough terms to make the pattern clear.
5. For $s \in \mathbb{R}$, prove that $\sum_{n=1}^{\infty} n^{-s}$ converges if and only if $s>1$.
6. Prove that the real series

$$
\begin{gathered}
f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!^{\prime}} \\
g(x)=\sum_{n=0}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
\end{gathered}
$$

have radius of convergence ∞.
7. State Taylor's theorem. Show that

$$
(1+x)^{1 / 2}=1+\sum_{n \geq 1} c_{n} x^{n}
$$

for all $x \in(0,1)$, where

$$
c_{n}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \ldots\left(\frac{1}{2}-n+1\right)}{n!}
$$

