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Measuring Inconsistency
in Fuzzy Answer Set Semantics
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Abstract—Recent approaches have shown that the measure-
ment of the amount of inconsistent information contained in a
logic theory can be useful to infer positive information.

This paper deals with the definition of measures of inconsis-
tency in the residuated logic programming paradigm under the
fuzzy answer set semantics. This fuzzy framework provides a
soft mechanism of controlling the amount of information inferred
and thus, controlling the inconsistencies by modifying slightly the
truth-values of some rules.

Index Terms—Inconsistency, Fuzzy answer set semantics.

I. INTRODUCTION

INCONSISTENCY has been considered for many years as
an undesirable feature which has to be completely ignored

in our logic theories. However inconsistency arises naturally
in databases and, in many cases, seems to be unavoidable. For
example, assume that a theft occurred in a classroom and we
construct a knowledge-base containing the student’s declara-
tions; it is highly probable that we will obtain inconsistencies.

A typical reaction when somebody obtains an inconsistent
knowledge-base is to reject it. Nevertheless, to reject the whole
bulk of information provided by a knowledge-base is not a
good decision, since we might be rejecting correct and useful
information. In the “theft” example, if every student coincides
with the time when the theft occurred, this data should be
considered true in spite of the existence of contradictory
information elsewhere.

Another way to deal with inconsistent knowledge-bases is
to try to repair them. But it is worth taking into account
that, in some cases, inconsistencies can provide us with useful
information. Thus, it might be useful to develop some mech-
anism to tolerate inconsistent information instead of getting
rid of it. For instance, if some students provide inconsistent
declarations, then it is possible that they were involved in
the pilfering; moreover, the degree of inconsistency of the
declaration of a given student seems to be related to his/her
being guilty. In this case, it would be desirable to have some
means of measuring the amount of inconsistent information
contained in a given logic theory.

Considering “inconsistency-tolerant approaches” [3] is not
new, since the family of paraconsistent logics [33], introduced
more than 30 years ago, allows us to handle efficiently in-
consistent information. Among the paraconsistent approaches
in the literature, we emphasize the approaches related to the
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ETSI Informática, Univ. de Málaga, Blv. Louis Pasteur 35, 29071 Málaga,
Spain. (email: {nmadrid,aciego}@ctima.uma.es).

consistence restoring [1], fix-point semantics [7] and incon-
sistent information measuring [6], [11], [42]. This paper is
related to the latter approaches. Some other interesting works
on measuring inconsistency in propositional knowledge bases
are [11], [14]–[16], [19], [20].

The existence of a big number of paraconsistent approaches
based on Belnap’s Lattice [2], suggest that multi-valued and/or
fuzzy logic is an ideal framework to handle inconsistency;
for a survey on uncertainty and fuzzy LPs, you may refer
to [37]. Our approach will be based on a particular type
of fuzzy framework known as residuated logic programming
[5]. Working in a fuzzy framework enables the possibility of
restoring consistence by modifying slightly (it need not be
either completely false or completely true) the information
inferred of a given propositional symbol.

In this paper, we deal with measuring the amount of incon-
sistent information in general residuated logic programs under
a convenient extension of the answer-set semantics [25]. Two
different kinds of negations are included in the residuated logic
programming framework: strong and default negation. The use
of these two kinds of negation is advocated in many contexts
of interest, particularly [41] justifies their use in relation to
web rules.

Inconsistency is introduced as being composed of two
different levels: “lack of stable models” (called instability) and
“incoherent stable models” (called incoherence). The former
occurs when a set of incompatible rules appears in the logic
program, whereas the latter occurs when the existing models
assign contradictory values to p and ∼ p. It is important to
point out that there is not a consensus on the concept of
inconsistency in the fuzzy logic framework (see Section VIII).

Measures of inconsistency are defined paying attention to
the reason which generates inconsistency [27]–[29]. In the case
of incoherence, the measure is intended to represent the excess
of information contained in the models; on the other hand,
in the case of instability, the measure computes the minimal
amount of information which has to be either removed or
added to the program so that consistence is restored.

The paper is structured as follows: we start in Section II
by recalling the syntax and semantics of general residuated
logic programs; then, in Section III we introduce our extension
of the fuzzy answer set semantics for this kind of programs.
In Section IV we study the possible reasons which cause
the inconsistency and, in addition, introduce the definition of
measure of information that we will use later. In Sections V
and VI we introduce, respectively, the measures of incoherence
and instability since, as we stated above, these are the two
dimensions into which inconsistency can be broken down.



2

Later, in Section VIII we willcomment on related approaches
to other measures of inconsistency. Finally, in Section IX we
will draw the conclusions and describe some future work we
will attempt in this research area. An appendix contains all
the technical proofs of the results stated throughout the paper.

II. PRELIMINARIES

Let us start this section by recalling the definition of
residuated lattice, which fixes the set of truth-values and the
relationship between the conjunction and the implication (the
adjoint condition) occurring in residuated logic programs.

Definition 1: A residuated lattice is a tuple (L,≤, ∗,←)
such that:

1) (L,≤) is a complete bounded lattice, with top and
bottom elements 1 and 0.

2) (L, ∗, 1) is a commutative monoid with unit element 1.
3) (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y∗z ≤

x ∀x, y, z ∈ L.
In residuated lattices, L represents the set of truth-values,

the operator ∗ is interpreted as a conjunction and the operator
← as an implication.

Hereafter, in the examples we will use the following con-
nectives defined on the unit interval [0, 1]:

Gödel connectives

x ∗G y = min(x, y) x←G y =

{
1 if x ≥ y
x otherwise

Product connectives

x ∗P y = x · y x←P y =

{
1 if x ≥ y
x
y otherwise

Definition 2: A negation operator over a residuated lattice L
is any decreasing operator n : L→ L such that n(0) = 1 and
n(1) = 0.

We will often use the following family of negation opera-
tors:

nα(x) =

{
1 if x ≤ α
0 otherwise

In the rest of the paper we will consider a residuated lattice
enriched with two negation operators, denoted by ∼ and ¬. Let
us be more specific, ∼ denotes the strong negation whereas
¬ denotes the default negation. The difference between them
is essentially semantic: the value of a propositional symbol
negated by the strong negation has to be inferred directly
by the program, whereas the value of a propositional symbol
negated by the default negation depends on the value of the
positive propositional symbol.

Remark 1: We will use the same symbol to denote the
syntactic negation symbol and the negation operator associated
with it whenever there is no possibility of confusion; other-
wise, the symbols ¬̇ and ∼̇ will denote the negation operators
associated to the respective negations.

Definition 3: A literal is either a propositional symbol or a
propositional symbol negated by the strong negation ∼.

We denote arbitrary literals with the symbol ` (possibly
subscripted) and the set of all literals as Lit. It is important
to remark that propositional symbols negated by the default
negation are no literals.

Definition 4: Given a residuated lattice with negations
(L,≤, ∗,←,∼,¬), a general residuated logic program P is
a finite set of weighted rules of the form

〈`← `1 ∗ · · · ∗ `m ∗ ¬`m+1 ∗ · · · ∗ ¬`n; ϑ〉

where the weight ϑ is an element of L, and `, `1, . . . , `n are
literals.

It is usual to denote the rules as 〈` ← B;ϑ〉. The formula
B is usually called the body of the rule whereas ` is called
its head. Sometimes, the body of a rule will be represented as
consisting of two parts B+ and B−, where the former stands
for `1 ∗ · · · ∗ `m and the latter for ¬`m+1 ∗ · · · ∗ ¬`n.

A fact is a rule with empty body, i.e facts are rules with
this form 〈p ← ;ϑ〉. The set of literals symbols appearing
in P is denoted by LitP.

The following definition establishes a semantics for the
syntax defined above.

Definition 5: An L-valued interpretation (for short, an L-
interpretation) is a mapping I : Lit→ L. Note that the domain
of the interpretation can be lifted to any rule by homomorphic
extension.1

We say that I satisfies a rule 〈` ← B; ϑ〉 if and only if
I(B) ∗ ϑ ≤ I(`) or, equivalently, ϑ ≤ I(`← B).

Finally, I is a model of P if it satisfies all rules in P.
Note that the order relation in the residuated lattice (L,≤)

can be extended over the set of all L-interpretations as follows:
Let I and J be two L-interpretations, then I ≤ J if and
only if I(`) ≤ J(`) for all literal ` ∈ Lit. Actually, the set
of L-interpretations defines a complete lattice, where the top
element is I>(`) = 1 for all ` ∈ Lit and the bottom element
is I⊥(`) = 0 for all ` ∈ Lit. Note also that an L-interpretation
can be interpreted as an L-fuzzy subset of the set of literals
Lit.

Once the semantics for residuated logic programs has
been defined, we can explain more carefully the semantic
difference between default and strong negations. Let I be
an L-interpretation; the truth-value of a propositional symbol
negated by default, ¬p, with respect to (w.r.t.) I is obtained by
applying the default operator ¬̇ to the truth-value assigned to p
by I . On the other hand, the truth-value of a strongly negated
propositional symbol ∼ p w.r.t. I is assigned directly by the
interpretation I . In other words, our approach is compositional
w.r.t. default negation, but needs not be compositional w.r.t.
strong negation.

In order to facilitate the description of fuzzy answer sets
that will be given later, we classify the programs according to
the kinds of negations appearing in them. A general residuated
logic program P is said to be:
• positive or definite if it does not contain negation opera-

tors.
• normal if it does not contain strong negation but might

contain default negation.
• extended if it does not contain default negation but it

might contain strong negation.

1The value of one formula Φ is determined by the operators and the values
assigned by I to each literal appearing in Φ. For example I(`1 ← `2) =
I(`1)← I(`2).
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III. FUZZY ANSWER SET SEMANTICS

Fuzzy answer sets will be incrementally defined by con-
sidering one type of negation at each step. Firstly, we will
consider extended residuated logic programs, and we justify
the introduction of the notion of coherence as a generalization
to the fuzzy framework of the concept of consistence. Then,
we define the fuzzy answer sets for general residuated logic
programs by conveniently adapting the original definition of
the Gelfond-Lifschitz reduct [10].

Remark 2: It is important to note that, for presentation pur-
poses, we consider the residuated logic programming frame-
work. However, the results can be straightforwardly extended
to the multi-adjoint framework [31], [32] whose underly-
ing structure is that of multi-adjoint lattice (L,≤, {∗i,←i}i)
where each (L,≤, ∗i,←i) forms a residuated lattice. The
language of the multi-adjoint framework is very flexible and
general, and embeds those given, for instance, by [39] and
other similar approaches [23], [24].

A. Extended Logic Programs and Coherence

As our interpretations are defined on the set of literals, we
are able to extend the immediate consequence operator defined
in [5] to extended residuated logic programs. The definition is
essentially that of the positive case.

Definition 6: Let P be an extended residuated logic pro-
gram. The immediate consequence operator maps every L-
interpretation I to the L-interpretation TP(I) defined below:

TP(I)(`) = sup{I(B) ∗ ϑ : 〈`← B; ϑ〉 ∈ P}

where ` ∈ Lit.
TP(I) represents the information which can be deduced

immediately from P by considering the information in I as
the knowledge base.

Proposition 1: The immediate consequence operator de-
fined above is monotonic.

Now, by Knaster-Tarski’s theorem we can state that TP has
a least fixpoint, denoted as lfp(TP), which coincides with the
least model of P. As a result, we can obtain the least model of
any extended residuated logic program by means of the least
fixpoint of TP.

However, the semantics provided by lfp(TP) does not take
into account the interaction between opposite literals. In the
classical case, the semantics given by the immediate conse-
quence operator is rejected if the interpretation is inconsistent,
i.e p and ∼ p are true at the same time. Thus we need to
generalize the idea of inconsistency into the fuzzy framework.

The advantage of working in a fuzzy framework is that one
can allow that two opposite literals, such as p and ∼ p, live
together . . . under some requirements. As the domain of our
interpretations is the set of literals, we can be more flexible and
do not reject an interpretation contradicting the following rule
of inference “(N) if the value of one propositional symbol p
is v, then the value of ¬p is n(v)” where n is a negation
operator. For example, in classical logic, the interpretation
assigning 0 to every literal contradicts the previous rule, but
is not inconsistent.

Our generalization of inconsistency focuses on the fact that
an acceptable interpretation cannot assign to each literal a
value greater than the value obtained by using rule (N), since
it would contain a contradiction with (N) by an excess of
information. This idea can be described mathematically by
using just the inequality I(∼ p) ≤ ∼̇I(p). We have called
coherence to our approach, in order to distinguish it from other
existing definitions of consistence in a fuzzy setting.

Definition 7: An L-interpretation I over Lit is coherent if
the inequality I(∼ p) ≤ ∼̇I(p) holds for every propositional
symbol p.

The notion of coherence has been studied in [26], [30]
by providing motivations to consider this generalization of
consistence instead of others. Apart from the fact that our
notion of coherence coincides with consistence in the classical
framework (it is easy to check that), there are three main
reasons which support this definition as a good generalization
of consistent interpretation in a fuzzy setting:
• Firstly, it is easy to implement since it only depends on

the negation operator, contrariwise to other definitions
which need to consider a t-norm as well.

• Secondly, it allows lack of knowledge. For example
the interpretation I⊥ which represents no information is
always coherent.

• And thirdly, an incoherent interpretation implies a con-
tradiction with the negation meta-rule by excess of infor-
mation.

Remark 3: The following question might arise when the
notion of coherence is introduced: why don’t we consider
the dual inequality I(p) ≤ ∼̇I(∼ p)? The answer is that,
whenever the negation meta-rule holds then the corresponding
interpretation always is coherent in the sense of Definition 7,
as expected, whereas there exist negation operators for which
the negation meta-rule holds and the dual inequality fails. As
an example, consider, for instance, a negation operator ∼ such
that ∼(∼x) < x for some x ∈ L and an interpretation such
that I(p) = x and I(∼ p) = ∼̇(x); it is straightforward to see
that I(p) ≤ ∼̇I(∼ p) fails in this case.

Lack of coherence is an undesirable feature not only in the
crisp case, but also in this extended case (see [30]). Therefore,
we will be concerned mainly with coherent programs (those
having at least one coherent model).

Proposition 2: The least model of an extended residuated
logic program P is coherent if and only if P has (at least) one
coherent model.

The following example shows the importance in the choice
of the negation operator to establish when an extended resid-
uated logic programs is coherent.

Example 1: Consider the following program P on the resid-
uated lattice ([0, 1],≤, ∗G,←G):

r1 : 〈p← ; 1.0〉
r2 : 〈q ← p 0.8〉
r3 : 〈∼ q ← ; 0.7〉

The least model of the program P is M = {(p, 1); (∼ p, 0);
(q, 0.8); (∼ q, 0.7)}. If we consider the usual negation, n(x) =
1 − x, to determine the coherence of the program we obtain
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that P is not coherent; however, if we consider the negation
n0.8 the program is coherent, and the least model semantics
provides a meaning to the program.

B. Fuzzy Answer sets

Once the concept of coherence has been presented, we
introduce the notion of fuzzy answer set for general residuated
logic programs. Such a set is a fuzzy set of literals, similarly
to the classical case, which will be considered as a fuzzy L-
interpretation. Our aim in this section is to adapt the approach
given in [9] and [10] to the general residuated logic programs
defined above.

To begin with, we have to define a transformation (the reduct
construction) which transforms any general logic program into
an extended logic program, modulo one interpretation.

In the classical case, the transformation comprises two
actions: either remove a rule or remove default negative
literals from the body of the rules. In our framework, the
generalization of Gelfond-Lifschitz reduct is reduced to just
one action, concerning elimination of default negation and re-
computing the values of the weights of each rule.

Formally, let us consider a general residuated logic pro-
gram P together with an L-interpretation I . We construct a
new extended program PI by substituting each rule in P

〈`← `1 ∗ · · · ∗ `m ∗ ¬`m+1 ∗ · · · ∗ ¬`n; ϑ〉

by the rule2

〈`← `1 ∗ · · · ∗ `m; ¬̇I(`m+1) ∗ · · · ∗ ¬̇I(`n) ∗ ϑ〉

Definition 8: The program PI is called the reduct of P w.r.t.
the interpretation I .

It is not difficult to prove that this definition generalizes the
classical one. This is due to the fact that removing rules and
substituting the weights by 0 are equivalent in the classical
framework.

Remark 4: As a result of the definition, note that given two
fuzzy L-interpretations I and J , then the reducts PI and PJ
have the same rules, and might only differ in the values of
the weights. By the monotonicity properties of ∗ and ¬, we
have that if I ≤ J then the weight of a rule in PI is greater
or equal than its weight in PJ .

Notice that the new program PI is extended, that is, it does
not contain default negation. Therefore, we can consider the
least model of PI and provide the following definition.

Definition 9: An L-interpretation M is a stable model of a
general residuated logic program P if and only if M is the
least model of PM .

Lemma 1: Every stable model of P is a model of P.
As stated by the previous result, the term stable “model”

makes sense. In fact, stable models are minimal models, as
stated by the following theorem:

Theorem 1: A stable model of P is a minimal model of P.
Now, as in the classical case, the notion of stable model

above can be used for defining fuzzy answer sets for general
residuated logic programs.

2Note the overloaded use of the negation symbol, as a syntactic function
in the formulas and as the algebraic negation in the truth-values.

Definition 10: Let P be a general residuated logic program.
An L-interpretation I is said to be a fuzzy answer set of P iff
it is a coherent stable model of P.

The following example shows a logic program with only
two rules in order to illustrate the notion of fuzzy answer set.

Example 2: Consider the general residuated logic program
below:

P = {〈p← ¬∼ p;ϑ〉 ; 〈∼ p← ¬p;ϑ〉}

where ϑ is an arbitrary element in [0, 1], and the connectives
are evaluated over {[0, 1],≤, ∗G,←G,¬,∼} where the default
negation is ¬(x) = 1− x and the strong negation is

∼(x) =


1− x if 0.8 < x ≤ 1

3
5 −

1
2x if 0.4 < x ≤ 0.8

6
5 − 2x if 0.2 < x ≤ 0.4

1− x if 0 ≤ x ≤ 0.2

Let us check that if ϑ ≤ 0.5, then the program above has
only one stable model M , exactly M(p) = M(∼ p) = ϑ.
Assume that M is a stable model, that is, it is the least
model of PM and has to coincide with the [0, 1]-interpretation
{(p,min(1−M(∼ p), ϑ)); (∼ p,min(1−M(p), ϑ))}.

Now, since ϑ ≤ 0.5 then M(p) ≤ 0.5 and M(∼ p) ≤ 0.5; as
a result we have that 1−M(p) ≥ 0.5 ≥ ϑ and 1−M(∼ p) ≥
0.5 ≥ ϑ. Therefore, M(p) = min(1 − M(∼ p), ϑ) = ϑ.
Similarly M(∼ p) = ϑ.

On the other hand, let us check that if ϑ > 0.5, then there
exists a family of stable models given by the infinitely many
interpretations below:

Mδ ≡ {(p, δ); (∼ p, 1− δ)} where δ ∈ [1− ϑ, ϑ]

Firstly, we will see that every L-interpretation Mδ is a stable
model of P. The reduct PMδ

is the extended residuated
logic program formed by two facts; namely 〈p ← ; min{1 −
Mδ(∼ p), ϑ}〉 and 〈∼ p←; min{1−Mδ(p), ϑ}〉. Since Mδ(p)
and Mδ(∼ p) are greater or equal than 1 − ϑ, each fact in
the reduct can be rewritten by 〈p ← ; 1 − Mδ(∼ p)〉 and
〈∼ p ←; 1 −Mδ(p)〉 respectively. So the minimal model of
PMδ

is the L-interpretation I = {(p, 1−Mδ(∼ p)), (∼ p, 1−
Mδ(p))} = {(p, 1− (1− δ)), (∼ p, 1− δ)} = Mδ .

Let us see now that there is no other stable model, assume
that M is a stable model such that M(p) = δ. Then, as M is
the least model of PM , the following equalities hold

δ := M(p) = min(1−M(∼ p), ϑ)

M(∼ p) = min(1−M(p), ϑ) = min(1− δ, ϑ)

By using the second equality, we can assert that M(∼ p)
is equal either to ϑ or 1 − δ. We consider firstly the case
M(∼ p) = ϑ. So in this case M(p) = min(1−ϑ, ϑ) = 1−ϑ,
since ϑ ≥ 0.5. So in this case, M is the stable model
M1−ϑ = {(p, 1 − ϑ); (∼ p, ϑ)}. We consider now the case
M(∼ p) = 1− δ. Then necessarily 1− δ ≤ ϑ, or equivalently
δ ≥ 1 − ϑ. Moreover, as M(p) = min(1 − M(∼ p), ϑ),
M(p) = δ ≤ ϑ . So in this case M is the stable model
Mδ = {(p, δ); (∼ p, 1− δ)} where δ ∈ [1− ϑ, ϑ].
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Note that not all of these stable models are fuzzy answer
sets, since some of them are not coherent. For example,
M0.5 = {(p, 0.5); (∼ p, 0.5)} is a stable model of P for
ϑ > 0.5 but is not a fuzzy answer set (i.e is not coherent)
since I(∼ p) = 0.5 6≤ ∼̇(I(p)) = ∼̇(0.5) = 0.35.

More specifically,
• If ϑ ≤ 0.2 then the unique stable model is coherent and

therefore is a fuzzy answer set as well
• If ϑ is in the open interval (0.2, 0.8), then none of the

existing stable models is a fuzzy answer set;
• Finally, if ϑ ≥ 0.8 the family of fuzzy answer sets is:

Mδ ≡ {(p, δ); (∼ p, 1− δ)} : 1− ϑ ≤ δ ≤ ϑ,
δ ∈ (0, 0.2) ∪ (0.8, 1)}

Notice that the weights of the rules are crucial to determine
if a program has, or has not, a fuzzy answer set.

We can now extend the definition of inconsistent program
to the framework of residuated logic programming as follows:

Definition 11: A residuated logic program P is said to be
inconsistent if there is no fuzzy answer set of P. Otherwise P
is said to be consistent.

In the following section we describe reasons which can
cause inconsistency in residuated logic programs.

IV. CAUSES OF INCONSISTENCE: INFORMATION MEASURE

From a technical point of view, inconsistency of a residuated
logic program P can be due to one of the following two
reasons:
• Incoherence: Every interpretation such that I = lfp(PI)

is incoherent.
• Instability: There are no interpretations I satisfying that
I = lfp(PI).

This technical distinction enables the definition of measures
focusing on each cause of inconsistency. This way, we can
classify inconsistent logic programs into two sets:

Definition 12: Let P be a general residuated logic program.
It is said that:
• P is unstable if and only if P has not a stable model.

Otherwise P is called stable.
• P is incoherent if P is stable and every stable model of P

is incoherent.
The main difference between both features is that incoher-

ence is intrinsic to interpretations whereas the instability is not:
In section V we will measure the level of inconsistency of a
stable program by measuring the inherent incoherence in each
stable model. On the other hand, measuring the inconsistency
caused by instability requires a deeper study on the causes of
inconsistency, since no stable model exists.

When representing knowledge as a logic program it is usual
to implement rules according to a set of external data (obtained
either from sensors or at the suggestion of an expert); this data
can be subject to errors and/or imprecision, and may lead to
the following shortcomings:
• Not including relevant information. (Missing information)
• Including information which is either false or leading to

contradiction. (Excess of information)

Any of the situations above might lead to inconsistency. Let
us further discuss this by means of an example: assume that
in a program to encode the protocols to treat physical abuse
we include the following rules to describe some psychological
emotions:

r1 : 〈Fear ← ¬Agressive ∗G TenseSituation ; 0.6〉
r2 : 〈Relax← ¬Fear ; 0.6〉

r3 : 〈Excited← ¬Relax ∗G TenseSituation ; 0.6〉
r4 : 〈Agressive← Excited ∗G Abuser ; 0.6〉

where the negation operator associated with ¬ is n0.4.
The first rule determines that if we do not know that a

person is aggressive and she is in a dangerous situation then
she fells fear (the interpretation of the other three rules is
similar). These four rules do not imply any contradiction, in
fact, the program consisting of the four rules above has just
one stable model I = {(Relax, 0.6)}. However, if we add the
following facts

r5 : 〈TenseSituation← ; 0.8〉
r6 : 〈Abuser ← ; 0.7〉

the program turns out to be unstable. What are the reasons for
this behaviour?

As stated above, it may be because of excess or lack of
information. For the former, excess of information can reside
in any subset of rules (either singleton or not), it might be
that too much information is obtained by default from r1, r2

and r3. Notice that if the weights of these rules are changed
by a value smaller than 0.4, therefore reducing the amount
of information provided by those rules, the program would
remain stable.

Lack of information is more difficult to handle, since we do
not know which rules are missing. In principle, there are three
possibilities by which to recover the missing information:
• Adding facts. That is, include positive information about

propositional symbols which can be inferred from real-
world observation. For example, if we include the fact
〈Fear ← ; 0.5〉, the program gets stable again.

• Adding proper rules. In this case, the new rules permit
us to draw consequences which allow for recovering
stability. For example, if we include the rule

r : 〈Aggressive← Fear ∗G Abuser∗G
∗GTenseSituation ; 0.6〉

then, the program gets stable again.
• Adding hypotheses to the body of some rules. This case

may occur when the program has been built from observ-
able data in a fixed context, and some information was
not considered relevant in a first approach. Continuing
with the previous example, it is possible that rule r2

represents a default reasoning done in non-dangerous
situation, where the usual behavior is to be relaxed.
However in tense situations, relax could not be a correct
default inference. As a result, the missing information in
the previous example might be due to not considering,
for instance, a fact like ¬(TenseSituation) in the body
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of r2; notice that if we do that, the program gets stable
again.

Our approach to measure the inconsistency of a residuated
logic program is divided according to its source. Firstly, as-
suming that stable models exist, by measuring the incoherence
of these stable models. Secondly, if no stable model exists,
we will measure the inconsistency by means of the minimum
amount of information which we have either to remove or to
add in order to obtain a stable logic program.

Removing or adding information in a residuated program
can be done essentially by modifying the weights of the rules
and facts, since the lesser (resp. bigger) they are, the less
(resp. more) information is produced. The key point is how
to measure the amount of information which has to be either
removed or added.

We propose to assign to each element in the lattice a value
corresponding to the inherent information it contains. That is,
we propose to fix an operator m : L→ R+ such that:
• m(x) = 0 if and only if x = 0
• m is monotonic
• m(sup(x, y)) ≥ m(x) + m(y) − m(inf(x, y)) for all
x, y ∈ L

The third condition is required since the information con-
tained in the supremum of two elements should reflect the
amount of information contained in each element separately,
therefore m(sup(x, y)) should be greater than m(x)+m(y)−
m(inf(x, y)), since the latter part is counted twice when
adding m(x) and m(y).

Such an operator will be called an information measure.
Note that the third item does not impose any restriction if the
lattice is linear. It is not difficult to define this kind of operators
in a lattice:

Example 3: Any norm || · || on the lattice ([0, 1],≤) is an
information measure, since ||x|| = 0 if and only if x = 0; and
if x ≤ y then

||x|| = ||x
y
· y|| = |x

y
| · ||y|| ≤ ||y||

Example 4: Let (L,≤) be a finite lattice. An information
measure can be defined as follows:

m(a) =

{
0 if x = 0

1 +
∑
x≤am(x) otherwise

Clearly it defines an information measure.
From now on, we will consider that our underlying lattices

of truth-values have an associated information measure.

V. MEASURING INCOHERENCE IN STABLE RESIDUATED
LOGIC PROGRAMS

We start this section by defining measures of incoherence
directly over interpretations in order to use them on stable
residuated logic program later.

A. Measures of Incoherence on Interpretations for a Program

A first possibility is to consider the ratio of incoherent
propositional symbols in an L-interpretation with respect to
the number of propositional symbols occurring in program P.

To begin with, let us particularize the notion of coherence
so that it can be applied to a single propositional symbol.

Definition 13: A propositional symbol p is coherent w.r.t.
an L-interpretation I if and only if I(∼ p) ≤ ∼̇I(p). A
propositional symbol is incoherent w.r.t. I if is not coherent
w.r.t. I .

Definition 14: Let I be an L-interpretation. We define the
measure of incoherence

I1(I) =
NI(I)

|ΠP|
(1)

where NI(I) denotes the number of incoherent propositional
symbols in P, and ΠP denotes the set of propositional symbols
occurring in P.

Note that I1(I) ∈ [0, 1]; if I1(I) = 1 then every propo-
sitional symbol in the domain of I is incoherent, whereas if
I1(I) = 0, then there are no incoherent propositional symbols
in P w.r.t. I .

The measure above provides just a notion of aggregated
“local incoherences”; however, one should also take into
account the amount of violation of the condition of coherence.
For instance, with the negation operator ∼(x) = 1 − x, the
propositional symbol p is incoherent w.r.t. the two interpreta-
tions I1 and I2 below:

I1(p) = 0.5 I2(p) = 0.9
I1(∼ p) = 0.6 I2(∼ p) = 1

Certainly, I2 seems more incoherent than I1 since I2 breaks
the coherence condition in a “bigger degree” than I1.

In order to define an incoherence measure which takes
into account this “degree” of incoherence for propositional
symbols, we define the set of coherent pairs of a propo-
sitional symbol p w.r.t. a negation operator, ∼, and an L-
interpretation I , as follows:

∆∼I (p) = {(x, y) ∈ L×L : x ≤ I(p), y ≤ I(∼ p), y ≤ ∼̇(x)}

The set ∆∼I (p) consists of all possible pairs of values repre-
senting coherent information for p (and ∼ p) in terms of I . The
definition of ∆∼I and the information measure m associated
to (L,≤, ∗,←) allow us to provide the following measure
of incoherence for a propositional symbol p w.r.t. an L-
interpretation I:

I(p; I) = inf
(x,y)∈∆∼

I (p)
{m(I(p))−m(x) +m(I(∼ p))−m(y)}

Note that I(p; I) ≥ 0 since m(I(p)) ≥ m(x) and
m(I(∼ p)) ≥ m(y) for all (x, y) ∈ ∆∼I (p). The idea
underlying the definition of I(p; I) is to determine how much
information has to be removed at least from I(p) and I(∼ p) in
order to recover coherence. If we remove a certain amount of
information α from I(p), and a certain amount of information
β from I(∼ p), then we actually modify information amount-
ing α+β. Therefore, the measure I(p; I) determines in some
sense the least amount of information that has to be removed
in order to obtain coherent information about p w.r.t. I .

Example 5: For the interpretations I1 and I2 given above,
we obtain I(p; I1) = 0.1 and I(p; I2) = 0.9 by considering
the information measure induced by the Euclidean norm.
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Remark 5: The definition of I(p; I) collapses to an ex-
tremely simple and intuitive form in the specific case of the
unit interval (L = [0, 1]), the information measure induced by
the Euclidean norm, and ∼(x) = 1− x:

I(p; I) =

{
0 if p is coherent w.r.t. I

I(∼ p)− ∼̇I(p) otherwise

We focus below on some properties of I(p; I):
Proposition 3: If the propositional symbol p is coherent

w.r.t. I then I(p; I) = 0.
The converse is not true in general.
Example 6: Consider the lattice [0, 1] with the information

measure induced by the Euclidean norm and the following
negation operator

∼̇(x) =

{
0 if x ≥ 0.5
1 if x < 0.5

Then the propositional symbol p w.r.t. the interpretation
I(p) = 0.5, I(∼ p) = 0.5 is incoherent and I(p; I) = 0.

Although the equivalence between null measure of inco-
herence and coherence is not true in general, there exist
frameworks in which both notions coincide:

Proposition 4: Assume that the residuated lattice is fi-
nite and the information measure used is injective. Then, if
I(p; I) = 0, the propositional symbol p is coherent w.r.t. I .

Proposition 5: On the unit interval [0, 1] and under a con-
tinuous and injective information measure; if ∼̇ (the operator
associated to strong negation) is continuous, then I(p; I) = 0
iff p is coherent w.r.t. I .

The following result relates the ordering between L-
interpretations and the measure of incoherence for proposi-
tional symbols: the greater is an L-interpretation more inco-
herent is.

Proposition 6: Let I ≤ J be two L-interpretations. Then
I(p; I) ≤ I(p; J) for all propositional symbol p.

The following proposition shows that I(p; I) is bounded by
the inherent information in I(p):

Proposition 7: Let I be an L-interpretation, then

I(p; I) ≤ min
{
m(I(p)),m(I(∼ p))

}
As a consequence of the proposition above, m(1) is actually

an upper bound for the value of each I(p; I).
Now, there are two ways to measure incoherent information

in an L-interpretation: either estimating the maximum size of
incoherence, or estimating the average size of incoherence. For
the former, we have the following definition:

I2(I) = max
p∈ΠP
{I(p; I)} (2)

For the average size of incoherence we consider:

I3(I) =

∑
p∈ΠP

I(p; I)

|ΠP| · I(p; I>)
(3)

As consequence of Proposition 3 we have that if I is
coherent, then Ii(I) = 0 for all i = 1, 2, 3.

We provide below some examples to illustrate these mea-
sures of incoherence.

Example 7: Consider the unit interval and the interpretation
given by the following table:

x I(x) I(∼x)
p 0.7 0.7
q 0.7 0.5
r 0.2 0.8
s 0.7 0
t 1 0

If we use the Euclidean measure and the negation operator
∼(x) = 1− x then the incoherence measure of each proposi-
tional symbol are given by the following table:

x p q r s t
I(x; I) 0.4 0.2 0 0 0

Hence, we can measure the incoherence of I by using the
values above:

I1(I) =
2

5
= 0.4

I2(I) = max{0.4, 0.2, 0, 0, 0} = 0.4

I3(I) =
0.4 + 0.2 + 0 + 0 + 0

5 · 1
=

0.6

5
= 0.12

The example below uses a non-linear lattice.
Example 8: Consider the lattice and information measure

given by:

x m(x)

⊥ 0
a 1
b 3
c 2
> 4

together with the L-interpretation and negation below

x I(x) I(∼x)

p b c
q > b
r a ⊥

x ∼(x)

⊥ >
a b
b a
> ⊥

It is not difficult to obtain the following measures of incoher-
ence for I:

I1(I) =
2

3
; I2(I) = max{2, 3, 0} = 3

I3(I) =
2 + 3 + 0

3 · 4
=

5

12

As expected, the measures of incoherence just defined are
monotonic w.r.t. the ordering between L-interpretations.

Proposition 8: Let I and J be two interpretations, if I ≤ J ,
then Ii(I) ≤ Ii(J) for i = 1, 2, 3.

Example 9: (Ex. 8 continued) Consider the interpretation

x J(x) J(∼x)

p ⊥ c
q b b
r a ⊥
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Notice that J ≤ I , therefore necessarily the measures of
incoherence for J have to be lesser or equal than for I .
Effectively, the measures of incoherence for J are:

I1(J) =
1

3
; I2(J) = sup{0, 2, 0} = 2

I3(J) =
0 + 2 + 0

3 · 4
=

1

6

B. Measuring Incoherence in Stable General Residuated
Logic Programs

In this section, we use the measures defined in the previous
section in order to determine how incoherent is a stable
residuated logic program. Hence, we extend the measures
I1, I2 and I3 to be applied to stable programs as follows:

Ii(P) = inf
{
Ii(I) : I is a stable model of P

}
(4)

It is straightforward to note that if P is consistent, then
Ii(P) = 0 for i = 1, 2, 3.

Example 10: Recall the general residuated logic program
described in Ex. 2:

〈p← ¬∼ p ;ϑ〉

〈∼ p← ¬p ;ϑ〉

which is stable independently from the value of ϑ.
Let us consider the case ϑ = 0.6. We saw that P is

inconsistent since none of its stable models

Mδ ≡ {(p, δ); (∼ p, 1− δ)} for 0.4 ≤ δ ≤ 0.6

is coherent. Firstly, we must consider the coherent pairs of p
w.r.t. ∼ and each Mδ:

∆∼Mδ
(p) =

{
(x, y) : x ≤ δ, y ≤ 1− δ, y ≤ 3

5
− 1

2
x
}

If we consider the Euclidean information measure in [0, 1],
each I(p;Mδ) coincides with the infimum of the function:

f(x, y) = I(p)−x+I(∼ p)−y = δ−x+1−δ−y = 1−x−y

in ∆∼Mδ
(p). The reader can check easily that:

I(p;Mδ) =
2

5
− δ

2

Once the measure I(p;Mδ) has been obtained for each stable
model Mδ , we can calculate the measures of incoherence for P
as follows:

I1(P) =
1

1
= 1

I2(P) = inf
{2

5
− δ

2
: 0.4 ≤ δ ≤ 0.6

}
= 0.1

I3(P) = I2(P) = 0.1

From these measures we can deduce that every propositional
symbol in P is incoherent (I1(P) = 1) but not too much (since
I2(P) = I3(P) = 0.1).

The measures defined above allow us to establish how
incoherent a program is, but they say nothing about the
reason for incoherence. The underlying idea in incoherence
is contradictory information, and this information is generated

by the rules. Therefore, the reason for incoherence is within
the rules. As a result, we will define incoherence measures for
sets of rules with the aim of determining what rule/s can be
removed in order to obtain a coherent program.

Given an inconsistent stable program P, we define the
following measures of incoherence relative to a set of rules
X ⊆ P

Ii(X;P) =

{
1− Ii(PrX)

Ii(P) if P rX is stable
−∞ otherwise

Note, that the measure Ii(X;P) represents the amount of
incoherence caused by the set of rules X in P. The values
of Ii(X;P) belong to [−∞, 1] and are interpreted as follows:
• If Ii(X;P) = 1, then rules in X are totally incoherent

with the rest of the program. Therefore, we can restore
the coherence of P by deleting all the rules in X .

• If Ii(X;P) ∈ (0, 1), then rules in X are partially
incoherent with the rest of the program. Hence, we can
reduce the incoherence by deleting all the rules in X .

• If Ii(X;P) = 0, then rules in X are not the reason of
the incoherence in P.

• If Ii(X;P) < 0, then the subset X of rules is relevant to
both coherence and/or stability of the program.

Note finally that this measure does not apply to consistent
programs, since in this case the quotient Ii(P r X)/Ii(P)
does not make sense.

Example 11: Consider the following stable program

r1 : 〈p← ¬(∼ p) ; 1.0〉 r2 : 〈∼ p← ¬p ∗ ¬q ; 1.0〉
r3 : 〈q ← ; 0.8〉 r4 : 〈∼ q ← ; 0.6〉
r5 : 〈∼ q ← p ; 0.4〉 r6 : 〈∼ q ← ¬p ; 1.0〉

on ([0, 1],≤, ∗P ,←P ,¬,∼), where ¬̇ = n0 and ∼̇ = n0.5.
The program has a unique stable model, namely:

M ≡ {(p, 1); (∼ p, 0); (q, 0.8); (∼ q, 0.6)}

which is incoherent since M(∼ q) = 0.6 6≤ ∼̇(M(q)) = 0. If
we consider the Euclidean information measure then :

I1(P) = 0.5 ; I2(P) = 0.4 ; I3(P) = 0.2

The table below shows the measures of incoherence for some
sets of rules:

X I1(X;P) I2(X;P) I3(X;P)

{r2} 0 0 0
{r1, r2} 0 −1 −1
{r3} −∞ −∞ −∞
{r4} 0 0.5 0.5
{r1, r3} 1 1 1
{r2, r3} 1 1 1

From the values above we can conclude that r2 by itself
does not cause the incoherence measured by I1(P), I2(P)
and I3(P); however, deleting both r1 and r2 increases the
incoherence; rule r3 is needed to guarantee stability; if we
delete the rule {r4} from P we do not recover coherence
but incoherence is reduced; finally, we recover coherence by
deleting either the sets of rules {r1, r3} or {r2, r3}.
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The measures of incoherence defined in this section have
adequate properties when applied on extended residuated logic
programs: firstly, because the computation is highly simplified
since its unique stable model is the least one; secondly,
because that measures are monotonic w.r.t. the order between
extended programs.

Definition 15: Let P,Q be two extended residuated logic
programs. We say that P is smaller or equal than Q, denoted
P ≤ Q, if and only if for each rule 〈p ← B;ϑ〉 in P there is
a rule 〈p← B;ϑ〉 in Q such that ϑ ≤ ϑ.

Proposition 9: Assume P ≤ Q, then Ii(P) ≤ Ii(Q) for all
i = 1, 2, 3.

Corollary 1: If P is an extended residuated logic program,
then for every set of rules X of P

Ii(X;P) ∈ [0, 1] for i = 1, 2, 3

As a result, removing any set of rules from an incoherent
extended program never increases the measure of incoherence.
By the monotonicity stated by the proposition above implies
that coherence can be only restored by removing information.

VI. MEASURING INSTABILITY OF UNSTABLE RESIDUATED
LOGIC PROGRAMS

In this section we define measures of the amount of infor-
mation which causes instability. In this way, as we described
in section IV, we have two different possibilities to make
that: to measure the excess of information and/or the lack
of information in the logic program. Therefore, we divide the
section into two parts:
• We start by defining a measure determining the minimum

amount of information which it is necessary to remove
from an unstable program so that it becomes stable
(measuring the excess of information).

• Then, we define a measure which determines the mini-
mum amount of information which is necessary to add to
an unstable program so that it becomes stable (measuring
the lack of information).

A. Measuring Instability of General Residuated Programs by
Removing Information

Contrariwise to the classical case, in which the only way
to delete information from a program is by deleting rules
completely, in our framework we can just reduce their weights
by some amount.

For that purpose, we need to fix a t-norm t to handle the
values of L (recall that a t-norm is a commutative, associative,
and monotonic map L×L→ L satisfying t(1, x) = x). Fixed
such a t-norm, we define an operator to modify the weights
of rules.

Consider a general residuated logic program P, a set X =
{〈ri;ϑi〉}i of rules in P, and a set of values {ϕi}i in L ; a
new general residuated logic program is defined as

ΘP(X, {ϕ}i) = (P rX) ∪ {〈ri; t(ϑi, ϕi)〉}i

In other words, the operator ΘP substitutes the weight of any
rule 〈rj ;ϑj〉 in X by t(ϑj , ϕj).

It is not difficult to note that the resulting program has
smaller weights than the original one. The following example
illustrates ΘP at work:

Example 12: Consider the residuated lattice with negation
([0, 1],≤, ∗,←, n), and the following residuated program

r1 : 〈p← q ∗ t ∗ ¬u ; 0.7〉 r2 : 〈p← t ∗ ¬s ; 0.8〉
r3 : 〈q ← ¬v ; 0.2〉 r4 : 〈t← s ∗ u ∗ ¬v ; 0.9〉

Assume the product t-norm (t(x, y) = x · y) as the
t-norm associated to the operator ΘP. Then, the program
ΘP({r1, r4}, {0.5, 0.9}) is shown below:

r1 : 〈p← q ∗ t ∗ ¬u ; 0.35〉 r2 : 〈p← t ∗ ¬s ; 0.8〉
r3 : 〈q ← ¬v ; 0.2〉 r4 : 〈t← s ∗ u ∗ ¬v ; 0.81〉

Notice that the weights of rules r1 and r4 are reduced by a
factor 0.5 and 0.9 respectively.

Using an arbitrary t-norm different from ∗ allows us greater
liberty to reduce the weights. For example, in the residuated
lattice ([0, 1],≤, ∗,←) where ∗ is defined by:

x ∗ y =

 x if y = 1
y if x = 1
0 otherwise

we can use the product t-norm in order to reduce gradually
the weights in P. Note that if we used ∗ to reduce the weights,
then the reduction would be excessively drastic.

The measure of instability will be defined in terms of the
amount of discarded information needed to get stability, and
this will be computed by means of an information measure,
see Section IV, and the formula∑

i∈I

(
m(1)−m(ϕi)

)
The sum above, in some sense, measures the amount of
information discarded from the program; the lesser the values
of ϕi, the more information discarded and greater the sum.
Notice as well that ΘP does not reduce the weights of the
program if ϕi is 1 for all i, and then the sum equals 0.

Example 13: Continuing with Example 12, if we consider
in [0, 1] the Euclidean information measure, then the amount
of discarded information by the use of ΘP({r1, r4}, {0.5, 0.9})
would be (1− 0.5) + (1− 0.9) = 0.6.

Now, given a general residuated logic program P and a set
of rules X = {〈ri, ϑi〉}i ⊆ P, we can define the following
measure of instability as:

INST−P (X) =

inf
{ϕi}i

{∑
i∈I

(m(1)−m(ϕi)) | ΘP(X, {ϕi}i) is stable

}

It is important to note that this operator might not be defined
for some set of rules (in the case that ΘP(X, {ϕi}i) is unstable
for any choice of {ϕi}i). This is not a big problem, as that
would indicate that it is not possible to recover stability even
by discarding completely all the rules in X .
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Example 14: Let us consider the following logic program:

r1 : 〈p← s ∗ ¬q ; 0.8〉
r2 : 〈q ← ¬r ∗ ¬u ; 0.8〉
r3 : 〈r ← ¬p ; 0.5〉
r4 : 〈s← ; 0.8〉
r5 : 〈t← ¬p ∗ ¬s ; 0.5〉
r6 : 〈v ← u ∗ ¬r ; 0.7〉

defined on ([0, 1],≤, ∗P ,←P , n0.4).
In order to check that this program does not have stable

models we will proceed by reductio ad absurdum. Let M
be a stable model of P. As s appears in the head of only
one rule (actually a fact), then M(s) = 0.8. Moreover,
as u does not occur in the head of any rule, M(u) =
0. We distinguish two cases now, we assume firstly that
M(p) ≤ 0.4. Then, as r appears in the head of only one
rule, M(r) = n0.4(M(p)) · 0.5 = 0.5. Similarly for q and p
we obtain M(q) = n0.4(M(r)) · n0.4(M(u)) · 0.8 = 0 and
M(p) = M(s) ·n0.4(M(q)) ·0.8 = 0.64 > 0.4. Let us assume
now that M(p) > 0.4. Then by using the same reasoning
above we obtain the equalities: M(r) = n0.4(M(p)) ·0.5 = 0,
M(q) = n0.4(M(r)) · n0.4(M(u)) · 0.8 = 0.8 and M(p) =
M(s) · n0.4(M(q)) · 0.8 = 0 ≤ 0.4.

We will use the product t-norm and the Euclidean norm in
the formulas above to measure the unstability of any of the
rules individually.

For rule r1, one can check that if its weight would set to
α ≤ 0.5, then the program would have at least one (actually
unique) fuzzy answer set, namely,

M ≡ {(p, 0.8 · α); (q, 0); (r, 0.5); (s, 0.8); (t, 0); (v, 0)}

On the other hand, if the weight would be a value α > 0.5,
then the program would keep being unstable (by proceeding
as above).

It is possible to set the weight of r1 to 0.5 using the factor
ϕ = 0.625. Therefore, the least amount of information to be
discarded from r1 has to be 1−0.625 = 0.375. In other words,
INST−P ({r1}) = 0.375. Similarly, we can obtain the instability
measures for the rest of rules:

x INST−P ({x})
r2 0.5
r3 0.2
r4 0.375

For rules r5 and r6 it is not possible to get a stable program
by reducing its weights. Notice that these results state that,
in recovering stability by modifying just one rule, we need to
discard much more information from r2 than from r3.

Some results about the instability measure INST−P will be
presented in Section VI-C.

B. Measuring Instability of General Residuated Logic Pro-
grams by Adding Information

In a dual manner to the above measure of instability, in this
section we define another measure based on the amount of
information that has to be added to an unstable program so
that it gets stable.

We start in this case by fixing a t-conorm s to handle the
values of L (recall that a t-conorm is a commutative, associa-
tive and monotonic map L×L→ L satisfying s(1, x) = 1 and
s(0, x) = x). Fixed such a t-conorm, we define the following
operator, which modifies the weights of rules.

Consider a general residuated logic program P, a set X =
{〈ri;ϑi〉}i of rules in P, and a set of values {ϕi}i in L; a new
normal residuated logic program is defined as follows:

ΩP(X, {ϕi}i) = (P rX) ∪ {〈ri; s(ϑi, ϕi)〉}i

In other words, the operator ΩP changes the weights of any
rule 〈rj ;ϑj〉 in X by s(ϑj , ϕj).

Notice that the operator ΩP increases the weights of the
rules in X . Moreover, the higher the values ϕi, the higher the
new weights of the rules.

Example 15: Recall the program given in Example 12.
Consider the t-conorm to be s(x, y) = min{x + y, 1}. Then,
the modified program ΩP({r1, r3}, {0.4, 0.7}) is:

r1 : 〈p← q ∗ t ∗ ¬u ; 1〉 r2 : 〈p← t ∗ ¬s ; 0.8〉
r3 : 〈q ← ¬v ; 0.9〉 r4 : 〈t← s ∗ u ∗ ¬v ; 0.9〉

The application of the operator ΩP results in changing the
weight of r1 by min{0.7 + 0.4, 1} = 1 and that of r3 by
min{0.2 + 0.7, 1} = 0.9.

Anyway, it is important to note that increasing the weight of
rules in an unstable program might not be enough to recover
stability. We already stated in Section IV that instability might
be due to missing facts or rules: the following pathological
example exhibits this behaviour.

Example 16: On ([0, 1],≤, ∗G,←G, n0.5), the program
consisting of just the rule 〈p← n0.5(p) ; 0.7〉 cannot be made
stable by simply increasing the weight of its rule.

For measuring the minimal amount of information needed to
recover stability, we need to consider the possible inclusion of
new facts, rules or new literals in the bodies of existing rules.
However, considering all possible combinations is certainly
impractical from a computational point of view. We will see
below how this process can be greatly simplified, as it is
only necessary for our purposes to take into account just the
inclusion of new facts and, thus, the inclusion of new literals
in the bodies or new rules can be completely neglected.

Let us assume that when introducing occurrences of a new
literal `, either positively or negatively, in the bodies of some
rules {〈`i ← Bi;ϑi〉}i ⊆ P the resulting program is stable.
That is, the program P∗ obtained from P by substituting the
rules 〈`i ← Bi;ϑi〉 by either 〈`i ← Bi ∗ `;ϑi〉 or 〈`i ← Bi ∗
¬`;ϑi〉 is stable. In any case, if M were a model of P∗, then M
would be as well a model of the program obtained from P
by substituting rules 〈`i ← Bi;ϑi〉 by either 〈`i ← Bi;ϑi ∗
M(`)〉 or 〈`i ← Bi∗;ϑi ∗ ¬̇(M(`))〉 (depending on whether `
is introduced positively or negatively in the rule). Note that,
in the latter case, we have really decreased the weights of
the rules, independently from ` and, in this case we have just
removed information from the program since ϑi ≥ ϑi ∗M(`)
and ϑi ≥ ϑi ∗ ¬̇(M(`)). This is the case already studied in
section above, hence INST−P also represents a possible excess
of information in P.
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Secondly, assume now that when introducing a number of
new rules {〈`i ← Bi;ϑi〉}i in P the resulting program turns
out to be stable. Assume that M is a stable model of P ∪
{〈`i ← Bi;ϑi〉}i. Again, we could obtain a stable program by
simply including a number of new facts in P, namely {〈`i ←
;M(Bi) ∗ ϑi〉}i. Note that, in the latter case, we need the
same number of facts than rules introduced and, moreover,
the required weights for the facts are lesser than those of the
rules. In conclusion, in the latter case we have to add less
information to the program in order to recover stability.

As a result of the above paragraphs, since our aim is
to measure the minimum amount of information required to
recover stability, we just need to take into account the possible
addition of new facts not already included in the program.

Remark 6: It is convenient to recall that the semantics pro-
vided by P∪{〈pi ← ;M(Bi)∗ϑi〉}i and P∪{〈pi ← Bi;ϑi〉}i
can be different. However, although this is an important feature
that has to be considered, it is not within the scope of this
work. The inclusion of new rules (or facts) has the single aim
of stabilizing the program, and not detecting the real missing
information.

For technical reasons, in order to define more easily the
measure of required information to recover stability, given a
program P, we will consider its completion P, defined as

P = P ∪ {〈`i ← ; 0〉 : `i ∈ LitP and 〈`i ← ;ϑ〉 /∈ P}

This results in explicitly including facts for all the symbols oc-
curring in the program and, this way, we can add information
to any of them by means of the operator ΩP defined above.
Obviously, the semantics of P and P are equivalent.

The more information needed to recover stability, the more
unstable the program is. The amount of information included
when considering ΩP(X, {ϕi}i) is obtained by means of an
information measure m and the formula∑

i∈I
m(ϕi)

Given a general residuated logic program P, we define the
instability measure of a set of rules X = {〈ri, ϑi〉}i ⊆ P by:

INST+
P (X) = inf

{ϕi}i

{∑
i∈I

m(ϕi) : ΩP(X, {ϕi}i) is stable

}
Note that the definition above provides the minimum

amount of information required to stabilize the program with
regard to a given set of rules of the completion of the program.

It is important to note that the measure can be undefined for
a given set of rules, and this would mean that stability cannot
be reached by modifying just that set of rules. Example 16
shows this situation, since INST+

P ({r1}) is undefined.

C. Properties of the Instability Measures

In this section we provide some results concerning measures
INST−P and INST+

P . The first one establishes antitonicity for the
measures of instability.

Proposition 10: Let P be a general residuated logic pro-
gram and let X ⊆ Y be two sets of rules of P (resp. of P), then
INST−P (X) ≥ INST−P (Y ) (resp. INST+

P (X) ≥ INST+
P (Y )).

The proposition above might look counter-intuitive at a first
sight, however, this is not so. The reason is that the same
amount of information removed (resp. added) from X would
make the program stable when considered as a modification
of the rules in Y ; but it might be the case that less information
could be removed (resp. added) from Y , perhaps distributed
among the new rules in Y not in X , making the program
stable.

Hence, we can obtain lower bounds for the measures INST−P
and INST+

P as follows:
Corollary 2: INST−P (P) and INST+

P (P) are defined for any
general residuated logic program P. Moreover, if INST−P (X)
and INST+

P (X) are defined, then

INST−P (X) ≥ INST−P (P) and INST+
P (X) ≥ INST+

P (P).

The following proposition provides a useful theoretical
result which implies an interesting corollary. It states that,
although stability is not equivalent to null instability measure,
the former implies the latter and, whenever the program has
null instability measure it is possible to recover stability by
removing or by adding an amount of information below any
prescribed bound.

Proposition 11: Let P be a general residuated logic pro-
gram and X a set of rules of P:
• If P is stable then INST−P (X) = INST+

P (X) = 0 for all X .
• If INST−P (X) = 0, then for all ε > 0 there exists a

set {ϕi}i ⊆ L such that ΘP(X, {ϕi}i) is stable and∑
i∈I
(
m(1)−m(ϕi)

)
< ε.

• If INST+
P (X) = 0, then for all ε > 0 there exists a set

{ϕi}i of values in L such that ΩP(X, {ϕi}i) is stable and∑
i∈Im(ϕi) < ε.

An interesting case occurs when the underlying lattice of
truth-values is finite, since in this case stability coincides with
null instability measure.

Corollary 3: Let P be a general logic program defined over
a finite residuated lattice, and X a set of rules of P. The
following statements hold:
• There exists a set {ϕi}i of values in L such that

INST−P (X) =
∑
i(m(1) − m(ϕi)) and ΘP(X, {ϕi}i) is

stable.
• There exists a set {ϕi}i of values in L such that

INST+
P (X) =

∑
im(ϕi)) and ΩP(X, {ϕi}i) is stable.

• If there is a set of rules Y such that INST−P (Y ) = 0,
then P is stable.

• If there is a set of rules Y such that INST+
P (Y ) = 0,

then P is stable.
• P is stable iff INST−P (P) = 0 iff INST+

P (P) = 0.

D. Characterizing Instability in Terms of Stable Models

In this section we show that computing the values
INST−P (X) and INST+

P (X) is equivalent to obtain the set
of stable models of two specific general residuated logic
programs.

Let P be a general residuated logic program defined over
the residuated lattice with negations (L,≤, ∗,←,¬,∼) and
let X = {〈ri;ϑi〉} be a set or rules in P. We will define
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two different general residuated logic programs P−X and P+
X

defined over a more general residuated lattice. We will show
that the stable models of these two programs will allow us
to determine the measures of INST−P (X) and INST+

P (X). The
procedure is introduced in detail as follows:

The computation of instability measures for a set of rules X
depends on the existence of values ϕi ∈ L satisfying that
ΘP(X, {ϕi}) (resp. ΩP(X, {ϕi})) is stable.

The introduction of the values ϕi into the play is done by
considering, for each rule 〈ri;ϑi〉 ∈ X , two fresh propositional
symbols αi and βi and the pair of rules

〈αi ← ¬N (βi) ; 1〉 (5)
〈βi ← ¬N (αi) ; 1〉 (6)

where the negation associated with ¬N is an involutive nega-
tion N defined on L.

It is known that not every residuated lattice admits an
involutive negation, but it is possible to embed L into another
lattice L on which N exists [8]. In L, we have that x ≤ y for
all x ∈ L r L and y ∈ L and, moreover, every adjoint pair
and negation operator can be extended to L.

As a result of the previous considerations, the residuated
logic program P can be extended to L in a way such that
every stable model of P (interpreted on (L,≤, ∗,←,¬)) is in
fact a stable model in the extended lattice L.

Let us continue with the rules introduced in (5), (6) above.
The set of stable models of this pair of rules is given
parametrically by the set {Mλ ≡ (αi, λ); (β,N (λ)}λ∈L.

We are now in conditions to define the auxiliary pro-
grams P−X and P+

X which will be used to compute the
instability measures w.r.t. X; in both cases we consider the
residuated implication associated to a given t-norm which,
therefore, is assumed to be left-continuous..

1) P−X is built by considering:
a) Every rule in P which does not belong to X .
b) Substituting every rule 〈`i ← Bi ;ϑi〉 ∈ X by rules

(5), (6), (7) and (8)

〈`i ← Bi ∗ γi ;1〉 (7)
〈γi ←t αi ;ϑi〉 (8)

where γi is a fresh propositional symbol, and←t is
the residuated implication associated to the t-norm
t used in the measure INST−P .

2) P+
X is built by considering:
a) Every rule in P which does not belong to X
b) Substituting each rule 〈`i ← Bi ;ϑi〉 ∈ X by the

rules (5), (6) and the following pair of rules:

〈`i ← Bi ∗ ¬N (γi) ; 1〉 (9)
〈γi ←ts ¬N (αi) ;N (ϑi)〉 (10)

where γi is a fresh propositional symbol, and ←ts

is the residuated implication associated to the t-
norm ts(x, y) = N (s(N (x),N (y))); where s is
t-conorm used in the measure INST+

P .
We will only provide results for INST+

P (X), as those for
INST−P (X) are similar.

Lemma 2: Consider a general residuated logic program P,
let X be a set of rules of P, and M an L-interpretation
M : LitP ∪ {αi, βi, γi}i → L satisfying M(βi) = N (M(αi))
and M(γi) = ts(N (ϑi),N (M(αi))), then the following
statements hold:

1) If N is a model of (P+
X)M , then it is also a model of

ΩP(X, {M(αi)})M .
2) Reciprocally, any model N of ΩP(X, {M(αi)})M can

be extended to a model of (P+
X)M .

Proposition 12: Let P be a general residuated logic pro-
gram and let X be a set of rules of P.

1) If M is a stable model of P+
X , then M|LitP is also a

stable model of ΩP(X, {M(αi)}).
2) Reciprocally, any stable model M of ΩP(X, {ϕi}) can

be extended to a stable model of P+
X .

It is not difficult to check that Lemma 2 and Proposi-
tion 12 above can be restated by changing P+

X by P−X , and
ΩP(X, {ϕi}) by ΘP(X, {ϕi}).

Proposition 12 shows that there is a one-to-one correspon-
dence among the stable models of P+

X and the parameters ϕi
such that ΩP({X, {ϕi}) is stable. As a result, we can compute
INST+

P (X) by means of the stable models of P+
X .

Corollary 4: Let P be a general residuated logic program,
and consider that SM(·) represents the set of stable models
of the corresponding program, then:

INST+
P (X) = inf

M∈SM(P+
X)

M(αi)∈L

{∑
i

m(M(αi))

}

INST−P (X) = inf
M∈SM(P−

X)
M(αi)∈L

{∑
i

(m(1)−m(M(αi)))

}

It important to note that programs P−X and P+
X might not

be stable. This would mean that the measures INST−P (X) and
INST+

P (X) are not defined for the set of rules X .
The following example shows how to apply the procedure

above to a given program.
Example 17: Consider ([0, 1],≤, ∗P ,←P ,¬), where the

negation operator is defined as:

¬(x) =

{
1 if x ≤ 0.5

1− x if x > 0.5

and the program below:

r1 : 〈p← s ∗ ¬q ; 1〉
r2 : 〈q ← ¬r ; 0.9〉
r3 : 〈r ← ¬p ; 0.9〉

r4 : 〈s← ¬t ∗ ¬u ; 1〉

Let us see that P is unstable. We proceed by reductio ad
absurdum by assuming that there is a fuzzy stable model M .
As the propositional symbols t and u do not appear in the head
of any rule, necessarily M(t) = M(u) = 0. As M is a stable
model, M is the least model of the reduct PM . The reduct of r4

coincides with the fact 〈s← ; 1∗¬M(t)∗¬M(u)〉 = 〈s← ; 1〉.
So M(s) = 1. We distinguish now two cases. Firstly we
assume that M(q) > 0.5. Then as p appears only in the head
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of one rule, M(p) is equal to M(s)∗¬M(q)∗1 = 1−M(q) <
0.5. Similarly, we can infer that M(r) = ¬M(p) ∗ 0.9 = 0.9
and then M(q) = ¬M(r) ∗ 0.9 = 0.1 ∗ 0.9 < 0.5, contra-
dictory with the hypothesis. Assume now that M(q) ≤ 0.5.
Then by using a similar reasoning than in the previous case,
M(p) = M(s)∗¬M(q)∗1 = 1, thus M(r) = ¬M(p)∗0.9 = 0
and then M(q) = ¬M(r) ∗ 0.9 = 1 ∗ 0.9 > 0.5, contradictory
with the hypothesis. The instability will be measured by using
INST+

P .
Let us fix the information measure and a t-conorm, say

m(x) = x2 and s(x, y) = max{x, y}. The completion P is
obtained by adding the following rules

r5 : 〈p← ; 0〉 r6 : 〈q ← ; 0〉
r7 : 〈r ← ; 0〉 r8 : 〈s← ; 0〉
r9 : 〈t← ; 0〉 r10 : 〈u← ; 0〉

For the construction of P+
X , we will consider the involutive

negation n(x) = 1 − x. Note that we can consider any
involutive negation in [0, 1], since the final result does not
depend on this choice.

The reader can easily verify that INST+
P (P) is undefined

(by using a reasoning similar to prove that P has not stable
models). This means that the reason why the program is not
stable can only be due to some missing facts; therefore, it
makes sense to consider INST+

P ({ri}) for i = 5, . . . , 10.
For the sake of this example, we will only compute the

value of INST+
P (r9) in terms of the stable models of P+

r9 . This
auxiliary program is obtained by considering a new default
negation symbol ¬n associated to the negation operator n and
by substituting r9 in P by the following four rules:

〈α← ¬n(β) ; 1〉
〈β ← ¬n(α) ; 1〉
〈t← ¬n(γ) ; 1〉
〈γ ← ¬n(α) ; 1〉

The family of stable models of this new program is:

SM(P+
r9) =

{
{(p, 1− λ); (q, 0); (r, 0.9); (t, λ); (u, 0);

; (s, 1− λ); (α, λ)} | λ > 0.5
}

We only check that the only stable models are those in
SM(P+

r9). Let M be a stable model satisfying M(t) ≤ 0.5.
Then, by using the same reasoning done to check that P has
not stable model, we obtain a contradiction.

Therefore:

INST+
P (r9) = inf{m(M(α)) |M ∈ SM(P+

r9)} =

= inf{λ2 | λ > 0.5} = 0.25

and this means that we have to increase the value of t (given by
rule r9) by at least 0.5, which corresponds to an information
measure of 0.25, in order to recover stability.

VII. MEASURING INCONSISTENCE: SOME APPLICATIONS

Once the measures of incoherence and instability have been
presented, we can study how to measure inconsistency. We
have two different options, either to measure instability and in-
coherence independently, or to measure inconsistency directly

by using the ideas described in Section VI for instability. These
ideas can be easily extended to measure the inconsistency in
general residuated logic program by defining:

INCONremP ({〈ri, ϑi〉}i}) = inf{
∑
i∈I

m(1)−m(ϕi) :

OP({〈ri, ϑi〉}i, {ϕi}i) is consistent}

and

INCONaddP ({〈ri,ϑi〉}i}) =

= inf{
∑
i∈I
m(ϕi) : ΩP({〈ri, ϑi〉}i, {ϕi}i) is consistent}

Notice that, as stated in the previous section, the latter case
might not be defined. Furthermore, contrariwise to the case
of instability, we cannot even ensure the existence of a set of
rules on which the measure INCONaddP can be defined.

Obviously, in order to measure independently instability and
incoherence of an inconsistent program we need to restrict our
attention to finite programs, so that we can use Proposition 3.
In this context, we can measure the inconsistency of a set of
rules X and a general residuated logic programs P, as follows:

1) Measure instability of P.
2) Consider the set of stable programs with the

form OP(X, {ϕi}) (resp. ΩP(X, {ϕi}i)) such that∑
i∈Im(1)−m(ϕi) = INST+

P (X) (resp.
∑
i∈Im(ϕi) =

INST+
P (X)).

3) Measure incoherence of the set of stable programs
described in the step above.

In the subsequent sections, we will focus on some applica-
tions of the approach stated above.

A. Conflict Mediation: Negotiations

Negotiations arise naturally in everyday life, from choos-
ing the TV channel at home to determining the renewal of
an employment contract with our employer/employee. Fuzzy
logic programming has the expressive power needed to cover
all contexts in which conflicts occur, it seems an appropriate
environment to define automatic processes of negotiation.

Let us see how to apply our framework to the problem of
negotiating the price of an item. Consider that A wants to
sell a certain item to B, and let the propositional symbol p
represent the statement “the object has high value.” Agent A
will be interested in a high value for M(p) (that is, the item
would have a high price), whereas agent B will be interested
in the opposite. Thus we can define the program

〈p← ;ϑ1〉 〈∼ p← ;ϑ2〉

where ϑ1 and ϑ2 are the assigned values by A and B
respectively. In some sense, ϑ1 represents the minimum price
accepted by the seller and ϑ2 the maximum price that B is
willing to pay. If the program were consistent, then the value
assigned by the seller to the object would be less than what B
is willing to pay, and the transaction would take place without
problems. However, if the program were to be inconsistent
there would be a conflict, and the transaction would not occur.
This is where our approach would be applicable. Since the
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program is extended, the only way to recover consistence is
by deleting information, i.e. either A or B (or both) should
reduce their claim. Inconsistency measures indicate how far
we are from an agreement about the price, a high value of
inconsistency would imply that the negotiation towards an
agreement could be costly, whereas a low value would imply
the opposite; this would be very useful should we have to
decide whether or not to spend resources to eliminate the
conflict. At this point, we can take advantage from using the
measure INCONremP , since its value is associated to a consistent
program that can be identified with the solution to the conflict.
Furthermore, this solution has the property that is obtained by
reducing the change from the initial positions of of A and B.

The previous example of negotiation can be of the type
win-lose or lose-lose, depending on whether both weights are
modified or only one of them. However, there is another type
called win-win negotiation in which all parties gain from the
resolution of the conflict. The following example shows a case
of this kind of negotiation. Suppose we have two negotiators
A and B who wish to establish a purchase of raw materials
for a factory and we are working in the residuated lattice
([0, 1], ∗p,←p,¬,∼) where both negations are represented by
the usual negation operator 1−x. Agent A proposes that if the
purchase is not made to supplier q1, then it has to be done to
supplier q2; as a consequence, supplier q2 is chosen by default,
which can be encoded by using the following rule:

〈q2 ← ¬q1 ; 1〉

On the other hand, B proposes not to buy all the supplies
to q2 because some stuff is needed urgently, and supplier q2

takes too long to send the material. Therefore, B introduces
the rule:

〈∼ q ← ; 0.5〉

The resulting program has just one stable model,

M = {(p, 0), (∼ p, 0), (q, 1), (∼ q, 0.5)}

which is clearly incoherent. For a win-win negotiation, we
can apply the inconsistency measure given by INCONaddP to
the set {〈p ← 0〉} (with respect to the product t-norm and
the information measure induced by the Euclidean norm),
obtaining the value 0.5. By using the characterization given
in Section VI-D, this value is related to the stable model
M = {(p, 0.5), (∼ p, 0), (q, 0.5), (∼ q, 0.5)} for the modified
program obtained from the initial by including the rule

〈∼ p← ; 0.5〉

As a result, A and B reach to a consensus as to buy half the
material to q1 and the other half to q2. Notice that the conflict
has been solved without reducing the pretensions of any party.

Obviously, not every negotiation is that simple. In fact,
negotiations usually depend on factors, such as emotional
intelligence or body language, which make difficult the au-
tomatization. However, it might be possible to create an
expert system able to advise the negotiating strategies, to
provide alternatives to conflict, according to mutual positions,
to identify or infer the interests of the party, etc. It is in this
kind of problems where our framework could find practical
applications.

B. Managing Information from Different Sources
When building a database using data from different sources,

it is quite common to obtain an inconsistent result. In most
cases, this happens because the information coming from each
source corresponds to a different point of view.

Assume we have a number of experts to provide us certain
information in the form of a residuated logic program Pi, each
of them consistent. Finally, we put all the information together
and build program P as the disjoint union of all Pi (that is, if
a rule r belongs to n program Pi, then r appears n times in
P). If P is consistent, then there is nothing to do; otherwise,
if P is inconsistent, we consider the maximal consistent sets
Qj formed as unions of Pi. The added value of our results to
this approach is that we can assign each program Qj a value
that represents how arguable the information contained in Qj
is with respect to the rest of the program. Specifically, the
above value is computed by

min{INCONremP (Qcj), INCONaddP (Qcj)}

where Qcj denotes the set of rules P r Qj . Notice that this
value is always defined, since OP(Qcj , {0}) = Qj is consistent.
Furthermore, this value represents the amount of information
that we have to modify in Qcj in order to obtain a consistent
program, so the more information we have to modify in Qcj ,
the more information is available at Qcj which contradicts
(and therefore refutes) the information in Qj . As a result,
our measures of inconsistency would help us to know which
opinions are “more consistent” and difficult to refute.

C. Detecting False or Erroneous Information
When a knowledgebase has a large number of rules is not

uncommon to find that it is inconsistent, and this is generally
due to some incorrect rules. Moreover, there are environments
where it is common to find false information, such as databases
that report the statements of witnesses of a crime. Therefore
locating the misleading or false information in a database P
is an issue. With the inconsistency measures that have been
defined we can set priorities on certain sets where to find the
source of inconsistency.

Depending on the type of inconsistency, we will proceed
in two different ways, if the cause is incoherence, then we
consider the minimal inconsistent sets Pj formed by rules in P.
In some sense, these sets determine clusters of inconsistency.

Applying the inconsistency measures we would obtain
information about the degree of inconsistency between the
rules in Pj . Furthermore, computing the values Ii(Pj ;P) we
know how much incoherence is generated by Pj in P. If
we accept that false/wrong information is the cause of all
the inconsistency in the program, we should be interested in
determining the sets Pj such that Ii(Pj ,P) = 1.

However, it could be the case that inconsistency is due to
several Pj , so it is very likely that there are no minimal sets
such that Ii(Pj ,P) = 1. Anyway, it is advisable to start the
search for wrong information on the subsets Pj such that its
measure Ii(Pj ,P) is closer to 1.

Should the program be unstable, we would be inter-
ested in finding minimal sets of rules Pj for which mea-
sures INCONremP (Pj) and INCONaddP (Pj) are defined, and
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such that INST+
P (Pj) = INCONremP (Pj) and INST+

P (Pj) =
INCONaddP (Pj).

VIII. RELATED WORK

The content of this section is two-fold: on the one hand,
we focus on the different extension, to our knowledge, of the
answer set semantics; on the other hand, we comment on some
alternative approaches to the measurement of inconsistency in
knowledge-bases.

In recent years several extensions of the answer set se-
mantics to some non-classical logics have been developed.
We relate below our generalization to some approaches based
on Probabilistic Logic [22] [40] [34], Annotated Logic [35],
Antitonic Logic [4], Fuzzy Description Logic [23] [24] and
Fuzzy Logic [17], [18], [38], [39].
• Most of the approaches are conservative, in that answer

sets (or stable models) are generalized by using adequate
versions of the GL-reduct. Exceptions are [39] and [40],
interestingly neither approach proves that its generalized
answer sets are minimal models.

• The definition of interpretation in most approaches is a
mapping which assigns an element in the set of truth-
values to each propositional symbol. Exceptions are [34]
and [4]: in the former, interpretations assign an interval
of truth values to each propositional symbol whereas, in
the latter, interpretations assign two values, representing
the degree of truth and the degree of non-falsity, to each
propositional symbol.

• Our personal contribution here is the notion of coher-
ence, linked to the consideration of the strong negation.
Although other approaches allow strong negation in the
syntax, our definition of coherence is more flexible than
that given, for instance, in [40] in which two opposite
literals (p and ∼ p) cannot have a positive value simulta-
neously, an excessive restriction in some cases.

On the other hand, there are a couple of approaches related
with the measures of inconsistency in the classical framework
(see [13]). These approaches can be classified as based on
Shanon’s information theory [21], on possibilistic logic [6],
on paraconsistent logic [11] or on a mixture of paraconsistent
logic and Shanon’s information theory [42]. However, the
measures provided in this paper are introduced in a com-
pletely different way (which is not possible in the classical
framework) since in fuzzy theories we can reduce the weights
instead of completely delete the information provided for a
rule. In classical approaches there is a common procedure:
measures are obtained by considering either maximal consis-
tent sets of rules or minimal inconsistent sets of rules. Note
that considering such sets implies a complete deletion of the
information of some rules in each maximal consistent set of
rules; our approach avoids this complete deletion of rules by
modifying its weights.

Although measures of inconsistency can be closely related
to fuzzy logic, to the best of our knowledge, there are no
approaches measuring the inconsistency in this more general
framework. Perhaps this is due to the fact that there is not
a consensus on how to generalize inconsistency in a fuzzy

framework. For instance, [12], [39] consider α-inconsistent
interpretations as interpretations which assign a value greater
or equal than α to the formula p∧¬p for certain propositional
symbol p; [40] considers that an interpretation is inconsistent
if it assigns a positive value to both p and ¬p; [6] defines
α-inconsistent interpretations as interpretations which assign
a value greater or equal than α to the symbol ⊥ (falsum).

IX. CONCLUSIONS AND FUTURE WORK

We have considered the concept of inconsistency in two
different dimensions; namely, instability (no stable model
exists) and incoherence (any stable model is contradictory).
Moreover, we have defined several measures of incoherence
and instability for general residuated logic programs. Once the
measures of incoherence and instability have been presented
in Sections V and VI, we have convenient tools to measure
inconsistency.

It is possible to analyze separately instability and incoher-
ence for an inconsistent program, although we need to restrict
the measures to finite lattices, so that we can use Corollary 3.
Under this assumption, we can measure the inconsistency for
a set of rules X in a general residuated logic program P, as
follows:

1) Measure instability of X in P.
2) Consider the set of stable programs with the

form ΘP(X, {ϕi}) (resp. ΩP(X, {ϕi}i)) satisfying∑
i∈I(m(1) − m(ϕi)) = INST−P (X) (respectively∑
i∈Im(ϕi) = INST+

P (X)).
3) Measure incoherence of the stable programs in 2) above.

There are several interesting lines on which this research
can be continued: firstly, from a technical point of view, the
computation of the measures INST−P (X) and INST+

P (X) in
terms of the stable models of P−X and P+

X is a computationally
hard work. Nevertheless, we do not need to know all the
stable models, but only those which assign to the propositional
symbols αi values minimizing the sums

∑
im(M(αi)) and∑

im(1) −m(M(αi)) respectively. We believe that this can
be attempted by suitably adapting the top-k approaches given
in [36] to our fuzzy answer set semantics.

A thorough theoretical treatment of measures of inconsis-
tency has still to be done. Moreover, the underlying informa-
tion measure assumed in this paper has to be further studied,
perhaps by developing some kind of a fuzzy information
theory.

From a practical point of view, we expect to apply the
measures defined in this paper to some real-world problems.
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APPENDIX

PROOFS OF THE RESULTS

Proposition 1
Proof of proposition 1: It is known that if (∗,←) forms

an adjoint pair, then ∗ has to be monotonic in both arguments
(see [12]). Then the monotonicity of TP is straightforward
since each operator in its definition is monotonic.

Proposition 2
Proof: We show firstly that if an L-interpretation I is

coherent then every L-interpretation J such that J ≤ I is
coherent as well. Let p be a propositional symbol, then by
the inequality I ≤ J , the coherence of J and the decreasing
property of ∼ we have

I(∼ p) ≤ J(∼ p) ≤ ∼̇J(p) ≤ ∼̇I(p)

Therefore, if there is a coherent model of P, the least model
has to be necessarily coherent as well.

Lemma 1
Proof: If M is a stable model of P then M is a model

of PM , this is, for every rule 〈`← B+ ; M(B)− ∗ ϑ〉 in PM ,
the following inequality holds

M(`) ≥M(B+) ∗M(B−) ∗ ϑ

but this is equivalent to say that M is a model of P .
Theorem 1

Proof: Let us prove in advance that each model N of P
is a model of PN as well. Each rule in PN , with the form
rN : 〈`← B+ ; N(B)− ∗ϑ〉, comes from a rule in P with the
form r : 〈` ← B+ ∗ B− ;ϑ〉. As N satisfies r, the following
inequality holds:

N(`) ≥ N(B+) ∗N(B−) ∗ ϑ

which is equivalent to say that N satisfies rN . Therefore N
is a model of PN

On the other hand, if M is a stable model of P and N ⊆M
is a model of P then, by the reasoning above, N is a model
of PN ; by using that ¬̇ is a decreasing operator, we obtain the
following inequality for each rule r : 〈`← B+ ∗B− ;ϑ〉 in P:

N(`) ≥ N(B+) ∗N(B−) ∗ ϑ ≥ N(B+) ∗M(B−) ∗ ϑ

which implies that N is a model of PM . As M is the least
model of PM and N ⊆M , we conclude that N = M .

Proposition 3
Proof: The proof is direct from the definition of I(p; I).

Proposition 4
Proof: As L is finite, the infimum is actually a min-

imum. Therefore, there is a coherent pair (x, y) such that
0 = I(p; I) = m(I(p))−m(x) +m(I(∼ p))−m(y). Let us
see that m(I(p))−m(x) = 0 and m(I(∼ p))−m(y) = 0. If
m(I(p))−m(x) were greater strictly than 0 then m(I(∼ p))−
m(y) should be lesser strictly than 0; but that is imposible
since m(I(∼ p)) ≥ m(y). Hence, as m is injective, I(p) = x
and I(∼ p) = y hold necessarily. Therefore, (I(p), I(∼ p)) is
a coherent pair or, in other words, p is a coherent symbol.

Proposition 5

Proof: The proof comes from the fact that ∼ continuous
implies that ∆∼I (p) is a compact. Therefore, as m is continu-
ous, I(p; I) is actually a minimum. The proof follows as that
of Proposition 4.

Proposition 6
Proof: It suffices to prove that

m(J(p))−m(x) +m(J(∼ p))−m(y) ≥ I(I; p)

for all (x, y) ∈ ∆∼J (p).
Firstly, note that (inf{x, I(p)}, inf{y, I(∼ p)}) ∈ ∆∼I (p),

since the following inequalities hold

inf{x, I(p)} ≤ I(p)

inf{y, I(∼ p)} ≤ I(∼ p)
inf{y, I(∼ p)} ≤ y ≤ ∼̇x ≤ ∼̇ inf{x, I(p)}

Now, consider the following chain of inequalities:

m(J(p))−m(x) +m(J(∼ p))−m(y)
(a)

≥

m(sup{x, I(p)})−m(x) +m(sup{y, I(∼ p)})−m(y)
(b)

≥

m(I(p))−m(inf{x, I(p)}) +m(I(∼ p))−m(inf{y, I(∼ p)})

where inequality (a) follows because of monotonicity, and
inequality (b) is a consequence of the third property of
information measures.

Finally, note that the last line in the previous chain is a
particular case of the elements involved in the definition of
I(I; p) and, hence, is greater than or equal to it.

Proposition 7
Proof: Note that (0, I(∼ p)) ∈ ∆∼I (p). Therefore,

I(p, I) ≤ m(I(p)) − m(0) + m(I(∼ p)) − m(I(∼ p)) =
m(I(p)). Similarly, we obtain I(p, I) ≤ m(I(∼ p)).

Proposition 8
Proof: For i = 1 the proof follows the same line than

that of Proposition 2, i.e. if p is coherent w.r.t. J , then p is
coherent w.r.t. I . As a result, every incoherent propositional
symbol w.r.t. I is also incoherent w.r.t. J .

For i = 2, 3 the proof follows from Proposition 6.
Proposition 9

Proof: As P and Q are extended logic programs, both
have a unique stable model, which coincides with the respec-
tive least model. We will show first that lfp(TP) ≤ lfp(TQ)

For every interpretation I and literal `, the following in-
equality holds

TP(I)(`) = sup{I(B) ∗ ϑ : 〈`← B; ϑ〉 ∈ P} ≤
≤ sup{I(B) ∗ ϑ : 〈`← B; ϑ〉 ∈ Q} ≤ TQ(I)(`)

by monotonicity of ∗ and the inequality P ≤ Q. As a
consequence, lfp(TP) ≤ lfp(TQ) holds.

Now, by Proposition 8 we would have the following in-
equality, for all i = 1, 2, 3:

Ii(P) = Ii(lfp(TP)) ≤ Ii(lfp(TQ)) = Ii(Q)

Proposition 10
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Proof: Let us consider X = {r1, . . . , rk} and Y =
X ∪ {rk+1, . . . , rn}. For each tuple {ϕi}i=1,...,k such that
ΘP(X, {ϕi}i) is stable, we consider the tuple {ψj}j=1,...,n

defined by ψj = ϕj for j = 1, . . . , k and ψj = 0 for
j = k + 1, . . . , n. Obviously ΘP(Y, {ψj}j) is stable as well
and:

k∑
i=1

(
m(1)−m(ϕi)

)
=

n∑
i=1

(
m(1)−m(ψi)

)
The inequality INST−P (X) ≥ INST−P (Y ) is now clear by
definition of infimum.

Corollary 2
Proof: It suffices to show that the set on which the infima

are computed in the definition of INST−P (P) and INST+
P (P) are

non-empty.
For INST−P (P), simply note that ΘP(P, {0}i) is always

stable since is the empty program. On the other hand, for
INST+

P (P) we have that ΩP(P, {1}i) is always stable since the
interpretation M(`) = 1 for all ` ∈ LitP is its unique stable
model. Therefore, the sets used to determine INST−P (P) and
INST+

P (P) are non-empty and thus the infima exist.
Both INST−P (X) ≤ INST−P (P) and INST+

P (X) ≤ INST+
P (P)

hold as a consequence of Proposition 10.
Proposition 11

Proof: The first item follows from the definition of
INST−P (X) and INST+

P (X). The second and third items are
consequence of the definition of infimum in the real numbers.

Lemma 2
Proof: Assume that N is a model of (P+

X)M . Every rule
rj in ΩP(X, {M(αi)})M whose weight has not been changed
by the operator ΩP is trivially satisfied by N , since rj belongs
to (P+

X)M as well; thus, we only need to consider the case of
rules 〈ri; s(ϑi,M(αi))〉M such that 〈ri;ϑi〉 ∈ X .

As N satisfies the reduct w.r.t. M of rule (9) associated
to ri (included in the construction of P+

X ), then we have:

N(`i) ≥ N(B+
i ) ∗M(B−i ) ∗ N (M(γi))

Now, substituting the value of M(γi):

N(`i) ≥ N(B+
i ) ∗M(B−i ) ∗ N (ts(N (ϑi),N (M(αi))))

= N(B+
i ) ∗M(B−i ) ∗ s(ϑi,M(αi))

Thus, N satisfies 〈ri; s(ϑi,M(αi))〉M ∈ ΩP(X, {M(αi)})M .
Reciprocally, assume now that N is a model of

ΩP(X, {M(αi)})M . For each rule rj in (P+
X)M not corre-

sponding to the reduct of some of the rules included by (5,
(6), (9), and (10), the proof is straightforward, since rj belongs
to ΩP(X, {M(αi)})M |ΠP

as well. Otherwise, the interpretation
N has to be extended, and the values of N(βi) and N(γi) are
defined by using M(αi) as follows:

N(βi) = N (M(αi)) N(γi) = ts(N (ϑi),N (M(αi)))

Now, the reducts of rules corresponding to (5), (6), and (10)
are satisfied; only the satisfiability of the reduct of the rules
of type (9) need some calculations. As N satisfies the reduct
of the rule 〈ri; s(ϑi,M(αi))〉, the following inequality holds:

N(pi) ≥ N(B+
i ) ∗M(B−i ) ∗ s(ϑi,M(αi))

Using the equality s(x, y) = N (ts(N (x),N (y))):

M(`i) ≥ N(B+
i ) ∗M(B−i ) ∗ s(ϑi,M(αi))

= N(B+
i ) ∗M(B−i ) ∗ N (ts(N (ϑ),N (M(αi)))

= N(B+
i ) ∗M(B−i ) ∗ N (M(γi))

which proves that the rule is satisfied by N .
Proposition 12

Proof: Let M be a stable model of P+
X , then M is the

least model of (P+
X)M . For each βi, the value M(βi) has to

be necessarily N (M(αi)) since the only rule whose head is
βi in (P+

X)M is:

〈βi ← ;N (M(αi))〉

Similarly, for each γi we can infer that M(γi) =
ts(N (ϑi),N (M(α))), therefore the hypotheses of Lemma 2
hold, and M is a model of ΩP(X, {M(αi}))M as well.

We can see that M |LitP is a stable model of
ΩP(X, {M(αi)}) since if N ⊂ M |LitP were a model
of ΩP(X, {M(αi)})M |LitP then, by Lemma 2, N could be
extended to a model of (P+

X)M satisfying N ⊂ M ; which is
a contradiction with the minimality of M .

Reciprocally, let M be a stable model of ΩP(X, {M(αi)}),
that is, M is the least model of ΩP(X, {M(αi)})M . There-
fore, if we extend M to βi and γi via M(βi) = N (M(α)) and
M(γi) = ts(N (ϑi),N (M(αi))), Lemma 2 can be applied
once again and, thus M is also a model of (P+

X)M .
If M were not the least model of (P+

X)M then, there
would exist a model N of (P+

X)M such that N ⊂ M .
By using Lemma 2 again, N ⊂ M would be a model of
ΩP(X, {M(αi)})M ; and this would contradict the fact that
M is a stable model of ΩP(X, {M(αi)}).
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