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Abstract. Different notions of coherence and consistence have been pro-
posed in the literature on fuzzy systems. In this work we focus on the
relationship between some of the approaches developed, on the one hand,
based of residuated lattices and, on the other hand, based on the theory
of bilattices.

1 Introduction

Although inconsistency is essentially considered as an undesirable feature, it
arises naturally when considering databases and, in many cases, seems to be
unavoidable. As a result, some efforts have been made in order to develop some
mechanism to tolerate inconsistent information.

Paraconsistent logics were introduced several decades ago as an inconsistency-
tolerant approach which allows for efficiently handling inconsistent information.
Among the different approaches in the literature, we emphasize the approaches
related to consistence restoring [2, 3] (focused on how to write repair programs),
fix-point semantics [9, 15] and inconsistent information measuring [11, 14].

It is noticeable that there is not a consensus on the notion of inconsistency in
the fuzzy logic framework: one approach, given in [7] considers that a knowledge
base is potentially inconsistent or incoherent if there exists a piece of input data
that respects integrity constraints and that leads to logical inconsistency when
added to the knowledge base; in [15] the authors consider the problem of revising
extended programs, and base their approach on the coherence theory initially
advocated by Gardenfors for belief revision.

Our contribution in this work is based on two additional approaches, previ-
ously developed separately by the authors, the notion of coherence [13] in resid-
uated logic programming [5] and the notions of consistence on a paraconsistent
extension of logic programming [1].



2 Preliminary definitions

In order to make this paper self-contained, the notions of residuated-based co-
herence and of bilattice-based consistence are recalled here.

2.1 L-interpretations and coherence

Definition 1. A residuated lattice with negation is a tuple L = (L,≤, ∗,←, n)
such that:

1. (L,≤) is a complete bounded lattice, with top and bottom elements 1 and 0.
2. (L, ∗, 1) is a commutative monoid with unit element 1.
3. (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y ∗ z ≤ x ∀x, y, z ∈ L.
4. n is an antitonic mapping n : L→ L satisfying n(0) = 1 and n(1) = 0.

The operator n in a residuated lattice with negation L = (L,≤, ∗,←, n), is
called the negation operator of L. Let us define now the syntax of our logic.
Let Π be a set of propositional symbols, then the set of well-formed formulas is
defined inductively as follows:

– every propositional symbol is a well-formed formula (wff).
– if p is a propositional symbols, then ∼ p is a wff.
– if φ and ψ are wffs then ¬φ, φ ∗ ψ and φ← ψ are wffs.

Note that we use four propositional connectives; ∗ to represent the conjunc-
tion, ← to represent the implication, ∼ to represent the strong negation and ¬
to represent the default negation.

Definition 2. A literal ` is either a propositional symbol p or a propositional
symbol negated by the strong negation ∼ p. The set of literals is denoted by Lit.

Let us describe the semantics for the syntax described below.

Definition 3. Let L = (L,≤, ∗,←, n) be a residuated lattice with negation, an
L-interpretation is a mapping I : Lit→ L.

The domain of each L-interpretation can be inductively extended to every wff
as follows:

– for every literal ` the truth value assigned by I is I(`).
– if φ and ψ are wff then:
• I(¬φ) = n(φ)
• I(φ ∗ ψ) = I(φ) ∗ I(ψ)
• I(φ← ψ) = I(φ)← I(ψ)

It is important to point out the semantical difference between strong and
default negation in this logic framework. The semantics is compositional (i.e the
truth value of ¬p depends univocally of the truth value of p) with respect to
default negation but not necessarily with respect to the strong negation (i.e the
truth values of p and ∼ p are, a priori, independent). As a result, it might happen
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that the truth-value of two opposite literals, which are assigned directly by one L-
interpretation, represent contradictory information and consider the possibility
of rejecting those cases; for instance, in classical logic programming inconsistent
interpretations are rejected. In [13], we introduced the notion of coherence as a
suitable generalization of consistence in the residuated framework.

Definition 4. Let L = (L,≤, ∗,←, n) be a residuated lattice with negation, an
L-interpretation is coherent if I(∼ p) ≤ ∼̇I(p) holds for every propositional
symbol p ∈ Π.

It is remarkable that the formula ¬p ← ∼ p has the value 1 as truth-value
with respect to every coherent L-interpretation; since I(p ← q) = 1 if and only
if I(p) ≥ I(q) holds in every residuated lattice [12]. The formula above states a
relationship between the two types of negation, specifically, it states that strong
negation implies default negation.

2.2 Bilattices and consistence

Other approaches to deal with default negation and consistency are based on
the notion of bilattice, instead of on a residuated lattice with negation as in
the previous section. For instance, [1] proposed a framework which extends a
previous approach to generalized logic programming to an arbitrary complete
bilattice of truth-values, where belief and doubt are explicitly represented, as
well as a precise definition of important operators found in logic programming,
such as explicit and default negation

Definition 5. A bilattice is a tuple B = (B,≤t,≤k) where B is a nonempty
set, and (B,≤t) and (B,≤k) are both bounded lattices.

Given a bounded lattice, two standard orderings can be defined:

– 〈a, b〉 ≤1 〈c, d〉 if and only if a ≤ c and d ≤ b
– 〈a, b〉 ≤2 〈c, d〉 if and only if a ≤ c and b ≤ d

Note that the subscript in the ordering relations occurring in the definition
stands for truth and for knowledge as this will be their underlying meaning.
Therefore, (B,≤1,≤2) and (B,≤2,≤1) represent two different bilattices.

The two possible constructions above have been used in the literature; on
the one hand, (B,≤1,≤2) was used by Ginsberg in [10], who proved that it was
able to represent both the standard notion of inference and that of assumption-
based truth maintenance systems. Specifically, given a bounded lattice (L,≤),
the bilattice G(L) is constructed as {L×L,≤1,≤2}. The underlying idea in this
bilattice consists in constructing pairs of the form 〈a, b〉 where a is interpreted
as the degree of truth and b as the degree of falsity.

The second construction can be seen in [10] again, as well as in [8] and the
idea here is to represent intervals. Specifically, this bilattice is defined as the
tuple F(L) = (L × L,≤2,≤1).The underlying idea in this bilattice is to assign
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to every propositional symbol a set of possible values of truth by providing the
infimum and supremum of a such set.

Bilattices have been widely used as useful tools to deal with incomplete
and/or inconsistent information [4, 6]. This is due to the fact that bilattices pro-
vide a natural framework in which one can define the notions of consistence and
default negation [1]. In order to introduce these notions in bilattices is necessary
to define before the concepts of negation and conflation operator.

Now that we have the notion of bilattice, we can introduce the bilattice-based
semantics for strong and default negated propositional symbols.

Definition 6. Let B = (B,≤t,≤k) be a bilattice, a B-interpretation is a map-
ping I : Π → B.

Note that the domain of B-interpretation is defined on the set of propositional
symbols Π while the domain of L-interpretations (where L is a lattice) is the
set of literals Lit. As in the case of L-interpretations, we have to generalize the
concept of consistence; this lead to the definition of negation, conflation and
default negation operators.

Definition 7. Let B be a bilattice (B,≤t,≤k)

1. A negation operator over B is a mapping n : B → B such that:
(a) a ≤k b implies n(a) ≤k n(b);
(b) a ≤t b implies n(b) ≤t n(a);
(c) n(n(a)) = a

2. A conflation operator over B is a mapping − : B → B such that:
(a) a ≤k b implies −b ≤k −a;
(b) a ≤t b implies −a ≤t −b;
(c) −− a = a
If − satisfies just items (2a)-(2b) above, it is called a weak-conflation.

Notice that a negation operator (resp. conflation operator) reverses the true-
ordering (resp. knowledge ordering) but preserves the knowledge ordering (resp.
true ordering). Once the definitions of negation and weak-conflation have been
introduced, we can provide the notion of default negation.

Definition 8. Let B = (B,≤t,≤k) be a bilattice, let n and − be a negation and
a weak-conflation operator defined on B respectively. Then, the default negation
operator is defined as not(x) = −(n(x)).

We are now in condition to recall the notion of bilattice-based consistence:

Definition 9. Let B = (B,≤t,≤k) be a bilattice, let − be a conflation defined
on B and let I be an B-interpretation. Then, I is consistent if and only if for
every propositional symbol I(p) ≤k −I(p).

Given a B-interpretation I, the truth values assigned to propositional symbols
negated by the strong and default negation are defined as follows:

1. I(∼ p) = n(I(p))
2. I(¬p) = not(I(p))

Note that under this semantics the truth-value assigned to both strong and
default negation, is given compositionally.
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3 Default negation, consistence and coherence

We start this section by showing how we can link the residuated-based semantics
(given in Section 2.1) to the bilattice-based semantics (given in Section 2.2).

Let L = (L,≤, ∗,←, n) be a residuated lattice with negation, every L-
interpretation can be considered as a G(L)-interpretation, and vice versa, via
the following (reversible) transformation:

Ω : L-interpretations→ G(L)-interpretations (1)

p 7→ I(p)
∼ p 7→ I(∼ p)

}
⇒ p 7→ (I(p), I(∼ p))

Once the relationship between L-interpretations and G(L)-interpretations has
been fixed, let us relate the underlying mathematical structures in both frame-
works. Specifically, the operators ∗,← and n of L can be extended to G(L) as
follows:

1. 〈a, b〉 ∗ 〈c, d〉 = 〈a ∗ c, b ∗ d〉
2. 〈a, b〉 ← 〈c, d〉 = 〈a← c, b← d〉
3. n(〈a, b〉) = 〈n(a), n(b)〉

Proposition 1. Let (L,≤, ∗,←, n) be a residuated lattice, and let G(L) = (L×
L,≤t,≤k) be the bilattice associated to (L,≤). Then, with the extensions de-
scribed above, the tuples (L × L,≤t, ∗,←, n) and (L × L,≤k, ∗,←, n) are resid-
uated lattices as well.

Therefore, we can define a residuated semantics on (L × L,≤t, ∗,←, n) and
(L× L,≤k, ∗,←, n). Note, however, that n does not define a negation operator
on G(L), since it is antitonic with respect to the knowledge ordering as well.
That is not really a problem since we can always define in G(L) a “natural”
negation operator by n(〈a, b〉) = 〈b, a〉.

The advantage of embedding a residuated logic into a bilattice structure
with negation and conflation, in this case in G(L), is that we can compare the
semantics for strong and default propositional symbols. But to do that, it is
necessary to define also a conflation in G(L). We recall that, given the negation
operator n on the residuated lattice (L,≤, ∗,←, n) we can define the following
weak-conflation in G(L):

−〈a, b〉 = 〈n(b), n(a)〉

Anyway, by using −, we can consider on G(L) the default negation operator
not(x) = −(n(x)). It is important to note that not(x) = n(x) for every element
in L × L since not(〈a, b〉) = − ◦ n(〈a, b〉) = −(〈b, a〉) = 〈n(a), n(b)〉. In other
words:

Proposition 2. The default negation is semantically equivalent when is inter-
preted on the residuated logic (L,≤, ∗,←, n) and when is interpreted on G(L)
with n and − as negation and conflation respectively.
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In order to establish consistence in G(L), and consider consistent elements
in L × L, a (strong) conflation is needed. Thus, to ensure that the operator
− defined above is actually a conflation, we have to assume that the negation
operator n defined on L is involutive. In that case the notions of coherence and
consistence are equivalent, that is:

Proposition 3. Let (L,≤, ∗,←, n) be a residuated lattice where n is an invo-
lutive operator. Then I a coherent interpretation in L if and only if Ω(I), as
defined by (1), is a consistent interpretation in G(L) with respect to the conflation
operator −.

Note that, at first sight, the definition of consistence in a G(L)-interpretation
Ω(I) implies two different inequalities in I, namely:

1. I(∼ p) ≤ n(I(p)) (coherence)
2. I(p) ≤ n(I(∼ p)) (dual-coherence)

but under the hypothesis of Proposition 3, that is when n is involutive, coherence
implies dual-coherence. So, the second inequality imposed by the definition of
consistence in G(L) is unnecessary, in that case.

The following question concerning the previous proposition arises now: What
is the relationship between coherence and consistence when the negation operator
in L is not involutive?

The answer is not straightforward, as there is not a natural conflation in
G(L) in the sense of the negation n which is independent of the negation in L.
Obviously, defining a conflation on G(L) by using a negation operator different
from n seems inadequate. We have opted by the use of a bilattice structure which
admits a natural conflation: F(L). The problem here is that we cannot identify
one-to-one L-interpretations with F(L)-interpretations, as in the case of G(L).
But, by using the negation operator defined on L, we can identify every element
in F(L) with another in G(L) by preserving both orderings. On other words, we
can define the following operator:

Λ : F(L)→ G(L)

〈a, b〉 7→ 〈a, n(b)〉

Note that Λ is not necessarily a one-to-one mapping, since n could be one-
to-many mapping. Note also that by using the mapping Ω we can assign to each
F(L)-interpretation an L- interpretation.

The advantage of using F(L) is that we can define a natural conflation op-
erator without using the operator n:

−(〈a, b〉) = 〈b, a〉

So the definition of consistence is “cristal clear” in this structure, a pair 〈a, b〉
is consistent in the bilattice of interval if and only if a ≤ b (that is, if and
only if 〈a, b〉 defines actually a interval). The following proposition shows the
relationship between coherence in L and consistence in F(L):
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Proposition 4.

1. If J is a consistent F(L)-interpretation, then there is a coherent L-interpretation
I such that Ω(I) = Λ(J(p)) is a coherent.

2. Given a coherent L-interpretation I, there is a consistent F(L)-interpretation
J such that Ω(I(p)) ≤k Λ(J(p)).

Proof. The first item is straightforward. For the second item, consider a coherent
L-interpretation I, then I(∼ p) ≤ n(I(p)) and Ω(I)(p) = 〈I(p), I(∼ p)〉. Consider
the F(L)-interpretation J defined as J(p) = 〈I(p), I(p)〉 for every propositional
symbol p ∈ Π; obviously J is consistent. Then, Λ(J)(p) = 〈I(p), n(I(p))〉. Note
that 〈I(p), n(I(p))〉 ≥k 〈I(p), I(∼ p)〉 since I(∼ p) ≤ n(I(p)).

It is important to recall that inconsistency is linked to the knowledge ordering
in the following sense: let a and b be two elements in a bilattice such that a ≤k b
and b is consistent, then a is consistent as well. Thus, we have the following
corollary:

Corollary 1. Assume that we have a conflation in G(L) such that Λ assigns
consistent F(L)-interpretations to consistent G(L)-interpretations, then I is a
coherent L-interpretation if and only if Ω(I) is a consistent G(L)-interpretation.

It is convenient to show that the necessary condition to apply Corollary 1
is weak, since considering the opposite seems unreasonable. Take into account
that Λ applies conveniently intervals in F(L) to elements in G(L): assume that
the real value of p is an element in the interval [a, b]. Then we have for sure that
the value for “p is true” is at least a and the value of “p is false” is at least n(b).
Thus, assuming the existence of an inconsistent element a ∈ G(L) coming from
a consistent interval b ∈ F(L) does not seem reasonable.

Let us finish the section by considering the dual-coherence inequality; namely
I(p) ≤ n(I(∼ p)). Although, after reading Proposition 3, the dual-coherence in-
equality seem necessary when the negation in the residuated lattice is not invo-
lutive, the following example shows that none of the implications of Corollary 1
hold when the dual-coherence inequality hold.

Example 1. Consider, on the lattice ([0, 1],≤), the negation operator defined
by n(x) = 1 if x = 0 and n(x) = 0 otherwise. Then the inconsistent L- in-
terpretation J which assigns to p the interval 〈1, 0.5〉 is assigned by Λ to the
G(L)-interpretation I(p) = (1, 0) which satisfies the inequality I(p) ≤ n(I(∼ p).

On the other hand, consider the negation operator defined by n(x) = 0 if
x = 1 and n(x) = 1 otherwise. Then the L-interpretation defined by I(p) = 0.5
and I(∼ p) = 1 does not satisfy the inequality I(p) ≤ n(I(∼ p)) (0.5 > n(1) = 0)
but we can assign via Λ the consistent interval 〈0.5, 1〉.

As a consequence of Corollary 1 and Example 1, in order to represent the idea
of consistence of F(L) in a residuated lattice it is only necessary the coherence
inequality, as if we consider the dual-coherence inequality then the equivalence
might not hold.
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4 Conclusions

The relationship between some of the approaches developed, on the one hand,
based of residuated lattices and, on the other hand, based on the theory of
bilattices. Specifically, the notions of coherence in the residuated-based approach
and consistence in the bilattice-based approaches (those based on Ginsberg’s
G(L) and on Fitting’s F(L)) have been thoroughly studied.
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