Matemáticas III

GIE

Abstract

Selección de ejercicios de examen de diversas universidades americanas y europeas.

I. Line integral

1. a) Show that $\mathbf{F}=\left(3 x^{2}-6 y^{2}\right) \vec{i}+(-12 x y+$ $4 y) \vec{j}$ is conservative. b) Find a potential function for F. c). Let C be the curve $x=1+y^{3}(1-y)^{3}, 0 \leq y \leq 1$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
2. Let $\mathbf{F}=\left(2 x y+z^{3}\right) \vec{i}+\left(x^{2}+2 y z\right) \vec{j}+\left(y^{2}+\right.$ $\left.3 x z^{2}-1\right) \vec{k}$. a) Show that \mathbf{F} is conservative. $b)$ Using a systematic method, find a potential function $f(x, y, z)$ such that $\mathbf{F}=\nabla f$. Show your work, even if you can do it mentally.
3. For $x^{2}+y^{2}>0$, let \mathbf{F} be the vector field defined by

$$
\mathbf{F}=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, z\right)
$$

Show that $\nabla \times \mathbf{F}=0$. Let C be the curve which is the intersection of the cylinder $x^{2}+y^{2}=1$ with the plane $z=x+200$. Calculate $\oint_{C} \mathbf{F} \cdot d \mathbf{x}$.

II. Double integral and Green's THEOREM

1. a) Draw a picture of the region of integration of $\int_{0}^{1} \int_{x}^{2 x} d y d x$. Exchange the order of integration to express the integral in part (a) in terms of integration in the order $d x d y$. Warning: your answer will hace two pieces.
2. a) Express the work done by the force field $\mathbf{F}=(5 x+3 y) \vec{i}+(1+\cos y) \vec{j}$ on a particle moving counterclockwise once around the unit circle centered at the origin in the form $\int_{a}^{b} f(t) d t$. Do not evaluate the inte-
gral; don't even simplify $f(t)$. b) Evaluate the line integral using Green's theorem.

III. Surface integral and Stokes' THEOREM

1. Let $\left.\mathbf{F}=-2 x z \vec{i}+y^{2} \vec{k} . a\right)$ Calculate curl $\left.\mathbf{F} . b\right)$ Show that $\iint_{R} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S=0$ for any finite portion R of the unit sphere $x^{2}+y^{2}+z^{2}=1$. (take the normal vector \mathbf{n} pointing outward. c) Show that $\oint_{C} \mathbf{F} \cdot d r=0$ for any simple closed curve C on the unit sphere $x^{2}+y^{2}+z^{2}=1$.

IV. Triple integral and Gauss's THEOREM

1. Let S be the surface formed by the part of the paraboloid $z=1-x^{2}-y^{2}$ lying above the $x y$-plane, and let $\mathbf{F}=x \vec{i}+y \vec{j}+2(1-z) \vec{k}$. Calculate the flux of \mathbf{F} across S, taking the upward direction as the one for which the flux is positive. Do this in two ways: a) by direct calculation of $\left.\iint_{S} \mathbf{F} \cdot \mathbf{n} d S ; b\right)$ by computing the flux of \mathbf{F} across a simpler surface and using the divergence theorem.
2. State (without proof) the divergence theorem for a vector field \mathbf{F} with continuous first-order partial derivatives throughout a volume V enclosed by a bounded oriented piecewise-smooth non-self-intersecting surface S. By calculating the relevant volume and surface integrals explicitly, verify the divergence theorem for the vector field $\mathbf{F}=\left(x^{3}+2 x y^{2}, y^{3}+2 y z^{2}, z^{3}+2 z x^{2}\right)$, defined within a sphere of radius R centred at the origin.
