Matemáticas I

Pablo Alberca Bjerregaard

Abstract

Selección de ejercicios de examen de diversas universidades americanas y europeas.

I. Bilinear and quadratic forms

1. Find a linear change of coordinates such that the quadratic form

$$
2 x^{2}+8 x y-6 x z+y^{2}-4 y z+2 z^{2}
$$

takes the form

$$
\alpha x^{2}+\beta y^{2}+\gamma z^{2}
$$

for real numbers α, β and γ.
2. Let q denote a quadratic form on a real vector space V. Define the rank and signature of q. Find the rank and signature of the following quadratic forms.
(a) $q(x, y, z)=x^{2}+y^{2}+z^{2}-2 x z-2 y z$.
(b) $q(x, y, z)=x y-x z$.
(c) $q(x, y, z)=x y-2 z^{2}$.
3. Let V denote the vector space of all real polynomials of degree at most 2 . Show that

$$
(f, g)=\int_{-1}^{1} f(x) g(x) d x
$$

defines an inner product on V. Find an orthonormal basis of V.
4. Precisely one of the four matrices specified below is not orthogonal. Which is it? Give a brief justification.

$$
\begin{aligned}
& \frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
1 & -\sqrt{3} & \sqrt{2} \\
1 & \sqrt{3} & \sqrt{2} \\
-2 & 0 & \sqrt{2}
\end{array}\right), \frac{1}{3}\left(\begin{array}{ccc}
1 & 2 & -2 \\
2 & -2 & -1 \\
2 & 1 & 2
\end{array}\right), \\
& \frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
1 & -2 & 1 \\
-\sqrt{6} & 0 & \sqrt{6} \\
1 & 1 & 1
\end{array}\right), \frac{1}{9}\left(\begin{array}{ccc}
7 & -4 & -4 \\
-4 & 1 & -8 \\
-4 & -8 & 1
\end{array}\right) .
\end{aligned}
$$

Given that the four matrices represent transformations of \mathbb{R}^{3} corresponding (in no particular order) to a rotation, a reflection, a combination of a rotation and a reflexion, and none of these, identify each matrix. Explain your reasoning.
5. Let R be a real orthogonal 3×3 matrix with a real eigenvalue λ corresponding to some real eigenvector. Show that $\lambda= \pm 1$ and interpret this result geometrically. Each of the matrices

$$
\begin{gathered}
M=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), N=\left(\begin{array}{ccc}
1 & -2 & -2 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right) \\
P=\frac{1}{3}\left(\begin{array}{ccc}
1 & -2 & -2 \\
-2 & 1 & -2 \\
-2 & -2 & 1
\end{array}\right)
\end{gathered}
$$

has and eigenvalue $\lambda=1$. Confirm this by finding as many independent eigenvectors as possible with this eigenvalue, for each matrix in turn. Show that one of the matrices above represents a rotation, and find the axis and angle of rotation. State, with brief explanations, whether the matrices M, N, P are diagonalisable (i) over the real numbers; (ii) over the complex numbers.

II. Affine space

1. Consider the quadratic surface Q in \mathbb{R}^{3} defined by

$$
2 x^{2}-4 x y+5 y^{2}-z^{2}+6 \sqrt{5} y=0
$$

Find the position of the origin \tilde{O} and orthonormal coordinate basis vectors $\tilde{e}_{1}, \tilde{e}_{2}$ and \tilde{e}_{3}, for a coordinate $\operatorname{system}(\tilde{x}, \tilde{y}, \tilde{z})$ in which Q takes the form

$$
\alpha \tilde{x}^{2}+\beta \tilde{y}^{2}+\gamma \tilde{z}^{2}=1
$$

Also determine the values of α, β and γ, and describe the surface geometrically.
2. Show that the quadric \mathcal{Q} in \mathbb{R}^{3} defined by

$$
3 x^{2}+2 x y+2 y^{2}+2 x z+2 z^{2}=1
$$

is an ellipsoid.

