Matemáticas II

Pablo Alberca Bjerregaard

Abstract

Selección de ejercicios de examen de diversas universidades americanas y europeas.

I. ORDINARY DIFFERENTIAL EQUATIONS

1. Solve $\frac{d z}{d t}=z^{2}$ subject to $z(0)=z_{0}$. For which z_{0} is the solution finite for all $t \in \mathbb{R}$?
2. Show that the solution to

$$
y^{\prime \prime}-4 y^{\prime}+3 y=t e^{-3 t}
$$

subject to the conditions $y(0)=0$ and $y^{\prime}(0)=1$, is given by

$$
y(t)=\frac{37}{72} e^{3 t}-\frac{17}{32} e^{t}+\left(\frac{5}{288}+\frac{1}{24} t\right) e^{-3 t}
$$

when $t \geq 0$.
3. Find the solution of the differential equation

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

that is bounded as $x \rightarrow \infty$ and satisfies $y=1$ when $x=0$.
4. Find the general solution of the equation

$$
\begin{equation*}
\frac{d y}{d x}-2 y=e^{\lambda x} \tag{1}
\end{equation*}
$$

where λ is a constant not equal to 2. By subtracting from the particular integral an appropriate multiple of the complementary function, obtain the limit as $\lambda \rightarrow 2$ of the general solution of (1) and confirm that it yields the general solution for $\lambda=2$. Solve equation (1) with $\lambda=2$ and $y(1)=2$.
5. Legendre's differential equation may be written
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0, y(1)=1$.
This equation has a solution $P_{n}(x)$ that is a polynomial of degree n. Find P_{0}, P_{1} and P_{2} explicitly. Find the solution when $n=0$.
6. Solve the equation

$$
\ddot{y}-\dot{y}-2 y=3 e^{2 t}+3 e^{-t}+3+6 t
$$

subject to the conditions $y=\dot{y}=0$ at $t=0$.
7. Use the transformation $z=\ln x$ to solve

$$
\ddot{z}=-\dot{z}^{2}-1-e^{-z}
$$

subject to the conditions $z=0$ and $\dot{z}=V$ at $t=0$, where V is a positive constant. Show that then $\dot{z}=0$

$$
z=\ln \left(\sqrt{V^{2}+4}-1\right)
$$

II. Systems of ordinary differential EQUATIONS

1. (a) By considering eigenvectors, find the general solution of the equations

$$
\begin{equation*}
\frac{d x}{d t}=2 x+5 y, \frac{d y}{d t}=-x-2 y \tag{2}
\end{equation*}
$$

and show that it can be written in the form

$$
\binom{x}{y}=\alpha\binom{5 \cos t}{-2 \cos t-\sin t}+\beta\binom{5 \sin t}{\cos t-2 \sin t}
$$

where α and β are constants.
(b) For any square matrix $M, \exp (M)$ is defined by

$$
\exp (M)=\sum_{n=0}^{\infty} \frac{M^{n}}{n!}
$$

Show that if M has constant elements, the vector equation $\frac{d x}{d t}=M x$ has a solution $x=\exp (M t) x_{0}$, where x_{0} is a constant vector. Hence solve (2) and show that your solution is consistent with the result of part (a).

