Matemáticas I

GIE

Abstract

Selección de ejercicios de examen de diversas universidades americanas y europeas.

I. VECTOR SPACES AND LINEAR TRANSFORMATIONS

1. Let e_{1}, e_{2} be a basis of \mathbb{R}^{2}. For which values of λ do $\lambda e_{1}+e_{2}, e_{1}+\lambda e_{2}$ form a basis of \mathbb{R}^{2} ?
2. (a). Consider the transformation T : $\mathbb{R}_{n}[x] \rightarrow \mathbb{R}$, given by $T(p):=$ $\int_{0}^{1} p(s) d s$. Show that T is a linear transformation.
(b). For the linear transformation T from part (a), you are given the relation

$$
T\left(x^{k}\right)=\int_{0}^{1} x^{k} d x=\frac{1}{k+1}, k \geq 0
$$

Pick a basis for the input space, a basis for the output space, and find the corresponding matrix that represents T.
3. Consider the vector space of polynomials of the form $p(x)=a x^{3}+b x^{2}+c x+d$, where a, b, c and d can be any real numbers. Are the following subspaces? Explain briefly in a way that we are sure you understand subspaces.
(a). Those $p(x)$ for which $p(1)=0$.
(b). Those $p(x)$ for which $p(0)=1$.
(c). Those $p(x)$ for which $a+b=c+d$.
(d). Those $p(x)$ for which $a^{b}+b^{2}=c^{2}+d^{2}$.
4. Suppose A is the 6×6 matrix
$A=\left(\begin{array}{cccccc}1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1\end{array}\right)$.
(a). What is the rank of A ?
(b). Give a basis for $\operatorname{ker}(A)$.
5. The vector space S consists of 2×2 matrices whose entries are linear functions of the symbol x. For example, $\left(\begin{array}{cc}x & 2-x \\ 1+x & 4+10 x\end{array}\right)$ is one member of S, and the general form of a member of S is

$$
A=\left(\begin{array}{ll}
a+b x & e+f x \\
c+d x & g+h x
\end{array}\right)
$$

Write down a basis for S.

II. Diagonalization and Jordan FORM

1. (a) Consider the matrix

$$
M=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 1 & -1 \\
0 & 2 & 4
\end{array}\right)
$$

Determine whether or not M is diagonalizable.
(b) Prove that if A and B are similar matrices then A and B have the same eigenvalues with the same corresponding algebraic multiplicities. Is the inverse true? Give either a proof (if true) or a counterexample with a brief reason (if false).
(c) State the Cayley-Hamilton theorem for a matrix A and prove it in the case when A is a 2×2 diagonalizable matrix.
2. Let $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.
(a). What are the eigenvalues of A ? (Explain briefly.)
(b). What is the rank of A ?
(c). What is the Jordan form of A ? (Explain briefly.)
(d). Compute in simplest form $e^{t A}$.

