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Abstract. We briefly overview the most recent improvements we have
incorporated to the existent implementations of the TAS methodology,
the simplified ∆-tree representation of formulas in negation normal form.
This new representation allows for a better description of the reduc-
tion strategies, in that considers only those occurrences of literals which
are relevant for the satisfiability of the input formula. These reduction
strategies are aimed at decreasing the number of required branchings
and, therefore, control the size of the search space for the SAT problem.

1 Overview of TAS

TAS denotes a family of refutational satisfiability testers for both classical and
non-classical logics which, like tableaux methods, also builds models for non
valid formulas. So far, we have described algorithms for classical propositional
logic [6,1], finite-valued propositional logics [3] and temporal logics [2].

The basis of the methodology is the alternative application of reduction
strategies over formulas and a branching rule; the included reduction strategies
are based on equivalence or equisatisfiability transformations whose complexity
is at most quadratic; when no more simplifications can be applied, then the
branching strategy is used and then the simplifications are called for. The power
of the method is based not only on the intrinsically parallel design of the in-
volved transformations, but also on the fact that these transformations are not
just applied one after the other, but guided by some syntax directed criteria.

1.1 ∆-Trees

The improved version of the TAS satisfiability tester for classical propositional
logic, tascpl, presented here uses and alternative representation of the boolean
formulas: the simplified ∆-tree representation [6]: in the same way that con-
junctive normal forms are usually interpreted as lists of clauses, and disjunctive
normal forms are interpreted as lists of cubes, we interpret negative normal forms
as trees of clauses and cubes. In Fig. 1 an example is given in which a negation
normal formula together with its ∆-tree representation are shown:

The part of the algorithm which obtains benefit from this more compact
representation of negation normal formulas is the module of reduction strategies.
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Fig. 1.

1.2 Reductions

Two types of reduction transformations to decrease the size of a negation normal
form A at (at most) quadratic cost can be applied by a TAS system: meaning-
and satisfiability-preserving transformations.

Restricted form. This is a generalization of the restricted form for cnfs; those
subtrees in a ∆-tree which can be detected to be either valid, or unsatisfiable,
or equivalent to literals are simplified.

Complete reduction. Literals in the root of a ∆-tree can be assumed true,
and an equisatisfiable formula is obtained.

Pure literals deletion. Literals that always appear either positively or nega-
tively are made true, obtaining again an equisatisfiable formula.

Subreduction. With this meaning-preserving transformation, we obtain ∆-
trees such that in every branch of it there is at most one ocurrence of every
atom.

1.3 Branching Process

If no simplification can be applied, then the satisfiability checking process is
splitted using the following Davis-Putnam branching rule: if p is an atom in T ,
then T is satisfiable if and only if either T [p/�] is satisfiable or T [p/�] is sat-
isfiable. So, the problem is divided into two independent sub-problems that can
be studied in parallel.

Although some heuristics to select the literal in the branching process have
been investigated, [4], there is no yet conclusive difference in the use of either of
them and thus none is applied actually in the system and the first atom of the
formula is used.

1.4 Construction of Models

As tableaux systems, TAS algorithms not only check for the satisfiability, but
also, if the input formula is satisfiable, a model is supplied. Models are con-
structed by using the deleted literals in the complete reduction, pure literal
deletion and in the branching process.
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2 The System for Classical Logic

The system tascpl has been implemented using Objective CAML version 3.06.
Although the main work has been done under Mac OS X, the system can be
straightforwardly ported to any Unix-like platform.

A functional language has been chosen because this is the more natural way
to write the operations involved in the algorithm. On the other hand, Caml
programs can easily be interfaced with other languages, in particular with other
C programs or libraries; two compilation modes are supported, compilation to
byte-code (for portability) and to native assembly code (for performance). The
native code compiler generates very efficient code, complemented by a fast, unob-
trusive incremental garbage collector. Finally, as we have mentioned above, the
programs can be compiled on most Unix platforms (Mac OS X, Linux, Digital
Unix, Solaris, IRIX) and well as under Windows.

2.1 The Main Program: tascpl

As stated previously, TAS methods are satisfiability testers (this allows also
to check for validity by refutation). As a result, the required input to execute
tascpl is a text file with the formula we want check if it is valid or satisfiable.

The command line to call the program admits a flag to turn on or off the
negation of the input formula:

– tascpl -sat <textfile> checks the satisfiablity of the formula described
in <textfile>; the possible outputs are “Unsatisfiable” or “Model: <list
of literals>”, where <list of literals> describes a model of the input formula
(if satisfiable).

– tascpl -val <textfile> checks the validity of the formula in <textfile>;
the possible output are: “Valid” or “Countermodel: <list of literals>”,
where <list of literals> describes a countermodel for the input formula,
provided it is not valid.

This is an example of the content of a valid input file:

((s1 <-> (-a | d)) &
(o010 <-> (b & s1)) &
(s2 <-> (-c | d)) &
(o020 <-> (b & s2)))
->
((o010 <-> o020) | ((a & b & -c) | (-a & b & c & -d)))

Any string non starting by numbers can be used as atoms, and the following
Ascii symbols are used to represent connectives: the conjunction, &, and the
disjunction, |, can be used with any arity; - is used for negation, -> is used
for implication, and <-> is used for biimplication. Every subformula must be
enclosed by parentheses, except the negation of literals.
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2.2 The dtree Utility

We have included this small utility to help understanding the ∆-tree represen-
tation.

– dtree <textfile> returns a TEX file containing the ∆-tree representation of
the formula in <textfile>; if this file is compiled with LATEX, a pretty-printed
version of the tree is obtained. Obviously, this utility is only interesting for
small formulas, even although it supports larger inputs.

3 Some Comments on Performance

It is worth to say that the use of this more compact representation of formulas
not only has resulted in a simpler and more straightforward implementation of
the method, but also in a better performance when applied to formulas taken
from the libraries of satisfiability problems.

When comparing to other propositional satisfiability testers, the first problem
we faced is that only the system HeerHugo [5] is genuinely non-clausal (see
http://www.satlive.org), the comparison with other provers on families of
non-clausal formulas has been done indirectly through a preprocessing step in
order to obtain the clause form of the problems.

TAS generally outperforms for families of formulas which are not directly
stated in clause form (for instance, formulas containing a number of connectives
of bi-implication) whereas the performance it not as good when applied to for-
mulas already in clause form. This is natural, for TAS methods were designed
primarily as non-clausal theorem provers.
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