
Reductions for Non-Clausal Theorem Proving

G. Aguilera, I.P. de Guzmán, M. Ojeda-Aciego, A.Valverde

Dept. Matemática Aplicada. Universidad de Málaga.

Aptdo. de Correos 4114. E-29080 Málaga, Spain

Abstract

This paper presents the TAS methodology 1 as a new framework for generating
non-clausal Automated Theorem Provers. We present a complete description of the
ATP for Classical Propositional Logic, named TAS-D, but the ideas, which make
use of implicants and implicates can be extended in a natural manner to first-order
logic, and non-classical logics. The method is based on the application of a number
of reduction strategies on subformulas, in a rewrite-system style, in order to reduce
the complexity of the formula as much as possible before branching. Specifically,
we introduce the concept of complete reduction, and extensions of the pure literal
rule and of the collapsibility theorems; these strategies allow the size of the search
space. In addition, it is a syntactical countermodel construction.

As an example of the power of TAS-D we study a class of formulas which has
linear proofs (in the number of branchings) when either resolution or dissolution
with factoring is applied. When applying our method to these formulas we get
proofs without branching.

Key words: Non-clausal theorem proving, prime implicates/implicants, SAT
problem.

1 TAS stands for Transformaciones de Árboles Sintácticos, Spanish translation of
Syntactic Trees Transformations.
? Partially supported by CICYT project number TIC97-0579-C02-02.

Preprint submitted to Elsevier Preprint 15 September 1999

1 Introduction

Much research in automated theorem proving has been focused on developing

satisfiability testers for sets of clauses. However, experience has pointed out a

number of disadvantages of this approach: it is not natural to specify a real-

world problem in clause form, the translation into clause form is not easy to

handle and, although there a number of efficient translation methods, models

usually are not preserved under the translation. In addition, clausal methods

are not easy to extend to non-classical logics, partly because no standard

clause form can be defined in this wider setting.

There are different obstacles that have to be overcome when clausal normal

forms are to be used in a non-classical context: normal forms can be expo-

nentially long wrt the length of the input (although this is not a problem in

classical logic where linear transformations exist [?,?]); the normalized input

bears no resemblance to the original formula; non-classical logics can be found

that fail to have internal normal forms.

Non-clausal theorem proving research has been mainly focused on either tableaux

methods or matrix-based methods; also some ideas based on the data struc-

ture of BDDs have been used in this context. Recently, path dissolution [?]

has been introduced as a generalisation of analytic tableaux, allowing tableaux

deductions to be substantially speeded up.

The central point for efficiency of any satisfiability tester is the control over

the branching, and our approach is focussed on the reduction of the formula

to be analysed as much as possible before actually branching. Specifically, we

introduce the concept of complete reduction, and extensions of the pure literal

rule and of the collapsibility theorems. On the other hand, another interesting

point in the design of ATPs is the capability of building models provided the

input formula is satisfiable.

A non-clausal algorithm for satisfiability testing in the classical proposition-

al calculus, named TAS-D, is described. The input to the algorithm need

not be in conjunctive normal form or any normal form. The output is either

“Unsatisfiable”, or “Satisfiable” and in the latter case also a model of

the formula is given.

To determine satisfiability for a given formula, firstly we reduce the size of the

formula by applying satisfiability-preserving transformations, then choose a

variable to branch and recursively repeat the process on each generated task.

2

This feature allows us:

• to obtain useful information from the original structure of the formula.

• to make clearer proofs.

• to extend the method to non-classical logics which do not have a widely

accepted normal form.

Although our intention in this paper is to introduce the required metatheory,

TAS-D is currently being tested and we are obtaining very promising results.

In our opinion, the results of these tests indicate the TAS framework to be a

reliable approach to automated theorem proving. The ideas of TAS are widely

applicable because they apply to different types of logics; flexible because

they provide a uniform way to prove soundness and completeness; and, in

addition, easily adaptable because switching to a different logic is possible

without having to redesign the whole prover. In fact, it has been already

extended to Classical First Order Logic [?], Temporal Logic [?] and Multiple-

Valued Logic [?,?].

The structure of the paper is as follows:

(1) Firstly, the necessary definitions and theorems which support the reduc-

tion strategy are introduced in Section 2.

(2) Later, the algorithm TAS-D is described in Section 3.

(3) Finally, a comparative example is included in Section 4, which shows a

class of formulas which has linear proofs (in the number of branchings)

when either resolution or dissolution with factoring is applied [?,?]. When

applying TAS-D to these formulas we get proofs without branching.

1.1 Overview of TAS-D

TAS-D is a satisfiability tester for classical propositional logic; therefore it

can be used as a refutational ATP method and, like tableaux methods, it is a

syntactical model construction.

Reduction strategies are the main novelty of our method with respect to oth-

er non-clausal ATPs; like these methods, TAS-D is based on the disjunctive

normal form. Its power is based not only on the intrinsically parallel design of

3

the involved transformations, but also on the fact that these transformations

are not just applied one after the other, but guided by some syntax-directed

criteria, described in Sections 2.2 and 2.4, whose complexity is polynomial.

These criteria allow us:

(1) To detect subformulas which are either valid, or unsatisfiable, or equiva-

lent to literals.

(2) To detect literals ` such that it is possible to obtain a equisatisfiable

formula in which ` appears at most once. Therefore, we can decrease the

size of the problem as much as possible before branching.

By checking these criteria we give ourselves the opportunity to reduce the size

of the problem while creating just one subproblem; in addition, such reduc-

tions do not contribute to exponential growth. However, the most important

feature of the reductions is that they enable the exponential growth rate to

be limited.

As an ATP, TAS-D is sound and complete and, furthermore, as a model build-

ing method, it generates countermodels in a natural manner.

1.2 Preliminary Concepts and Definitions

Throughout the rest of the paper, we will work with a classical propositional

language over a denumerable set of propositional variables, V , and connectives

{¬,∧,∨,→}; the semantics for this language is the standard one:

• An assignment I is an application from the set of propositional variables V
to {0, 1}; the domain of an assignment is uniquely extended to the whole

language with the usual definition of the classical connectives.

• A formula A is said to be satisfiable if there exists an assignment I such

that I(A) = 1; in this case I is said to be a model for A.

• Two formulas A and B are said to be equisatisfiable if A is satisfiable iff B

is satisfiable.

• Two formulas A and B are said to be equivalent, denoted A ≡ B, if I(A) =

I(B) for all assignment I.

• A formula A is a logical consequence of a set of formulas Ω, denoted Ω |= A,

4

if I(A) = 1 for all model I of Ω.

• We use the symbols > and ⊥ to denote truth and falsity.

We will also use the usual notions of literals, clauses, cubes, implicants, im-

plicates and negation normal form (nnf):

• A literal is either a propositional variable or the negation of a propositional

variable; V± denotes the set of literals.

• If ` is a literal then ` is its opposite literal, that is: p = ¬p and ¬p = p for

all p ∈ V.

• A clause is a disjunction of literals `1 ∨ . . . ∨ `n. A clause is said to be

restricted if it has no pairs of opposite literals and has no repeated literals.

• A cube is a conjunction of literals `1∧ . . .∧`m. A cube is said to be restricted

if it has no pairs of opposite literals and has no repeated literals.

• A formula A is said to be in negation normal form (nnf), if it has no occur-

rences of the connective → and the negations are only in the literals.

• S v A denotes that S is a subformula of A, and S @ A denotes that S is a

proper subformula of A.

• A literal ` is an (unitary) implicant of a formula A if ` |= A.

• A literal ` is an (unitary) implicate of a formula A if A |= `.

The transformation of a formula into nnf is linear (by repeated application

of De Morgan rules, the double negation rule and the equivalence A → B ≡
¬A ∨B), so in the following we will only consider formulas in nnf.

We will use the standard notion of tree and address of a node in a tree; ε will

denote the address of the root node. In addition, we will identify the formulas

with its syntactic tree. An address, η, in a formula A (i.e. in its syntactic tree)

means, when no confusion arises, a subformula of A: the scope of the node

with address η in A. Similarly, when we say a subformula B of A we mean

an occurrence of B in A; if B v A, then ηB denotes the address of the node

corresponding to B in A; in particular, ηA = ε.

If α = {`1, `2, . . . , `n} is a set of literals, then α = {`1, `2, . . . , `n}.

5

If α = {`1, `2, . . . , `n} is a set of literals in A and ∗ ∈ {>,⊥}, then the

expression A[α/∗] denotes the formula obtained after substituting in A, for all

` ∈ α, every occurrence of ` by ∗, and ` by ∗.

If A, B and C are formulas and B v A, then A[B/C] denotes the result of

substituting in A any occurrence of B by C. If {`1, . . . , `n} is a set of literals

in A and Ci are formulas, then the expression A[`1/C1, . . . , `n/Cn] denotes the

formula obtained after substituting in A, for all i, every occurrence of `i by Ci.

If η is an address in A and C is a nnf, then the expression A[η/C] is the

formula obtained after substituting in A the subtree rooted in η by C.

2 Adding Information to the Tree: ∆-lists and ∆̂-sets

The idea underlying the reduction strategy is the use of information given by

partial assignments (extensively used in Quine’s method [?]) just for unitary

assignments but, as we will show, in a powerful manner.

We associate to each nnf A two lists 2 of literals denoted ∆0(A) and ∆1(A)

(the associated ∆-lists of A) and two sets, denoted ∆̂0(A) and ∆̂1(A), whose

elements are obtained out of the associated ∆-lists of the subformulas of A.

The ∆-lists and the ∆̂-sets are the key tools of our method to reduce the size

of the formula being analysed for satisfiability.

2.1 The ∆-lists

In a nutshell, ∆0(A) and ∆1(A) are, respectively, lists of prime implicates and

implicants (with length at most one) of A. The purpose of these lists is two-

fold: firstly, to transform the formula A into an equivalent and smaller-sized

one (Section 2.2), and secondly, by means of the ∆̂-sets (Sections 2.3 and 2.4),

to get an equisatisfiable and smaller-sized one. Their formal definition is the

following:

Definition 1 Given an nnf A, ∆0(A) and ∆1(A) are recursively defined as

2 We use lists in lexicographic order just to facilitate the presentation of the exam-
ples. The reader can interpret them as sets.

6

follows:

∆0(⊥) = ⊥ ∆1(⊥) = nil

∆0(>) = nil ∆1(>) = >
∆0(`) = ` ∆1(`) = `

∆0 (
∧n
i=1 Ai) =

⋃n
i=1 ∆0(Ai) ∆1 (

∧n
i=1 Ai) =

⋂n
i=1 ∆1(Ai)

∆0 (
∨n
i=1 Ai) =

⋂n
i=1 ∆0(Ai) ∆1 (

∨n
i=1 Ai) =

⋃n
i=1 ∆1(Ai)

In addition, elements in a ∆0-list are considered to be conjunctively connect-

ed (as implicates are disjunctions a collection of them is a conjunction) and

elements in a ∆0-list are considered to be disjunctively connected. The dis-

junctive/conjunctive nature of the ∆-lists allows some simplifications to be

applied; namely, if {`, `} ⊂ ∆0(A), then ∆0(A) is simplified to ⊥, and if

{`, `} ⊂ ∆1(A), then ∆1(A) is simplified to >.

The intuition behind the definition is easy to explain, since in ∆0 (
∧n
i=1 Ai)

we intend to calculate implicates (for it is ∆0), and since the union of the

implicates of each conjunct is a set of implicates of the conjunction, then we

use
⋃
, and so on.

Example 2 (1) ∆0(q ∨ r ∨ p) = nil

∆1(q ∨ r ∨ p) = pqr

(2) ∆0(p ∧ q ∧ p ∧ r) = ⊥
∆1(p ∧ q ∧ p ∧ r) = nil

(3) ∆0((s ∧ p) ∨ (s ∧ t)) = ps ∩ st = s

∆1((s ∧ p) ∨ (s ∧ t)) = nil ∪ nil = nil

(4) ∆0((s ∧ p) ∨ s) = ps ∩ s = s

∆1((s ∧ p) ∨ s) = nil ∪ s = s

Note that for cubes and clauses, the lists ∆0 and ∆1, respectively, give their

representation as sets of literals.

2.2 Information in the ∆-lists

In this section we study the information contained in the ∆-lists of a given

formula. Our first theorem states that elements of ∆0(A) are implicates of A,

7

and elements of ∆1(A) are implicants of A, and follows easily by structural

induction from the definition of ∆b-lists.

Theorem 3 Let A be a nnf and ` be a literal in A then:

(1) If ` ∈ ∆0(A), then A |= ` and, equivalently, A ≡ ` ∧ A.

(2) If ` ∈ ∆1(A), then ` |= A and, equivalently, A ≡ ` ∨ A.

As an immediate corollary of the previous theorem we have the following result

on the structure of the ∆-lists:

Corollary 4 For every nnf A we have one and only one of the following

possibilities:

• There is b ∈ {0, 1} such that ∆b(A) = nil,

• ∆1(A) = ∆0(A) = `, and then A ≡ `.

The following corollary states a condition on the ∆1-lists which directly implies

the satisfiability of a formula.

Corollary 5 If ∆1(A) 6= nil, then A is satisfiable, and if ` ∈ ∆1(A), then

any assignment I such that I(`) = 1 is a model for A.

On the other hand, the following result states conditions on the ∆-lists assur-

ing the validity or unsatisfiability of a formula.

Corollary 6 Let A be a nnf, then

(1) If A =
∧n
i=1 Ai in which a conjunct Ai0 is a clause such that ∆1(Ai0) ⊆

∆0(A), then A ≡ ⊥.

(2) If A =
∨n
i=1 Ai in which a disjunct Ai0 is a cube such that ∆0(Ai0) ⊆

∆1(A), then A ≡ >.

PROOF.

(1) Let A =
∧n
i=1 Ai, using the results of Theorem 3, if Ai0 =

∨m
j=1 `j with,

8

`1 . . . `m ⊆ ∆0(A), then A ≡ `j ∧ A for all j ∈ {1, . . . ,m}. Therefore:

A ≡ Ai0 ∧ A =
m∨
j=1

`j ∧ A ≡
m∨
j=1

`j ∧ (
m∧
j=1

`j ∧ A) ≡ ⊥

(2) It is similar to the previous one.

The example below shows the transformation stated in the previous corollary;

the analysis of the ∆-lists detects a non-trivial link (in the sense of [?], i.e. a

pair of opposite literals) and conclude the unsatisfiability of the formula.

∧(rpq, nil)

r ∨(pq, nil)

∧(pqr, nil)

p q r

∧(pqs, nil)

p q s

∨(pq, nil)

p q

∧
r p q ∨

∧
p q r

∧
p q s

∨
p q

∧
r p q ∨

∧
p q r

∧
p q s

¬
∧

p q

⊥

link link

TAS-D

Definition 7 If A is a nnf, to ∆-label A means to associate to each node η

in A the ordered pair (∆0(η),∆1(η)).

Let us name those formulas whose ∆-lists allow to determine either its validity

or its (un)satisfiability.

Definition 8 A nnf A is said to be

• finalizable if one of the following conditions holds:

(1) ∆1(A) 6= nil.

(2) ∆0(A) = ⊥.

This definition will be applicable to the current formula when it is detected to

be (un)satisfiable. The following three definitions are referred to subformulas

of the current formula which are detected to be either valid, or unsatisfiable,

or equivalent to a literal.

• ∆1-conclusive if one of the following conditions holds:

(1) ∆1(A) = >.

9

(2) A =
∨n
i=1 Ai and a disjunct Ai0 is a cube such that ∆0(Ai0) ⊆ ∆1(A).

• ∆0-conclusive if one of the following conditions holds:

(1) ∆0(A) = ⊥.

(2) A =
∧n
i=1 Ai and a conjunct Ai0 is a clause such that ∆1(Ai0) ⊆ ∆0(A).

• `-simple if A is not a literal and ` = ∆0(A) = ∆1(A).

The previous results state the amount of information in the ∆-lists which is

enough to detect (un)satisfiability; when all these results are applied to a given

formula, the resulting one is said to be ∆-restricted, and its formal definition

is the following:

Definition 9 Let A be an nnf, then it is said that A is ∆-restricted if either

A is a logical constant or it satisfies the following conditions:

• it has no subtree which is either ∆0-conclusive, or ∆1-conclusive, or `-

simple,

• it has neither > nor ⊥ leaves. 3

Remark 10 From the previous results we can state that if A is a nnf, then by

repeatedly application of the following sequence of steps we get a ∆-restricted

formula:

(1) ∆-label.

(2) Substitute subformulas B v A by either > (if B is ∆1-conclusive), or ⊥
(if B is ∆0-conclusive), or a literal ` (if B is `-simple).

(3) Simplify logical constants (> or ⊥), as soon as introduced, by using the

0-1-laws.

This transformation can be made in just one reverse depth-first traverse of the

formula, in which the content of the labels is read at most twice. Therefore,

the conversion into ∆-restricted form is linear.

3 Although the input formula is supposed not to contain occurrences of logical
constants, they can be introduced by the reductions as we will see.

10

Example 11 Given the formula

(((q → r) ∧ (p ∨ (r → t))) ∧ (q ∨ (t→ s)))→ ((p ∧ ¬(q → ¬t)) ∨ (r → ((q → (s ∨ r)) ∧ s)))

a linear transformation allows to get a nnf which is equivalent to its negation,

A, depicted in Fig. 1 (up).

A =

∧

∨

q r

∨

p r t

∨

q t s

∨

p q t

r ∨(s, s)

∧(qrs, nil)

q s r

s

B =

∧(rs, nil)

∨(nil, qr)

q r

∨(nil, prt)

p r t

∨(nil, qst)

q t s

∨(nil, pqt)

p q t

r s

Fig. 1. The formula B is ∆-restricted and equivalent to A

When ∆-labelling A, as stated in Remark 10, node 6 (the right-most branch)

is detected to be s-simple; then the subtree is substituted. The ∆-label process

finishes with no more transformations and the ∆-labelled tree B, in the Fig. 1

(down), is obtained.

New applications of the ∆-lists to get information (up to equivalence) of a

formula A are given by the following theorem and its corollary.

Theorem 12 Let A be a nnf and ` be a literal in A, then:

(1) If ` ∈ ∆0(A), then A ≡ ` ∧ A[`/>, `/⊥]

(2) If ` ∈ ∆1(A), then A ≡ ` ∨ A[`/⊥, `/>]

11

PROOF. 1. Let I be an assignment; we have to prove that I(A) = I(` ∧
A[`/>, `/⊥]):

• If I(`) = 0 then, by Theorem 3 (item 1) since ` ∈ ∆0(A), we have that

A ≡ ` ∧ A, therefore I(A) = 0. Now the result is obvious.

• If I(`) = 1 then I(A) = I(A[`/>, `/⊥]) = I(` ∧ A[`/>, `/⊥]).

The second item is proved similarly.

The following example shows an application of the theorem above:

∨(nil, p)

p ∧
q ∨
p r

∨(nil, p)

p ∧
q ∨
> r

∨
p q

(∆-label)(Th. 2)

link

The theorem states how to simplify a formula when a link between an element

of a ∆-list and a literal is found.

As an immediate consequence of the previous theorem, the following satisfiability-

preserving result can be stated, which will be used later:

Corollary 13 Let A be a nnf. If ` ∈ ∆0(A), then A and A[`/>, `/⊥] are

equisatisfiable. Furthermore, if I is a model of A[`/>, `/⊥], then the extension

I ′ of I such that I ′(`) = 1 is a model of A.

The following theorem allows to substitute a whole subformula C of A (not

just literals as in Theorem 12) by a logical constant.

Theorem 14 Let A be a nnf, C @ A then:

(1) If ` ∈ ∆1(A) and ` ∈ ∆0(C), then A ≡ ` ∨ A[C/⊥]

(2) If ` ∈ ∆1(A) and ` ∈ ∆1(C), then A ≡ ` ∨ A[C/>]

(3) If ` ∈ ∆0(A) and ` ∈ ∆0(C), then A ≡ ` ∧ A[C/⊥]

(4) If ` ∈ ∆0(A) and ` ∈ ∆1(C), then A ≡ ` ∧ A[C/>]

PROOF.

12

(1) By Theorem 3, we have A ≡ ` ∨A and C ≡ ` ∧ C. Let I be an interpre-

tation, then

- If I(`) = 1, then I(A) = 1 = I(` ∨ A[C/⊥]).

- If I(`) = 0, then I(C) = 0 and I(A) = I(A[C/⊥]) = I(` ∨ A[C/⊥])

The rest of the items are proved similarly.

This theorem improves Theorem 12 in that it defines transformations from

links between elements of two ∆-lists; although the relevance of the theorem

from the TAS standpoint will be shown in the introduction of the ∆̂-sets.

∨(nil, p)

p ∧
q ∨(nil, p r)

p r

∨
p ∧
q >

∨(nil, pq)

p q

(∆-label)

link

(Th. 3)

2.3 The ∆̂-sets

In the previous section, the information in the ∆-lists has been used locally,

that is, the information in ∆b(η) has been used to reduce node η, by using

Theorem 3. In this section, the purpose of defining a new structure, the ∆̂-

sets, is to allow the globalisation of the information, in that the information

in ∆b(η) can be refined by the information in its ancestors.

Given a ∆-restricted nnf A, we define the sets ∆̂b(A), for b ∈ {0, 1}, whose

elements are pairs (α, η) where α is a filtered ∆b-list associated to a subformula

B of A, and η is the address of B in A. In Section 2.4 we will see how to

transform the formula A into an equisatisfiable and smaller sized one by using

these sets.

The definition of the ∆̂-sets is based on an operator (Filter) which filters

information in the ∆-lists according to Theorems 12 and 14. These theorem-

s describe substitutions applicable to a node with respect to the dominant

literals, i.e. those occurring in the labels of some ancestor. Specifically, some

literals in the ∆-lists can allow substitutions of subformulas by either > or ⊥
as a consequence of Theorem 14; on the other hand, when this theorem is not

applicable, it is still possible to delete the dominated literals, as an application

13

of Theorem 12. In the definition of the ∆-sets, these dominated literals will

not be deleted but framed, therefore we are allowed to assume that a framed

literal does or does not occur in the formula according to our necessities.

Definition 15 Given a ∆-restricted nnf A and B v A we have:

• Filter(∆0(B)) is:

(1) ⊥, if there is a literal ` ∈ ∆0(B) such that either ` ∈ ∆1(B
′) or ` ∈ ∆0(B

′)

where B @ B′ v A.

This is a consequence of Theorem 14, items 1 and 3.

(2) The result of framing any literal ` ∈ ∆0(B) satisfying either ` ∈ ∆0(B
′)

or ` ∈ ∆1(B
′) where B @ B′ v A.

This is a consequence of Theorem 12, items 1 and 2.

• Filter(∆1(B)) is

(1) >, if there is a literal ` ∈ ∆1(B) such that either ` ∈ ∆0(B
′) or ` ∈ ∆1(B

′)

where B @ B′ v A.

This is a consequence of Theorem 14, items 2 and 4.

(2) The result of framing any literal ` ∈ ∆1(B) satisfying either ` ∈ ∆1(B
′)

or ` ∈ ∆0(B
′) where B @ B′ v A.

This is a consequence of Theorem 12, items 2 and 1.

Definition 16 Let A be a ∆-restricted formula. For b ∈ {0, 1}, the set ∆̂b(A)

is recursively defined as follows:

• If ` is a literal, then ∆̂0(`) = ∆̂1(`) = ∅

• Otherwise, ∆̂b(A) = {(Filter(∆b(B)), ηB) | B is a subformula of A and ∆b(B) 6=
nil}

In the following example we present a step-by-step calculation of ∆̂b-sets.

Example 17 Consider the formula A whose ∆-labelled tree appears below,

14

∧(nil, nil)

∨(nil, rs)

r s

∨(nil, pq)

∧(nil, p)

∨(nil, pq)

p q

∨(nil, ps)

p s

∧(nil, q)

∨(nil, qr)

r ∧(nil, q)

∨(nil, pq)

q p

∨(nil, qs)

s q

∨(nil, qrs)

q s r

∨(nil, s)

∧(pq, nil)

∨(p, nil)

∧(pr, nil)

p r

∧(ps, nil)

p s

q

s

For this tree, we have

∆̂0(A) = {(pr, 3111), (p s̄ , 3112), (p, 311), (pq, 31)}

Literal p in nodes 3111, 3112 and 311 is framed because of its occurrence in

∆0(31) = pq; and literal s̄ in node 3112 is framed because of the occurrence of

s in ∆1(3) = s.

On the other hand, the ∆̂1-set for A is the following:

∆̂1(A) = {(rs̄, 1), (>, 211), (p̄ s̄, 212), (p̄ , 21), (>, 22121), (q̄ s̄, 22122),

(q̄ , 2212), (q̄ r̄, 221), (q̄ rs, 222), (q̄ , 22), (p̄q̄, 2), (s, 3)}

Node 211 is substituted by > because of the occurrences of q̄ in ∆1(2) and q in

∆1(211); and node 22121 is substituted by > because of the occurrences of p

in ∆1(2) and p̄ in ∆1(22121). Finally, the occurrences of p̄ are framed because

of the occurrence of p̄ in ∆1(2), and the occurrences of q̄ are framed because

of the occurrence of q̄ in ∆1(2).

2.4 ∆̂-sets and meaning-preserving results

In this section we study the information which can be extracted from the ∆̂-

sets. This is stated in Theorem 18, and in its proof we will use the following

facts about the ∆̂-sets of a given ∆-restricted nnf A:

15

• No element in ∆̂1(A) is (α, ε), since A is a ∆-restricted nnf and cannot be

finalizable.

• If (α, η) ∈ ∆̂b(A), then η is not the address of a leaf of A (since ∆̂0(`) =

∆̂1(`) = ∅ for all literal `).

• If α = ∆0(A), then (α, ε) ∈ ∆̂0(A) and the list α does not have framed lit-

erals. (Just note that a literal ` ∈ α is framed in (α, η) from the information

in the ∆-lists of its ancestors).

The following theorem states that, similar to the ∆-labels, the ∆̂-labels also

allow substituting subformulas in A by either > or ⊥.

Theorem 18 Let A be a ∆-restricted nnf then

(1) If (⊥, η) ∈ ∆̂0(A), then A ≡ A[η/⊥].

(2) If (>, η) ∈ ∆̂1(A), then A ≡ A[η/>].

PROOF.

(1) Suppose (⊥, η) ∈ ∆̂0(A) and let C be the subformula at address η. By

the definition of ∆̂0(A) there exist a formula B such that C @ B v A

and a literal ` satisfying

` ∈ ∆0(C) and either ` ∈ ∆1(B) or ` ∈ ∆0(B) (1)

By Corollary 4, using that ` ∈ ∆0(C), that the address η cannot corre-

spond to a leaf, and that A is a ∆-restricted nnf (specifically, A does not

have `-simple subformulas), we get that ∆1(C) = nil.

Note that, clearly, it is enough to prove that B ≡ B[C/⊥].

Firstly, we will prove that, under these hypotheses:

(a) If ` ∈ ∆1(B), then ` ∈ ∆1(B[C/⊥]).

(b) If ` ∈ ∆0(B), then ` ∈ ∆0(B[C/⊥]).

Proof of (a): By induction on the depth of η in B, denoted dB(η).

16

(i) If dB(η) = 1, then either B = C∧D or B = C∨D (up to commutativity

and associativity).

It cannot be the case that B = C ∧ D, since ` ∈ ∆1(B) and, as

∆1(B) = ∆1(C)∩∆1(D), we would have ` ∈ ∆1(C), which contradicts

the fact that ∆1(C) = nil.

Therefore, we must have B = C ∨ D and, consequently, B[C/⊥] =

⊥ ∨D. Now, using again ∆1(C) = nil, and ∆1(B) = ∆1(C) ∪∆1(D),

we have that ` ∈ ∆1(D) and, therefore, ` ∈ ∆1(⊥∨D) = ∆1(B[C/⊥]).

(ii) Assume the result for dX(η) ≤ k − 1 and let us prove it for dB(η) = k:

· If B = B1∨B2, C @ B1 and ` ∈ ∆1(B2), then the result is obvious.

· If B = B1 ∨ B2, C @ B1 and ` ∈ ∆1(B1), then by the induction

hypothesis we have that ` ∈ ∆1(B1[C/⊥]) ⊆ ∆1(B[C/⊥]).

· If B = B1 ∧ B2 and C @ B1, then ` ∈ ∆1(B1) and ` ∈ ∆1(B2).

Now, by the induction hypothesis, ` ∈ ∆1(B1[C/⊥]) ∩ ∆1(B2) ⊆
∆1(B[C/⊥]).

· The cases C @ B2 are similar.

The proof of (b) is obtained by duality.

Finally, we prove B ≡ B[C/⊥] by considering the two possibilities

in (1) above:

• If ` ∈ ∆0(C) and ` ∈ ∆1(B), then

B ≡ ` ∨B[C/⊥] by Theorem 14

≡ B[C/⊥] by (a) and Theorem 3

• If ` ∈ ∆0(C) and ` ∈ ∆0(B), then

B ≡ ` ∧B[C/⊥] by Theorem 14

≡ B[C/⊥] by (b) and Theorem 3

(2) The proof is similar.

17

Note that this theorem introduces a meaning-preserving transformation which

allows substituting a subformula by a constant. The information given by

the ∆-lists substitutes subformulas which are equivalent to either > (∆1-

conclusive) or ⊥ (∆0-conclusive); however, under the hypotheses of this theo-

rem, it need not be true that η is equivalent to either > or ⊥.

Definition 19 Let A be an nnf then it is said that A is restricted if it is

∆-restricted and satisfies the following:

• There are no elements (⊥, η) in ∆̂0(A).

• There are no elements (>, η) in ∆̂1(A).

If A is a nnf, to label A means ∆-label and associate to the root of A the

ordered pair (∆̂0(A), ∆̂1(A)).

Note that given a ∆-restricted nnf, A, after calculating (∆̂0(A), ∆̂1(A)) we get

either the (un)satisfiability of A or an equivalent and restricted nnf by means

of the substitutions determined by Theorem 18, and the 0-1-laws.

2.5 ∆̂-sets and satisfiability-preserving results

The following results will allow, by using the information in the ∆̂-sets, substi-

tution of a nnf A by an equisatisfiable and smaller sized A′ with no occurrences

of some literals occurring in A.

2.5.1 A complete reduction theorem

To begin with, Corollary 13 can be stated in terms of the ∆̂-sets as follows:

Theorem 20 (Complete reduction) Let A be a nnf such that (α, ε) ∈
∆̂0(A), then A is satisfiable if and only if A[α/>, α/⊥] is satisfiable. Fur-

thermore, if I is a model of A[α/>, α/⊥], then the extension I ′ of I such that

I ′(`) = 1 for all ` ∈ α is a model of A.

Note that this result allows elimination of all the occurrences of all the literals

appearing in α, that is why it is named complete reduction. Its usefulness will

be shown in the examples.

18

2.5.2 Generalised pure literal rule

The introduction of the ∆̂-sets allows a generalisation of the well-known pure

literal rule for sets of clauses. Firstly, recall the standard definition and result

for a formula in nnf:

Definition 21 Let ` be a literal occurring in a nnf A. Literal ` is said to be

pure in A if ` does not occur in A.

Lemma 22 Let A be a nnf and ` a pure literal in A then A is satisfiable iff

A[`/>] is satisfiable. Furthermore, if I is a model of A[`/>], then the extension

I ′ of I such that I ′(`) = 1 is a model of A.

Our ∆̂-sets allow to generalise the definition of pure literal and, as a conse-

quence, to get an extension of the lemma above.

Definition 23 Let A be a nnf. A literal ` is said to be ∆̂-pure in A if it

satisfies the following conditions:

(1) ` occurs in ∆̂0(A) ∪ ∆̂1(A).

(2) All the occurrences of ` in ∆̂0(A) ∪ ∆̂1(A) are framed.

The next theorem is a proper extension of Lemma 22, for it can be applied

even when ` and ` occur in A. The idea here is that framed literals can be

deleted, however we need not to delete them before studying the existence of

pure literals. The associated transformation can be easily defined as stated in

the theorem below.

Theorem 24 (Generalised pure literal rule) Let A be a nnf, let ` be a

∆̂-pure literal in A and let B be the formula obtained from A by the following

substitutions:

(i) If (α, η) ∈ ∆̂0(A) with ` ∈ α, then node η in A is substituted by η[`/>, `/⊥].

(ii) If (α, η) ∈ ∆̂1(A) with ` ∈ α, then node η in A is substituted by >.

Then A is satisfiable if and only if B is satisfiable. Furthermore, if I is a model

of B, then the extension I ′ of I such that I ′(`) = 1 is a model of A.

PROOF. By Theorem 12, and the definition of the ∆̂-sets, we have that

19

(a) If (α, η) ∈ ∆̂0(A), then α = ∆0(η); and if, in addition, we have ` ∈ α, then

A ≡ A[η/(` ∧ η[`/>, `/⊥])]

(b) If (α, η) ∈ ∆̂1(A), then α = ∆1(η); and if, in addition, we have ` ∈ α, then

A ≡ A[η/(` ∨ η[`/⊥, `/>])]

Therefore, if we consider the formula A′, obtained when applying the equiv-

alences of items (a) and (b), we get that literal ` is pure in A′. Now, by an

application of Lemma 22 to A′ we get the formula B, which completes the

proof.

In the rest of the section we introduce the necessary definitions to extend the

collapsibility results introduced in [?].

2.5.3 Collapsibility theorems

Definition 25 Let A be a nnf and `1 and `2 literals in A. Literals `1 and `2

are 0-1-bound if the following conditions are satisfied:

(1) There are no occurrences 4 of either `1 or `2 in ∆̂0(A), and for all (α, η) ∈
∆̂0(A) we have that `1 ∈ α iff `2 ∈ α.

(2) There are no occurrences of either `1 or `2 in ∆̂1(A), and for all (α, η) ∈
∆̂1(A) we have that `1 ∈ α iff `2 ∈ α.

From the definition of ∆̂-sets we have that:

Remark 26 If `1 and `2 are 0-1-bound in A, then every leaf in A with a literal

in {`1, `2, `1, `2} has an ancestor η in A which is maximal in the sense that

its associated ∆-lists satisfy one of the following conditions but its ancestors’

∆-lists do not:

• `1, `2 ∈ ∆0(η) and if η′ is an ancestor of η, then none of the literals

`1, `2, `1, `2 occur in the ∆-lists associated with η′.

4 In this section, when we say an occurrence of `, we mean an unframed occurrence
of `.

20

• `1, `2 ∈ ∆1(η) and if η′ is an ancestor of η, then none of the literals

`1, `2, `1, `2 occur in the ∆-lists associated with η′.

We will use the following notation in the proof of the collapsibility results,

where `i are literals, and b ∈ {0, 1}:

S`1···`n,b(A) = {S v A | `1, . . . , `n ∈ ∆b(S)}

Theorem 27 (Collapsibility) Let A be a nnf and let `1 and `2 be literals in

A. If `1 and `2 are 0-1-bound, then A is satisfiable if and only if A[`1/>, `1/⊥]

is satisfiable. Furthermore, if I is a model of A[`1/>, `1/⊥], then any extension

I ′ of I such that I ′(`1) = 1 is a model of A.

PROOF. The if part is immediate. For the only if part, let us suppose A is

satisfiable.

Let I be a satisfying assignment for A. If I(`1) = 1, there is nothing to prove;

so, let us consider I(`1) = 0 and prove that A is also satisfied by an assignment

I ′ such that I ′(`1) = 1.

From Remark 26, A can be considered as a formula in the language with the

following set of atoms

S`1`2,0(A) ∪ S`1`2,1(A) ∪ (V± r {`1, `2, `1, `2})

that is, in A every leaf is either a formula in S`1`2,0(A) ∪ S`1`2,1(A) or a literal

` 6∈ {`1, `2, `1, `2}.

Note that if S1 ∈ S`1`2,0(A), then we have that I(S1) = 0, and if S2 ∈ S`1`2,1(A),

then I(S2) = 1.

Let I ′ be the assignment obtained from I by changing the values on `i as

follows:

I ′(`1) = 1 and I ′(`2) = 0

This assignment satisfies I ′(S1) = 0 = I(S1) and I ′(S2) = 1 = I(S2), and

coincides with I in the rest of leaves. Therefore I ′ is a satisfying assignment

for A with I ′(`1) = 1.

21

This result is a generalisation of van Gelder’s collapsibility lemma, which treats

the case in which all the occurrences of `1, `2, `1, `2 are bound as `1 ∧ `2 and

`1∨ `2; so that `1 and `2 can be represented by a single literal with ` = `1∧ `2,

see [?] for the details. Our result drops the requirement that all the occurrences

in the defining subset of `1 and `2 have to be children of a ∧ node and the

occurrences in the defining subset of {`1, `2} have to be children of a ∨ node.

Obviously, the previous result can be easily extended to the case of n literals

which can be collapsed into one.

Definition 28 Let A be a nnf and let `1, . . . , `n be literals in A, literals

`1, . . . , `n are 0-1-bound if the following conditions are satisfied:

(1) In ∆̂0(A) there are no occurrences of `1, . . . , `n and if (α, η) ∈ ∆̂0(A) for

all i, j ∈ {1, . . . , n}, then we have that `i ∈ α iff `j ∈ α.

(2) In ∆̂1(A) there are no occurrences of `1, . . . , `n and if (α, η) ∈ ∆̂1(A) for

all i, j ∈ {1, . . . , n}, then we have that `i ∈ α iff `j ∈ α.

Corollary 29 (Generalised collapsibility) Let A be a nnf, and let `1, . . . , `n
be literals 0-1-bound in A then A is satisfiable iff A[`1/>, . . . , `n−1/>, `1/⊥, . . . , `n−1/⊥]

is satisfiable. Furthermore, if I is a model of A[`1/>, . . . , `n−1/>, `1/⊥, . . . , `n−1/⊥],

then any extension I ′ of I such that I ′(`j) = 1 for all j ∈ {1, . . . , n − 1} is a

model of A.

Example 30 van Gelder’s reduction lemmas cannot be applied to the formula

in Example 17, but it is collapsible in the sense of Theorem 27. We had the

following ∆̂-sets:

∆̂0(A) = {(pr, 3111), (p s̄ , 3112), (p, 311), (pq, 31)}
∆̂1(A) = {(rs̄, 1), (>, 211), (p̄ s̄, 212), (p̄ , 21), (>, 22121), (q̄ s̄, 22122),

(q̄ , 2212), (q̄ r̄, 221), (q̄ rs, 222), (q̄ , 22), (p̄q̄, 2), (s, 3)}

Specifically, p and q are 0-1-bound.

In order to state the generalisation of mixed collapsibility we need the following

definition:

Definition 31 Let A be a nnf, b ∈ {0, 1} and let `1 and `2 be literals in A.

22

Literal `1 is b-bounded to `2 if the following conditions are satisfied

(1) In ∆̂b(A) there are no occurrences (neither framed nor unframed) of either

`1 or `1.

(2) If (α, η) ∈ ∆̂b(A), then we have that

• If `1 ∈ α, then `2 ∈ α.

• If `1 ∈ α then `2 ∈ α.

By this definition if `1 is b-bound to `2 in a formula A, then every leaf of A

belonging to {`1, `1} has an ancestor η in S`1`2,b(A) ∪ S`1`2,b(A).

Theorem 32 (Mixed collapsibility) Let A be a nnf and `1, `2 literals in A,

(1) If `1 is 0-bound to `2, and A′ is the formula obtained from A by applying

the following substitutions

• If (α, η) ∈ ∆̂0(A) and `1, `2 ∈ α, then η is substituted in A by η[`1/>, `1/⊥].

• If (α, η) ∈ ∆̂0(A) and `1, `2 ∈ α, then η is substituted in A by η[`1/⊥, `1/>].

then A is satisfiable if and only if A′ is satisfiable. In addition, if I is a

satisfying assignment of A′, then any extension I ′of I such that I(`1) =

I(`2) is a satisfying assignment for A.

(2) If `1 is 1-bound to `2, and A′ is the formula obtained from A by applying

the following substitutions

• If (α, η) ∈ ∆̂1(A) and either `1, `2 ∈ α or `1, `2 ∈ α, then η is substituted

in A by >.

then A is satisfiable if and only if A′ is satisfiable. In addition, if I is a

satisfying assignment of A′, then any extension I ′ of I such that I(`1) =

I(`2) is a satisfying assignment for A.

PROOF. 1. Note that A can be considered as a formula in the language with

set of atoms

S`1`2,0(A) ∪ S`1`2,0(A) ∪ (V± r {`1, `1})

23

that is, in A every leaf is either a formula in S`1`2,0(A)∪S`1`2,0(A) or is a literal

` 6∈ {`1, `1}.

Let I be a satisfying assignment for A:

(1) if I(`1) = I(`2), then for every leaf S in S`1`2,0(A) we have, by Theorem 12,

that I(S) = I(S[`1/>, `1/⊥]) and for every leaf S in S`1`2,0(A) we have,

again by Theorem 12, I(S) = I(S[`1/⊥, `1/>]). Therefore, I(A) = 1 =

I(A′).

(2) If I(`1) 6= I(`2), then for every leaf S in S`1`2,0(A) ∪ S`1`2,0(A) we have,

by Theorem 12, I(S) = 0. Consider the assignment I?, obtained from I

by changing only its value on `1; obviously, we have I(S) ≤ I?(S).

By monotonicity of boolean conjunction and disjunction, we have 1 =

I(A) ≤ I?(A) = I?(A′). That is, A′ is satisfiable.

Conversely, let I be a satisfying assignment for A′ and let I? any extension

of I such that I?(`1) = I(`2). By Theorem 12, for every leaf S in S`1`2,0(A)

we have I(S) = I(S[`1/>, `1/⊥]) and for every leaf S in S`1`2,0(A) we have

I(S) = I(S[`1/⊥, `1/>]). Thus, I?(A) = I(A′) = 1.

2. The proof is similar.

Example 33 Following with the formula in Example 11, for the formula B

in figure 1, we had

∆̂0(B) = {(rs, ε)} and ∆̂1(B) = {(>, 1), (p r t, 2), (q st, 3), (pqt, 4)}

therefore the first subtree can be pruned, obtaining the tree in Fig. 2.

C = ∧(rs, nil)

(1)∨(nil, prt)

p r t

∨(nil, qst)

q t s

(3)∨(nil, pqt)

p q t

r s

Fig. 2. The tree C.

Now, variables r and s can be deleted by Theorem 20 of complete reduction

(for (rs, ε) ∈ ∆̂0(B)), storing the information (r = 1) and (s = 1) to be able

24

to generate a model (if it exists) of the input formula.

In addition, p is 1-bounded to t; therefore, by Theorem 32 of mixed collapsi-

bility, (1) and (3) can be substituted by > and the information (p = t) is

stored.

The resulting formula is q ∨ t, which is finalizable (for ∆1(q ∨ t) = qt 6= nil).

Specifically, it is satisfiable and a model is (q = 1).

We can deduce that the input formula in Example 11 is non-valid (for its

negation is satisfiable); by collecting the stored information we get the following

countermodel I(r) = 1, I(s) = 0, I(q) = 1 and two possibilities: I(p) = 1 and

I(t) = 0 (or I(p) = 0 and I(t) = 1) by the information (p = t) .

2.5.4 Splitting a formula

We finish the section by introducing a satisfiability-preserving result which

prevents a branching when suitable hypotheses hold. The splitting, as we call

it, results as a consequence of the following well-known theorem.

Theorem 34 (Quine) A is satisfiable if and only if A[p/>]∨A[p/⊥] is sat-

isfiable. Furthermore, if I is a model of A[p/>], the extension of I with the

assignment I(p) = 1 is a model of A; similarly, if I is a model of A[p/⊥], the

extension of I with the assignment I(p) = 0 is a model of A

If no satisfiability-preserving reduction can be applied to a restricted con-

junctive nnf, then we would have to branch. The following definition states

a situation in which the formula need not cause a branch but instead can be

split.

Definition 35 Let A =
∧
i∈J Ai be a restricted nnf; A is said to be p-splittable

if Jp ∪ Jp = J where

Jp = {i ∈ J | p ∈ ∆1(Ai)} Jp = {i ∈ J | p ∈ ∆1(Ai)}

Corollary 36 Let A =
∧
i∈J Ai be a restricted and p-splittable nnf. Then A

is satisfiable if and only if
(∧

i∈Jp Ai[p/⊥]
)
∨
(∧

i∈Jp Ai[p/>]
)

is satisfiable.

Furthermore, if I is a model of
∧
i∈Jp Ai[p/>], then the extension of I with the

assignment I(p) = 1 is a model of A; similarly, if I is a model of
∧
i∈Jp Ai[p/⊥],

then the extension of I with the assignment I(p) = 0 is a model of A.

25

This result can be seen as a generalisation of the Davis-Putnam rule with the

following advantages:

• It can be shifted to non-classical logics.

• Branching is essentially a doubling in size, whereas splitting results in two

subproblems whose joint size is at most the size of the original.

• Its interactions with the reduction strategies turn out to be extremely effi-

cient.

Now, we can describe the algorithm of the prover following the steps we have

applied in the previous examples.

3 The TAS-D algorithm

In this section we describe the algorithm TAS-D and its soundness and com-

pleteness are proved. The flowchart of the algorithm appears in Figure 3; we

have to keep in mind that:

• TAS-D determines the (un)satisfiability of the input formula. Therefore, it

can be viewed as a refutational ATP.

• The data flow of the algorithm is a pair (B,M) where B is a nnf, and M
is a set of expressions (` = b) or (` = `′), where b ∈ {0, 1} and ` is a literal

not occurring in B.

• The elements in M define a partial interpretation for the input formula,

which is used by CollectInfo, if necessary. This interpretation is defined

as follows:

I(`) = b if (` = b) ∈M

I(`) = I(`′) if (` = `′) ∈M

In general, due to the second condition, M might define more than one

interpretation, depending on the choosing of I(`′).

The operators involved in the algorithm are described below, the soundness

of each one follows from the results in previous sections:

26

A

(B,M)

Reduce

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Finalizable?

Root ∨?

SP-Red.?

Sub-Red.?

Splittable?

C
o
l
l
e
c
t
I
n
f
o

NNF(A)

P
a
r
a
l
l
e
l

Update

SPReduce

SubReduce

Split

QBranch

Unsat.

Model

Satisfiable

∆-restrict

∆̂-restrict

Fig. 3. Flowchart of the TAS-D algorithm.

The initialisation stage: NNF

The user’s input A is translated into nnf by the operator NNF; specifically,

NNF(A) = (B,∅) where B is a nnf which is equivalent to A.

The Update module

The different stages in the algorithm transform subtrees of the input tree;

in each transformation, the labels of the ancestor nodes (of the transformed

node) are deleted; Update processes these trees by recalculating the missing

27

labels and giving as output either a restricted nnf or a finalizable formula.

From another point of view, this stage updates the formula in the sense that

it prunes those subtrees that can be directly deduced to be equivalent either

to >, or ⊥, or a literal.

3.0.5 The ∆−restrict operator

The input of ∆−restrict is a pair (B,M), where B is a partially labelled

formula, possibly with logical constants.

Given a nnf B we have that ∆−restrict(B,M) = (C,M) where C is the

∆-restricted formula obtained from B as indicated in Definition 10.

3.0.6 The ∆̂−restrict operator

The input of ∆̂−restrict is a pair (B,M) where B is a ∆-restricted formula.

We have

∆̂−restrict(B,M) = (C,M)

where C is the restricted formula obtained fromB as indicated in Definition 19.

Parallelization

The input of Parallel is a pair (B,M), where B is a restricted formula and

B =
∨n
i=1 Bi. We have

Parallel(
n∨
i=1

Bi,M) = ((B1,M), . . . , (Bn,M))

Since a disjunction is satisfiable iff some disjunct is satisfiable, each pair

(Ai,M) is independently passed to Reduce, the following module in the algo-

rithm.

28

The Reduce module

The input of Reduce is the labelled syntactic tree of a restricted nnf B =∧n
i=1 Bi. In this stage we decrease, if possible, the size of B before branching, by

using the information provided by the ∆̂-labels and the ∆-labels. Specifically,

• the ∆̂-labels of the root node allow, using the SPReduce operator, to substi-

tute B by an equisatisfiable formula in which some propositional variables

have been eliminated;

• the ∆-labels of a proper subtree X allow, using the SubReduce operator, to

substitute the subformula X by an equivalent formula in which the symbols

in its ∆-lists occur exactly once.

3.0.7 The SPReduce operator

A restricted nnf B is said to be SP-reducible if either it is completely reducible

(i.e. there is an element (α, ε) ∈ ∆̂0(B)), or it has ∆̂-pure literals, or it has a

pair of 0-1 bound literals, or it has a literal b-bound to other literal; for these

formulas we have

SPReduce(B,M) = (C,M′)

where (C,M′) is obtained by applying the following items:

(1) If (α, ε) ∈ ∆̂0(B), then C = B[α/>, α/⊥] and M′ =M∪ {(` = 1); ` ∈
α}, by Theorem 20.

(2) If ` is ∆̂-pure in B, then C is the obtained formula after applying in B

the substitutions in Theorem 24, andM′ =M∪ {(` = 1)}.

(3) If ` and `′ are 0-1-bound, then C is the obtained formula after applying

in B the substitutions in Theorem 27, andM′ =M∪ {(` = 1)}.

(4) If ` is b-bound to `′, then C is the obtained formula after applying in B

the substitutions in Theorem 32, and

M′ =


M∪ {(` = `′)} if b = 0

M∪ {(` = `′)} if b = 1

29

3.0.8 The SubReduce operator

The input of SubReduce is a restricted, not SP-reducible nnf A; its effect

can be described as an application of Theorem 12 up to associativity and

commutativity. The formal definition needs some extra terminology, included

below:

Definition 37 Let a A = Θi∈IAi be formula such that is not SP-reducible,

and consider
⋃
i∈I ∆b(Ai) = {`1, . . . , `n}, where b = 1 if Θ =

∧
and b = 0 if

Θ =
∨
.

The integers denoted by m(`j), defined below, are associated to A:

m(`j) = |{i ∈ I | `j ∈ ∆b(Ai)}|

where | · | denotes the cardinality of a finite set.

It is said that A is `-reducible if m(`) > 1 and

m(`) = max{m(`j) associated with A }

Let A be `-reducible and consider J = {i ∈ I | ` ∈ ∆b(Ai)}, the formula A` is

defined as follows, by application of Theorem 12

A` =



(
` ∨

∧
i∈J

Ai[`/⊥, `/>]
)
∧
(∧
i∈IrJ

Ai
)

if Θ =
∧
,

(
` ∧

∨
i∈J

Ai[`/>, `/⊥]
)
∨
(∨
i∈IrJ

Ai
)

if Θ =
∨

A is subreducible if it has a subformula B such that one of the following

conditions holds:

• ∆0(B) 6= nil.

• ∆1(B) 6= nil.

• B is `-reducible for some literal `.

30

By Theorem 12 we have that the subreduction preserves meaning, therefore

SubReduce(A,M) = (C,M)

where C is obtained by traversing the tree A depth-first in order to find the

first subtree B indicated above, and

(1) Apply Theorem 12, if either ∆0(B) 6= nil or ∆1(B) 6= nil.

(2) Substitute B by B`, otherwise.

The interest of using sub-reductions is that they can make possible further

reductions. It is this use of reductions before branching one of the main nov-

elties of this method with respect to others; specifically, the unit clause rule

of the Davis-Putnam procedure is a special case of SP reduction; also [?] uses

a weak version of our sub-reductions in his dominance lemma, but he only

applies the substitutions to the first level of depth of each subformula.

3.0.9 The Split operator

The input of Split is a pair (B,M) where B =
∧
i∈I Bi is a restricted and

p-splittable nnf which is neither SP-reducible nor subreducible; we have

Split(
∧
i∈J

Bi,M) =

(∧
i∈Jp

Bi[p/⊥],M∪ {(p = 0)}
)
,
(∧
i∈Jp

Bi[p/>],M∪ {(p = 1)}
)

These two tasks are treated independently by the Update process.

Branching: the QBranch operator

The input of QBranch is a pair (B,M) where B is a restricted nnf which is

neither SP-reducible, nor splittable, nor sub-reducible, nnf. We have:

QBranch(B,M) = ((B[p/⊥],M∪ {(p = 0)}), (B[p/>],M∪ {(p = 1)}))

These two tasks are treated independently by the Update process.

31

Our experimental tests show that the best results are obtained when choosing

p as the propositional variable with more occurrences in the formula being

analysed (this information can be easily obtained from the ∆̂-sets).

Collecting partial results: CollectInfo

The CollectInfo operator collects the outputs of Update for each subproblem

generated by either Parallel, or Split, or QBranch, and finishes the execution

of the algorithm:

• If all the outputs of the subproblems are ⊥, then CollectInfo ends the

algorithm with the output Unsatisfiable.

• If some of the subproblems outputs (>,M), then CollectInfo ends the

algorithm with output Satisfiable and a model, which is built fromM.

• If some of the subproblems outputs (A,M) satisfying ∆1(A) 6= nil, then

CollectInfo ends the algorithm with output Satisfiable and a model is

built fromM∪ {(` = 1)}, where ` is the first element of ∆1(A).

3.1 Soundness and completeness of TAS-D

The termination of the algorithm just described is obvious, for each applied

process reduces the size and/or the number of propositional variables of the

formula. Specifically, in the worst case, in which no reduction can be applied,

the only applicable process is QBranch which decreases by one the number of

propositional variables in the formula.

Now, we can prove the soundness and completeness of TAS-D.

Theorem 38 TAS-D(A)=Satisfiable if and only if A is satisfiable.

PROOF. It suffices to show that all the processes in the algorithm preserve

satisfiability. Process NNF clearly preserves the meaning, for it is the translation

into nnf; all processes in the modules Update and Reduce preserve either

meaning or satisfiability, by the results in Section 2. To finish the proof, one

only has to keep in mind that the subproblem generating processes (Parallel,

Split, QBranch) are based in the following fact: a disjunction is satisfiable if

32

and only if a disjunct is satisfiable. So, the process CollectInfo preserves

satisfiability as well.

3.2 Complexity of TAS

The complexity of each stage of the algorithm is analyzed in this section. We

only have to study the complexity of the tests which determine the applica-

bility of each transformation.

• The operator ∆−restrict is linear w.r.t. the size of its input formula, for

its execution requires at most a double traverse of the formula. In addition,

this operator can also reduce the size of the formula, but will never increase

it.

• The calculation of the ∆̂-sets is quadratic, since the determination of the

list associated with each node we have to visit its ancestors. We have also

to keep in mind that the size of the formula can be reduced, and that the

size of ∆̂0(A) ∪ ∆̂1(A) is equal to the size of A. This is important because

this is the set used in the following stages.

• The stage SPReduce is quadratic too, although we have to remark its follow-

ing features: Firstly, the complete reduction, one of the most powerful re-

ductions in the algorithm, has a linear cost; secondly, in a quadratic process,

the set of all ∆-pure literals can be determined, that is, it is not necessary

to analyze the variables separately; this remark also applies to the analysis

of bounded literals.

• The modules SubReduce and Split are also quadratic. For the latter we

have to note that, although it requires a quadratic test, this cost does not

applies on the size of the tree, but on the lists of the nodes which are

immediate successors of the root node.

The computational pay-off of the reductions may seem doubtful, since some

time must be spent for scanning the formula and applying the corresponding

reduction. It is known that a proof for a formula A of size n is (potentially)

of size O(2n), so if the reduction decreases the size of A at least by 1, then

the potential search space would be reduced at least by half. Therefore, we

are applying a polynomial processing for an exponential gain.

33

3.3 Some complete examples

Example 39 Consider the formula A = (p→ (q → r))→ ((p→ q)→ (p→
r)).

The result of Update(NNF(¬A)) is = (B,∅), where

B = ∧({(pr, ε)}, {(pq r , 1), (pq, 2)})

∨(nil, pqr)

p q r

∨(nil, pq)

p q

p r

Now, as we have ∆̂0(B) = {(pr, ε)}, a complete reduction can be applied

w.r.t. p and r; as a consequence we get Update(SPReduce(B,∅)) = (⊥, {(p =

1), (r = 1)}), and then the output is “¬A is Unsatisfiable”, therefore A is

valid.

Example 40 Consider the formula

A = (((p→ ¬s)→ (q ∧ ¬r)) ∧ (¬q ∨ r))→ ((p→ (¬s ∧ q))→ (r ∧ ¬s))

we have Update(NNF(¬A)) = (B,∅), where

B =

∧

∨(nil, nil)

∧(ps, nil)

p s

∧(qr, nil)

q r

∨(nil, qr)

q r

∨(nil, p)

p ∧(qs, nil)

s q

∨(nil, rs)

r s

with

∆̂0(B) = {(ps, 11), (qr, 12), (qs, 32)}
∆̂1(B) = {(qr, 2), (p, 3), (rs, 4)}

the reduction module does not apply to this tree, that is, (B,∅) is the input of

34

QBranch. We apply QBranch w.r.t. variable p and obtain,

QBranch(B,∅) = ((C1, {(p = 0)}), (C2, {(p = 1)}))

The subproblem C1 is studied below:

After ∆−restrict we get the following tree

C1 = ∧(qr, nil)

q r (3)∨(nil, qr)

q r

∨(nil, rs)

r s

as ∆1((3)) = ∆0(C1), then C1 is ∆0-conclusive, and Update(C1) = (⊥, {(p =

0)}).

For the second subproblem C2 we have

C2= ∧(qs, nil)

∨(nil, s)

s ∧(qr, nil)

q r

∨(nil, qr)

q r

s q ∨(nil, rs)

r s

for which

∆̂0(C2) = {(q r, 12), (qs, ε)}
∆̂1(C2) = {(s, 1), (q r, 2), (r s, 5)

Now, ∆̂−restrict’s output is fed into SPReduce; the formula can be com-

pletely reduced, for (qs, ε) ∈ ∆̂0(C2); therefore, by applying substitutions [q/>]

and [s/⊥] and simplifying the logical constants we get,

∧

r r r

35

which is ∆0-conclusive. Therefore, Update(C2)) = (⊥, {(p = 1), (q = 1), (s =

0)}).

As all the subproblems generated by QBranch output ⊥, then CollectInfo

produces the output “¬A is Unsatisfiable”, therefore A is valid.

Example 41 Let us study the satisfiability of the formula in Example 30:

A =

∧

∨(nil, rs)

r s

∨(nil, pq)

∧(nil, p)

∨(nil, pq)

p q

∨(nil, ps)

p s

∧(nil, q)

∨(nil, qr)

r ∧(nil, q)

∨(nil, pq)

q p

∨(nil, qs)

s q

∨(nil, qrs)

q s r

∨(nil, s)

∧(pq, nil)

∨(p, nil)

∧(pr, nil)

p r

∧(ps, nil)

p s

q

s

The ∆̂b-sets for the previous formula are the following:

∆̂0(A) = {(pr, 3111), (p s, 3112), (p, 311), (pq, 31)}
∆̂1(A) = {(rs, 1), (>, 211), (ps, 212), (p, 21), (>, 22121), (qs, 22122),

(q , 2212), (q r, 221), (q rs, 222), (q , 22), (pq, 2), (s, 3)}

An application of ∆̂−restrict substitutes (211) and (22121) by >, the result

is an equivalent formula B:

B=

36

∧

∨(nil, rs)

r s

∨(nil, pqs)

p s ∧(nil, q)

∨(nil, qrs)

r s q

∨(nil, qrs)

q s r

∨(nil, s)

∧(pq, nil)

∨(p, nil)

∧(pr, nil)

p r

∧(ps, nil)

p s

q

s

∆̂0(B) = {(pr, 3111), (p s, 3112), (p, 311), (pq, 31)}
∆̂1(B) = {(rs, 1), (q r s, 231), (>, 232), (q , 23), (pqs, 2), (s, 3)}

Once again, the > in ∆̂1(B) allows to substitute (232) by >, obtaining the

equivalent formula C:

C=

∧

∨(nil, rs)

r s

∨(nil, pqrs)

p s r s q

∨(nil, s)

∧(pq, nil)

∨(p, nil)

∧(pr, nil)

p r

∧(ps, nil)

p s

q

s

∆̂0(C) = {(pr, 3111), (p s, 3112), (p, 311), (pq, 31)}
∆̂1(C) = {(rs, 1), (pqrs, 2), (s, 3)}

Therefore, Update(A,∅) = (C,∅). Now SPReduce can be applied, for lit-

erals p and q are 0-1-bound, we substitute all the occurrences of p by >,

37

i.e. ∆−restrict(SPReduce(C,∅)) = (D, {(p = 1)}), where

D= ∧

∨(nil, rs)

r s

∨(nil, qrs)

s r s q

∨(nil, s)

∧(q, nil)

∨(nil, rs)

r s

q

s

∆̂0(D) = {(q, 31)}
∆̂1(D) = {(rs, 1), (qrs, 2), (>, 311), (s, 3)}

After substituting (311) by > we get :

E= ∧(∅, {(rs, 1), (qrs, 2), (qs, 3)})

∨(nil, rs)

r s

∨(nil, qrs)

s r s q

∨(nil, qs)

q s

In this formula q is 1-bounded to s and, SPReduce substitutes branches at

addresses 2 and 3 by >; then

∆−restrict(SPReduce(E, {(p = 1)})) = (r ∨ s, {(p = 1), (q = s)})

As r ∨ s is finalizable, for its ∆1 6= nil, the stage CollectInfo ends the

algorithm with output “A is Satisfiable” and the model determined by {(p =

1), (q = s), (r = 1)}, that is, any interpretation I such that I(p) = I(q) =

I(r) = 1 and I(s) = 0 is a model of A. Note that I ′ defined as I ′(p) = I ′(r) =

I ′(s) = 1 and I ′(q) = 0 is also a model of A.

38

4 A comparative example

To put our method in connection with other existent approaches in the lit-

erature, we will study the collection {Tn} of clausal forms taken from [?], we

also use their notation for the propositional variables. Consider, for instance,

T3 below:

p1 ∨ p2
+ ∨ p3

++

p1 ∨ p2
+ ∨ p3

++

p1 ∨ p2
+ ∨ p3

+−

p1 ∨ p2
+ ∨ p3

+−

p1 ∨ p2
− ∨ p3

−+

p1 ∨ p2
− ∨ p3

−+

p1 ∨ p2
− ∨ p3

−−

p1 ∨ p2
− ∨ p3

−−

each clause contains atoms of the form pi], where] is a string of +’s and

−’s. The superscripts in each clause always form the sequence 1,2, . . . , n. The

subscript of each literal is exactly the sequence of signs of the preceding literals

in its clause. When Tn is built from Tn−1, each pn] is added both positively and

negatively. It is easy to see that Tn has 2n− 1 distinct propositional variables,

2n clauses, each of which contains n literals.

In [?], Cook and Reckhow described the family {Tn, n ≥ 1} and showed that

the study of its satisfiability is intractable for analytic tableaux but can be

handled in linear time by resolution. In [?], Murray and Rosenthal showed

that dissolution with factoring provides proofs for this class that are linear in

the number of input clauses, |Tn|.

When we apply TAS-D to test the satisfiability of Tn we get that it is sub-

reducible. For instance, formula Reduce(T3) can be expressed equivalently as

39

the formula

∧(nil, nil)

∨

p1 ∧

∨

p2
+ ∧(⊥, nil)

p3
++ p3

++

∨

p2
+ ∧(⊥, nil)

p3
+− p3

+−

∨

p1 ∧

∨

p2
− ∧(⊥, nil)

p3
−+ p3

−+

∨

p2
− ∧(⊥, nil)

p3
−− p3

−−

Thus, ∆−restrict reduces the previous tree, for there are four ∆0-conclusive

subtrees (namely, the conjunctions p3
]∧p3

]). When simplifying the four⊥ leaves,

we get ⊥. Therefore, when using TAS-D we can detect the unsatisfiability of

the formulas Tn with no branching at all.

5 Conclusions

We have presented a non-clausal satisfiability tester, named TAS-D, for Classi-

cal Propositional Logic. The main novelty of the method, as opposed to other

approaches, is that the reductions applied on each formula are dynamically

selected, and applied to subformulas like in a rewrite system, following syntax-

directed criteria. Specifically, we have introduced extensions of the pure literal

rule and of the collapsibility theorems. This fact increases the efficiency, for it

decreases branching.

As an example of the power of TAS-D we have studied a class of formulas

which has linear proofs (in the number of branchings) when either resolution

or dissolution with factoring is applied; on the other hand, when applying our

method to these formulas we get proofs without branching.

40

Acknowledgements

The authors would like to thank José Meseguer and Daniele Mundici and the

anonymous referees for their valuable comments on earlier versions of this

work.

41

