
On coherence and consistence in fuzzy answer
set semantics for residuated logic programs?

Nicolás Madrid Manuel Ojeda-Aciego

Dept. Matemática Aplicada
Univ. Málaga, Spain

Abstract. In this work we recall the first steps towards the definition
of an answer set semantics for residuated logic programs with negation,
and concentrate on the development of relationships between the notions
of coherence and consistence of an interpretation.

1 Introduction

An answer set semantics has been recently introduced in the framework of resid-
uated logic programming in response of the need of developing new reasoning
paradigms for knowledge representation and non-monotonic deduction problems.

One of the most important areas on which this kind of research can be applied
is in the development of the semantic web. Mainly due to its vast nature, rea-
soning with current technologies has been deliberately chosen to be monotonic.
Although this choice seems to be the right one when dealing with the semantic
web as a whole, the benefits of non-monotonic reasoning become apparent in
a local sense: for instance, when a small number of agents communicate they
need to consider only their own knowledge bases as all the relevant knowledge,
regardless the big amount of information out there. In this case, non-monotonic
reasoning is advantageous over monotonic reasoning, i.e. one can retract previ-
ous inferences on the discovery of new knowledge by one of the agents, or one
can safely assume everything that is not known to the agents as false.

Originally, answer sets semantics was intended to deal with non-monotonic
reasoning, in that it provides a method to handle negation in logic programming.
Moreover, two kind of negations, one strong negation and one default negation,
were allowed in the programs. The use of these two types of negation is advocated
in many contexts of interest, in particular in [10] their use is justified in relation
to web rules. Moreover, the overall framework of answer set programming has
important links with description logics, as stated in [2, 5]. Specifically, [2] have
proposed a combination of logic programming under the answer set semantics
with some description logics in order to build rules on top of ontologies and,
to a limited extent, build ontologies on top of rules; on its turn, [5] introduces

? Partially supported by the Spanish Science Ministry grant TIN06-15455-C03-01 and
by Junta de Andalućıa grant P06-FQM-02049.

a language that unifies both answer set programming and expressive descrip-
tion logics as an alternative for intuitive non-monotonic reasoning with possibly
infinite knowledge.

It is convenient to note that stable models, from which the answer set se-
mantics arose, were initially aimed at formalizing the use of negation in logic
programming as negation-as-failure and, thus, are closely related to reasoning
under uncertainty. For instance, the closed world assumption for a given pred-
icate P allows for extracting negative knowledge about P from the absence of
positive information about it.

The ideal environment for developing a theory of management of uncertainty
is fuzzy logic in any of its flavours. This is why we chose to introduce negations
in a particular fuzzy logic programming paradigm, specifically the framework
of residuated logic programs (which is negation-free) [1], and consider it as our
target theory for a suitable generalization of answer set semantics.

In this paper, we start by recalling the basic definitions of stable model,
answer set and coherent interpretation in the framework of residuated logic pro-
grams introduced in [7]. Then we initiate the analysis of the relationships between
the notions of coherence of an interpretation with the more common notion of
consistence.

2 On fuzzy answer set semantics for residuated programs

In this section we include the definitions needed to recall the answer set semantics
for residuated logic programs with negation. Let us start with the definition of
residuated lattice:

Definition 1. A residuated lattice is a tuple (L,≤, ∗,←) such that:

1. (L,≤) is a complete bounded lattice, with top and bottom elements 1 and 0.
2. (L, ∗, 1) is a commutative monoid with unit element 1.
3. (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y ∗ z ≤ x ∀x, y, z ∈ L.

In residuated lattices one can interpret the operator ∗ like a conjunction and the
operator ← like an implication.

In the rest of the paper we will consider a residuated lattice enriched with
two negation operators, (L,≤, ∗,←,∼,¬). The two negations will modelize the
notions of strong negation ∼ and default negation ¬ often used in logic pro-
gramming. As usual, a negation operator, over L, is any decreasing mapping
n : L→ L satisfying n(0) = 1 and n(1) = 0.

The difference between strong and default negation in our context is essen-
tially semantical, and relates to the method used to infer the truth value of one
negated propositional symbol.

In order to introduce our logic programs, we will assume a set Π of proposi-
tional symbols. If p ∈ Π, then both p and ∼ p are called literals. We will denote
arbitrary literals with the symbol ` (possible subscripted), and the set of all
literals as Lit.

Definition 2. Given a residuated lattice with negations (L,≤, ∗,←,∼,¬), a
general residuated logic program P is a set of weighted rules of the form

〈`← `1 ∗ · · · ∗ `m ∗ ¬`m+1 ∗ · · · ∗ ¬`n; ϑ〉

where ϑ is an element of L and `, `1, . . . , `n are literals.

Rules will be frequently denoted as 〈`← B;ϑ〉. As usual, the formula B is called
the body of the rule whereas ` is called its head. We consider facts as rules with
empty body, which are interpreted as a rule 〈`← 1; ϑ〉.
Definition 3. A fuzzy L-interpretation is a mapping I : Lit→ L; note that the
domain of the interpretation can be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈`← B; ϑ〉 if and only if I(B) ∗ ϑ ≤ I(`) or,
equivalently, ϑ ≤ I(`← B).

Finally, I is a model of P if it satisfies all rules (and facts) in P.

A general residuated logic program P is said to be:

– positive if it does not contain negation operators.
– normal if it does not contain strong negation.
– extended if it does not contain default negation.

2.1 Extended logic programs and coherence

In this section, we concentrate on strong negation and, therefore, we will consider
extended residuated logic programs.

Note that, as our interpretations are defined on the set of literals, every
extended program has a least model which can be obtained, for instance, by
iterating the immediate consequence operator, see [1]. However, one has to take
into account the interaction between opposite literals. For example, in the clas-
sical case we reject the inconsistent models, i.e. p and ∼ p cannot be true at
the same time. The advantage of working in a fuzzy framework is that one can
allow that two opposite literals, such as p and ∼ p, live together . . . under some
requirements.

Our approach will be based on a generalization of the concept of consistency
which we have called coherence, to distinguish it from other existing definitions
of consistency in a fuzzy setting.

Definition 4. A fuzzy L-interpretation I over Lit is coherent if the inequality
I(∼ p) ≤ ∼ I(p) holds for every propositional symbol p.

Now, a natural question arises: why the definition above provides an acceptable
generalization? There are three main reasons: firstly, it is easy to implement,
since it only depends on the negation operator (whereas other definitions use
both a t-norm and a negation); secondly, it allows to handle missing information
(i.e. I such that I(`) = 0 for all ` ∈ Lit is always coherent); thirdly, our notion of
coherence coincides with consistency in the classical framework (it is not difficult
to check this).

We will also apply hereafter the term “coherent” to refer to a logic program,
as stated by the following definition.

Definition 5. Let P be an extended residuated logic program, we say that P is
coherent if its least model is coherent.

In Section 3 we will introduce some results about coherence, in particular
that an extended program is coherent if and only if it has some coherent model,
and we will compare it with other approaches to the generalization of consistency
to a fuzzy framework.

Example 1. Consider the following extended residuated logic program

P = {〈p←; 1〉, 〈∼ p←; 0.3〉}

over the unit interval and strong negation ∼x = 1− x:
This program is not coherent because its unique minimal modelM = {(p, 1), (∼ p, 0.3)}

is not a coherent interpretation, since 0.3 = M(∼ p) > ∼M(p) = 0.

2.2 Fuzzy answer sets

Once the concept of coherence has been presented, we can introduce the notion
of fuzzy answer set for extended logic programs. Such a set is a fuzzy set of
literals, similarly to the classical case, the difference is that in our framework it
will be considered a particular case of fuzzy L-interpretation.

Definition 6. Let P be a coherent extended residuated logic program; the fuzzy
answer set of P is its least coherent model of P.

Our aim in this section is to adapt the approach given in [3, 4] to the general
residuated logic programs defined above.

Let us consider a general residuated logic program P together with a fuzzy
L-interpretation I. To begin with, we will construct a new normal program PI

by substituting each rule in P of the form

〈`← `1 ∗ · · · ∗ `m ∗ ¬`m+1 ∗ · · · ∗ ¬`n; ϑ〉

by the rule1

〈`← `1 ∗ · · · ∗ `m; ¬I(`m+1) ∗ · · · ∗ ¬I(`n) ∗ ϑ〉

Notice that the new program PI is extended, that is, does not contain default
negation; in fact, the construction closely resembles that of a reduct in the clas-
sical case, this is why we introduce the definition below.

Definition 7. The program PI is called the reduct of P wrt the interpretation I.

It is not difficult to prove that every model M of the program P is a model
of the reduct PM .
1 Note the overloaded use of the negation symbol, as a syntactic function in the for-

mulas and as the algebraic negation in the truth-values.

Remark 1. As a result, note that given two fuzzy L-interpretations I and J ,
then the reducts PI and PJ have the same rules, and might only differ in the
values of the weights. By the monotonicity properties of ∗ and ¬, we have that
if I ≤ J then the weight of a rule in PI is greater or equal than its weight in PJ .

Now we are ready to introduce our notion of (fuzzy) answer set for general
residuated logic program.

Definition 8. Let P be a general residuated logic program and let I be a coherent
fuzzy L-interpretation; I is said to be an answer set2 of P iff I is a minimal model
of PI .

Theorem 1. Any answer set of P is a minimal model of P.

Obviously, this approach is a conservative extension of the classical approach.
In the following example we use a simple normal logic program with just one
rule in order to clarify the definition of answer set.

Example 2. Consider the program 〈p← ¬q; ϑ〉. Given a fuzzy L-interpretation
I : Π → L, the reduct PI is the rule (actually, the fact) 〈p; ϑ∗¬I(q)〉 for which
the least model is M(p) = ϑ ∗ ¬I(q), and M(q) = 0. As a result, I is an answer
set of P if and only if I(p) = ϑ ∗ ¬I(0) = ϑ ∗ 1 = ϑ and I(q) = 0.

3 On coherence and consistence

Let us start this section by introducing the usual extension of the concept of
consistent interpretation to the fuzzy case, which needs both a t-norm and a
negation operator.

Definition 9. Let ∗ be a t-norm and ∼ a negation operator. We say that an
interpretation I : Lit→ L on the set of literals is α-consistent if for all proposi-
tional symbol p we have that I(p) ∗ I(∼ p) ≤ α.

Note that, by the adjoint condition, I(p) ∗ I(∼ p) ≤ α iff I(∼ p) ≤ α ←
I(p). In other words, α-consistence provides an upper bound to the value of
I(∼ p) in terms of I(p) and the parameter α. On its turn, recall that a coherent
interpretation (Definition 4) directly provides such an upper bound, namely
∼ I(p), which depends only on the operator intended to interpret the strong
negation.

Obviously, in a classical context, both terms are equivalent as stated in the
proposition below:

Proposition 1. In classical logic, an interpretation is coherent if and only if it
is α-consistent for all α ∈ [0, 1).

Example 3. Let us study the set of coherent interpretations associated to two
extreme cases of negation. Firstly, for the least negation operator
2 For normal residuated logic programs, this definition reduces to that of stable set.

∼(x) =
{

1 if x = 0
0 if x > 0

we have that a coherent interpretation cannot assign a positive value to a propo-
sitional symbol and its negation,i.e if I(p) > 0 then I(∼ p) = 0.

Now, consider the greatest negation operator:

∼(x) =
{

1 if x < 1
0 if x = 1

For this negation, the coherence condition states that if I(p) = 1 then I(∼ p) = 0
or, alternatively, that any positive value of ∼ p (arbitrarily small), implies that
p cannot be certainly true. �

As shown in the previous example, although in a fuzzy context both defi-
nitions differ in general, there exist some relations between them. For instance,
given ∗ and ∼, consider the value

α∗∼ = sup{x ∗ ∼x | x ∈ L}

which will be called the consistence bound. Let us see some examples on the unit
interval.

Example 4. Consider the negation given by ∼x = 1− x

1. For Gödel t-norm, min(x, y), the consistence bound is 0.5.
2. For product t-norm, x · y, the consistence bound is 0.25.
3. For Lukasiewicz t-norm, max(0, x+ y − 1), the consistence bound is 0. �

Proposition 2. Let ∗ be a t-norm and ∼ a negation operator, then any coherent
interpretation is α∗∼-consistent.

Remark 2. Note that, in the above example, any coherent interpretation is 0-
consistent wrt Lukasiewicz t-norm, which requires the strongest type of consis-
tence; however, in a fuzzy context this does not mean that either p or ∼ p should
be evaluated as 0 since, for instance, if I(p) = 0.5 and I(∼ p) = 0.5 one still has
I(p) ∗ I(∼ p) = 0.

One of the main features of the notion of coherence is that it uniquely depends
on the negation operator in use, contrariwise to the definition of α-consistence,
which involves as well the underlying t-norm and the consistence level. Of course,
Proposition 2 above helps the programmer to implement the intended behaviour
regarding strong negation regarding the maximum common level that both a
propositional symbol and its negation can have maintaining coherence.

Example 5. Assume that we are working with the standard negation operator
∼ x = 1 − x. In order to find what is the maximum possible common value
for I(p) and I(∼ p) in a coherent interpretation I firstly note that, the value of
I(∼ p) should reach its upper bound, that is I(∼ p) = ∼ I(p). By definition of
the negation operator, this amounts to I(∼ p) = 1 − I(p) and, as the values of

I(p) and I(∼ p) are assume to be the same, the previous equation leads that
I(p) = I(∼ p) = 0.5.

As a result, independently of the underlying t-norm, the use of the stan-
dard negation operator and coherent interpretations does not allow that I(p) =
I(∼ p) > 0.5.

Should we wish a bound different from 0.5, the solution would be to fix
a different negation operator. A more restrictive bound is obtained by using
∼ x = 1 −

√
x; In effect, by the same reasoning as with the standard negation,

we are led to the equation 1−
√
x = x, whose positive solution is x ≈ 0.38. On

the other hand, a less restrictive one is obtained with the operator ∼ x = 1−x2,
in this case the equation to be solved is 1 − x2 = x, whose positive solution is
x ≈ 0.62. �

The previous example presented some negations which grant more or less
restrictive consistence values; however, one would like to be able to construct the
corresponding negation to a prescribed consistence value. In the unit interval,
this is given by the following

Proposition 3. Consider ε ∈ [0, 1], then the following negation operator

∼x =

{
1− 1−ε

ε x if x < ε
ε

1−ε (1− x) if x ≥ ε

satisfies that in all coherent interpretation

sup{α ∈ [0, 1] | ∃p such that I(p) = I(∼ p) = α} ≤ ε.

Note that the operator given in the previous proposition is not the only one
satisfying the statement, we have just provided a continuous negation operator
with the intended behaviour.

In order to continue with some properties of the notion of coherence, take
into account that an interpretation I assigns a truth degree to any negative
literal ∼ p independently from the negation operator. This way, if we have two
different negation operators (∼1 and ∼2) we can talk about the coherence of I
wrt any of these operators.

Proposition 4. Let ∼1 and ∼2 be two negation operators such that ∼1 ≤ ∼2,
then any interpretation I that is coherent wrt ∼1 is coherent wrt ∼2.

Another formulation of the previous property of coherence can be given, this
time in terms of two interpretations and just one negation operator, as follows:

Proposition 5. Let I and J be two interpretations satisfying I ≤ J . If J is
coherent, then I is coherent as well.

Corollary 1. If M is a fuzzy coherent model of P, then any other model T such
that T ≤M is a coherent model.

Corollary 2. A extended residuated logic program is coherent if and only if it
has at least one coherent model.

4 Conclusions and future work

We have recalled the basic definitions of the answer set semantics of general
residuated logic programs. We have concentrated on the relationships between
the notions of coherence and consistence of an interpretation.

The notion of consistence bound has been introduced for a given t-norm ∗ and
strong negation ∼, and its relationship with coherent interpretations has been
presented. Then, coherence has been studied in terms of the ordering relation
between interpretations.

A number of issues still have to be studied: for instance, the epistemologi-
cal implications of the concept of coherence. We have only taken into account
that the resulting fuzzy answer sets should be validated for coherence, as a
consistency-related notion, and developed some of its initial properties. Future
work, should go towards imbricating this notion with threshold computation
which turns out to be an important issue for negation-as-failure. For instance,
the absence of evidence of p could be interpreted that the value of p is at most
a threshold value which cannot be detected by the sensors which provide our
information.

Finally, it is important to further relate our approach with other existing
approaches [6, 9], and study their possible interactions, as well as studying the
modifications needed in order to extend the answer set semantics to multi-adjoint
logic programs [8].

References

1. C. V. Damásio and L. M. Pereira. Monotonic and residuated logic programs.
In Symbolic and Quantitative Approaches to Reasoning with Uncertainty, EC-
SQARU’01, pages 748–759. Lect. Notes in Artificial Intelligence, 2143, 2001.

2. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer
set programming with description logics for the semantic web. In Principles of
Knowledge Representation and Reasoning (KR’04), pages 141–151, 2004.

3. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. of ICLP-88, pages 1070–1080, 1988.

4. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

5. S. Heymans and D. Vermeir. Integrating semantic web reasoning and answer set
programming. In Answer Set Programming, pages 195–209, 2003.

6. T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics
for the semantic web. Fundamenta Informaticae, 82(3):289–310, 2008.

7. N. Madrid and M. Ojeda Aciego. Towards an answer set semantics for residuated
logic programs. In IEEE/WIC/ACM Intl Conf on Web Intelligence and Intelligent
Agent Technology, WI-IAT ’08, pages 260-264, 2008.

8. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based unification: a multi-
adjoint approach. Fuzzy Sets and Systems, 146(1):43–62, 2004.

9. D. Van Nieuwenborgh, M. De Cock, and D. Vermeir. An introduction to fuzzy
answer set programming. Ann. Math. Artif. Intell., 50(3-4):363–388, 2007.

10. G. Wagner. Web rules need two kinds of negation. In Principles and Practice
of Semantic Web Reasoning, volume 2901 of Lecture Notes in Computer Science,
pages 33–50, 2003.

