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Abstract. This paper presents a computability theorem for fixed points
of multi-valued functions defined on multilattices, which is later used in
order to obtain conditions which ensure that the immediate consequence
operator computes minimal models of multilattice-based logic programs
in at most w iterations.

1 Introduction

Following the trend of generalising the structure of the underlying set of truth-
values for fuzzy logic programming, multilattice-based logic programs were in-
troduced in [7] as an extended framework for fuzzy logic programming, in which
the underlying set of truth-values for the propositional variables is considered to
have a more relaxed structure than that of a complete lattice.

The first definition of multilattices, to the best of our knowledge, was in-
troduced in [1], although, much later, other authors proposed slightly different
approaches [4,6]. The crucial point in which a complete multilattice differs from
a complete lattice is that a given subset does not necessarily have a least upper
bound (resp. greatest lower bound) but some minimal (resp. maximal) ones.

As far as we know, the first paper which used multilattices in the context of
fuzzy logic programming was [7], which was later extended in [8]. In these papers,
the meaning of programs was defined by means of a fixed point semantics; and
the non-existence of suprema in general but, instead, a set of minimal upper
bounds, suggested the possibility of developing a non-deterministic fixed point
theory in the form of a multi-valued immediate consequences operator.

Essentially, the results presented in those papers were the existence of mini-
mal models below any model of a program, and that any minimal model can be
attained by a suitable version of the iteration of the immediate consequence op-
erator; but some other problems remained open, such as the constructive nature
of minimal models or the reachability of minimal models after at most countably
many iterations.
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The aim of this paper is precisely to present conditions which ensure that min-
imal models for multilattice-based logic programs can be reached by a “bounded”
iteration of the immediate consequences operator, in the sense that fixed points
are attained after no more than w iterations. Obviously, the main theoretical
problem can be stated in the general framework of multi-valued functions on a
multilattice. Some existence results in this line can be found in [2,3,5,9,10], but
they worked with complete lattices instead of multilattices.

The structure of the paper is as follows: in Section 2, some preliminary def-
initions and results are presented; later, in Section 3, we introduce the main
contribution of the paper, namely, reachability results for minimal fixed points
of multi-valued functions on a multilattice; then, in Section 4, these results are
instantiated to the particular case of the immediate consequences operator of
multilattice-based logic programs; the paper finishes with some conclusions and
prospects for future work.

2 Preliminaries

In order to make this paper self-contained, we provide in this section the basic
notions of the theory of multilattices, together with a result which will be used
later. For further explanations, the reader can see [7, 8].

Definition 1. A complete multilattice is a partially ordered set, (M, =), such
that for every subset X C M, the set of upper (resp. lower) bounds of X has
minimal (resp. maximal) elements, which are called multi-suprema (resp. multi-
infima).

The sets of multi-suprema and multi-infima of a set X are denoted by
multisup(X) and multinf (X). It is straightforward to note that these sets consist
of pairwise incomparable elements (also called antichains).

An upper bound of a set X needs not be greater than any minimal up-
per bound (multi-supremum); such a condition (and its dual, concerning lower
bounds and multi-infima) has to be explicitly required. This condition is called
coherence, and is formally introduced in the following definition, where we use
the Egli-Milner ordering , i.e., X Cgys Y if and only if for every y € Y there
exists £ € X such that £ < y and for every x € X there exists y € Y such that
z X y.

Definition 2. A complete multilattice M is said to be coherent if the following
pair of inequations hold for all X C M :

LB(X) Egp multinf(X)
multisup(X) Cgy UB(X)

where LB(X) and UB(X) denote, respectively, the sets of lower bounds and
upper bounds of the set X.



Coherence together with the non-existence of infinite antichains (so that the
sets multisup(X) and multinf(X) are always finite) have been shown to be useful
conditions when working with multilattices. Under these hypotheses, the follow-
ing important result was obtained in [7]:

Lemma 1. Let M be a coherent complete multilattice without infinite antichains,
then any chain' in M has a supremum and an infimum.

3 Reaching Fixed Points for Multi-valued Functions on
Multilattices

In order to proceed to the study of existence and reachability of minimal fixed
points for multi-valued functions, we need some preliminary definitions.

Definition 3. Given a poset P, by a multi-valued function we mean a function
f: P —2F (we do not require that f(z) # @ for every x € P).
We say that x € P is a fixed point of f if and only if x € f(x).

The adaptation of the definition of isotonicity and inflation for multi-valued
functions is closely related to the ordering that we consider on the set 2M of
subsets of M. We will consider the Smyth ordering among sets, and we will
write X Cg Y if and only if for every y € Y there exists x € X such that z < y.

Definition 4. Let f: P — 2F be a multi-valued function on a poset P:

— We say that f is isotone if and only if for all x,y € P we have that x <y
implies f(x) Cs f(y).
— We say that f is inflationary if and only if {x} Cg f(z) for every x € P.

As our intended application is focused on multilattice-based logic programs,
we can assume the existence of minimal fixed points for a given multi-valued
function on a multilattice (since in [7] the existence of minimal fixed points was
proved for the Tp operator). Regarding reachability of a fixed point, it is worth
to rely on the so-called orbits [5]:

Definition 5. Let f: M — 2™ be o multi-valued function an orbit of f is a
transfinite sequence (xz;);c; of elements x; € M where the cardinality of M is
less than the cardinality of I (|M| < |I|) and:
o = 1
Tiv1 € f(xi)
xq € multisup{z; | i < a} , for limit ordinals «

Note the following straightforward consequences of the definition:

L' A chain X is a totally ordered subset. Sometimes, for convenience, a chain will be
denoted as an indexed set {x;}ier.



1. In an orbit, we have f(z;) # @ for every i € I.

2. As f(z;) is a nonempty set, there might be many possible choices for z;;1,
so we might have many possible orbits.

3. If (x;)ics is an orbit of f and there exists k € I such that xp = gy, then
x is a fixed point of f.
Providing sufficient conditions for the existence of such orbits, we ensure the
existence of fixed points. Note that the condition f(T) # & directly implies
the existence of a fixed point, namely T.

4. Any increasing orbit eventually reaches a fixed point (this follows from the
inequality |M| < |I]).
This holds because every transfinite increasing sequence is eventually sta-
tionary, and an ordinal « such that z, = z44+1 € f(z,) is a fixed point.

Under the assumption of f being non-empty and inflationary, the existence
of increasing orbits can be guaranteed; the proof is roughly sketched below:

The orbit can be constructed for any successor ordinal « by using the inequal-
ity {za} Es f(24), which follows by inflation, since any element o411 € f(zq)
satisfies £, = @q41. The definition for limit ordinals, directly implies that it is
greater than any of its predecessors.

As a side result, note that when reaching a limit ordinal, under the assump-
tion of f being inflationary, the initial segment is actually a chain; therefore, by
Lemma 1 it has only one multi-supremum (the supremum of the chain); this fact
will be used later in Propositions 1 and 2.

Regarding minimal fixed points, the following result shows conditions under
which any minimal fixed point is attained by means of an orbit:

Proposition 1. Let f: M — 2M be inflationary and isotone, then for any
minimal fized point there is an orbit converging to it.

Proof. Let x be a minimal fixed point of f and let us prove that there is an
increasing orbit (z;);cs satisfying x; < x. We will build this orbit by transfinite
induction:

Trivially zg = L < x.

If x; < x, by isotonicity f(z;) Cg f(x). Then for x € f(x) we can choose
xit1 € f(x;) such that z;11 < = and obviously z; =< x;41 by inflation.

For a limit ordinal «, as stated above, x, = sup,.,, Z;; now, by induction we
have that x; < x for every 7 < «, hence z, < .

The transfinite chain (z;);c; constructed this way is increasing, therefore
there is an ordinal « such that z, = zo41 € f(24), S0 x, is a fixed point and
ZTo = x but by minimality of the fixed point x, we have that x = z,. O

The usual way to approach the problem of reachability is to consider some
kind of ‘continuity’ in our multi-valued functions, understanding continuity in
the sense of preservation of suprema and infima. But it is obvious that we have
to state formally what this preservation is meant, since in complete multilattices
we only have for granted the existence of sets of multi-infima and sets of multi-
suprema. This is just another reason to rely on coherent complete multilattices M



without infinite antichains so that, at least, we have the existence of suprema
and infima of chains.

Definition 6. A multi-valued function f: M — 2™ is said to be sup-preserving
if and only if for every chain X = (x;);c; we have that:

f(sup{z; |i € I})={y| there arey; € f(x;) s.t. y € multisup{y; | i € I}}

Note that, abusing a bit the notation, the definition above can be rephrased in
much more usual terms as f(sup X) = multisup(f(X)) but we will not use it,
since the intended interpretation of multisup(f(X)) is by no means standard.
Reachability of minimal fixed points is granted by assuming the extra condi-
tion that our function f is sup-preserving, as shown in the following proposition.

Proposition 2. If a multi-valued function f is inflationary, isotone and sup-
preserving, then at most countably many steps are necessary to reach a minimal
fized point (provided that some exists).

Proof. Let x be a minimal fixed point and consider the approximating increasing
orbit (x;);er given by Proposition 1. We will show that xz,, is a fixed point of f
and, therefore, z,, equals z.

As f is sup-preserving we have that f(z,,) is the set

{y | there are y; € f(z;) s.t. y = multisup{y; | i < w}}

In order to prove that z, is a fixed point, on the one hand, recall that we
have, by definition, that x, = sup{z; | i < w}. On the other hand, we will
show that this construction can be also seen as a multi-supremum of a suitable
sequence of elements y; € f(x;).

To do this we only have to recall that, by construction of the orbit, we know
that z;41 € f(x;), therefore for every 0 < i < w we can consider y; = x;41.
Hence the element z,, can be seen as an element of f(z,). Thus, z, is a fixed
point of f and x,, < x and by minimality of x, we have that x =z,. O

4 Application to fuzzy logic programs on a multilattice

In this section we apply the previous results to the particular case of the im-
mediate consequences operator for extended logic programs on a multilattice, as
defined in [7,8]. To begin with, we will assume the existence of a multilattice
(coherent and without infinite antichains) M as the underlying set of truth-
values, that is, our formulas will have certain degree of truth in M. In order to
build our formulas, we will consider a set of computable n-ary isotone operators
M™ — M which will be intended as our logical connectors. Finally, we will
consider a set I of propositional symbols as the basic blocks which will allow
to build the set of formulas, by means of the connector functions.

Now, we can recall the definition of the fuzzy logic programs based on a
multilattice:



Definition 7. A fuzzy logic program based on a multilattice M is a set P of
rules of the form A < B such that:

1. A is a propositional symbol of II, and
2. B is a formula built from propositional symbols and elements of M by using
1sotone operators.

Now we give the definition of interpretation and model of a program:
Definition 8.

1. An interpretation is a mapping I: I — M.

2. We say that I satisfies a rule A — B if and only if I(B) < I(A), where I is
the homomorphic extension of I to the set of all formulae.

3. An interpretation I is said to be a model of a program P iff all rules in P
are satisfied by 1.

Ezample 1. Let us consider an example of a program on a multilattice. The
program consists of the four rules below to the left, whereas the underlying
multilattice is the six-element multilattice depicted below to the right:

E+— A Iy
FE— B c d
A—a a b
B+b

1

It is easy to check that the program does not have a least model but two
minimal ones, I; and I5, given below:

[1(E) =cC IQ(E) =d
Il(A):a IQ(A):G,
Il(B):b IQ(B):b O

A fixed point semantics was given by means of the following consequences
operator:

Definition 9. Given a fuzzy logic program P based on a multilattice M, an inter-
pretation I and a propositional symbol A; the immediate consequences operator
is defined as follows:

Tp(I)(A) = multisup ({I(A)} U{I(B)|A—Be IP’})

Note that, by the very definition, the immediate consequences operator is
an inflationary multi-valued function defined on the set of interpretations of the
program P, which inherits the structure of multilattice. Moreover, models can
be characterized in terms of fixed points of Tp as follows:



Proposition 3 (see [7]). An interpretation I is a model of a program if and
only if I € Tp(I).

Although not needed for the definition of either the syntax or the semantics of
fuzzy logic programs, the requirement that M is a coherent multilattice without
infinite antichains turns out to be essential for the existence of minimal fixed
points, see [7]. Hence, a straightforward application of Proposition 2 allows us
to obtain the following result.

Theorem 1. If Tp is sup-preserving, then w steps are sufficient to reach a min-
1mal model.

5 Conclusions

Continuing the study of computational properties of multilattices initiated in [7],
we have presented a theoretical result regarding the attainability of minimal
fixed points of multi-valued functions on a multilattice which, as an application,
guarantees that minimal models of multilattice-based logic programs can be
attained after at most countably many iterations of the immediate consequence
operator. We recall that, in this paper, the existence of such fixed points has been
assumed because of the intended application in mind (that is, the existence of
minimal models for multilattice-based logic programs was proved in [7]).

As future work, this initial investigation on fixed points of multi-valued func-
tions on a multilattice has to be completed with the study of sufficient conditions
for the existence of (minimal) fixed points.

Another interesting line of research, which turns out to be fundamental for
the practical applicability of the presented result, is the study of conditions which
guarantee that the immediate consequences operator is sup-preserving.
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