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Abstract. This work concentrates on the automated deduction of logics
of order-of-magnitude reasoning. Specifically, a translation of the mul-
timodal logic of qualitative order-of-magnitude reasoning into relational
logics is provided; then, a sound and complete Rasiowa-Sikorski proof
system is presented for the relational version of the language.

1 Introduction

Qualitative order-of-magnitude reasoning has received considerable attention in
the recent years; however, the analogous development of a logical approach has
received little attention. Various multimodal approaches have been promulgated,
for example, for qualitative spatial and temporal reasoning but, as far as we
know, the only logic approaches to order-of-magnitude reasoning (OMR) are
[1–3].
These first approaches to the logics of qualitative order-of-magnitude reasoning
are based on a system with two landmarks, which is both simple enough to keep
under control the complexity of the system and rich enough so as to permit the
representation of a subset of the usual language of qualitative order-of-magnitude
reasoning. The intuitive representation of our underlying frames is given below,
in which two landmarks −α and +α are considered
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In the picture, −α and +α represent respectively the greatest negative observ-
able and the least positive observable, partitioning the real line in classes of
positive observable Obs+, negative observable Obs− and non-observable (also
called infinitesimal) numbers Inf. This choice makes sense, in particular, when
considering physical metric spaces in which we always have a smallest unit which
can be measured; however, it is not possible to identify a least or greatest non-
observable number.
In this paper the paradigm ‘formulas are relations’ formulated in [10] is applied
to the modal logic for order-of-magnitude reasoning of [3]. A relational formal-
isation of logics is based on an observation that a standard relational structure
(a Boolean algebra with a monoid) constitutes a common core of a great variety



of nonclassical logics. Exhibiting this common core on all the three levels of syn-
tax, semantics and deduction, enables us to create a general framework for rep-
resentation, investigation and implementation of nonclassical logics. Relational
formalization of nonclassical logics is performed on the following methodological
levels:

Syntax: With the formal language of a logic L there is associated a language
of relational terms.

Semantics and model theory: With logic L there is associated a class of re-
lational models for L and in these models the formulas from L are interpreted
as relations.

Proof theory: With logic L there is associated a relational logic Re(L) for L
such that its proof system provides a deduction method for L.

In relational representation of logical systems we articulate explicitly informa-
tion about both their syntax and semantics. Generally speaking, formulas are
represented as terms over some appropriate algebras of relations. Each of the
propositional connectives becomes a relational operation and in this way an
original syntactic form of formulas is coded. Semantic information about a for-
mula which normally is included in a satisfiability condition for that formula,
consists of the two basic parts: first, we say which states satisfy the subformulas
of the given formula, and second, how those states are related to each other via
an accessibility relation. Those two ingredients of semantic information are of
course interrelated and unseparable. In relational representation of formulas the
terms representing accessibility relations are included explicitly in the respective
relational terms corresponding to the formulas. They become the arguments of
the relational operations in a term in the same way as the other of its subterms,
obtained from subformulas of the given formula. In this way semantic informa-
tion is provided explicitly on the same level as syntactic information. Thus the
relational term corresponding to a formula encodes both syntactic and semantic
information about the formula.
In the paper we develop a relational logic Re(OM) based on algebras of relations
generated by some relations specific to the frames of OM -logics. We define a
translantion from the language of OM -logics to the language of Re(OM). Next,
we construct a deduction system for Re(OM) in the Rasiowa-Sikorski style [11].
The Rasiowa-Sikorski systems are dual to the Tableaux systems, as shown in [7,
12]. The system includes the rules of the classical relational logics and the rules
specific to the relations from the frames of OM -logics. We present the basic steps
of the proof of completeness theorem for this system The modular structure of
the system enables us to use the existing implementation of relational proof
systems [5] and to include to it the specific rules of Re(OM) logic.
The structure of the paper is the following: The syntax and semantics of the
language OM is given in Section 2, then a relational language for order-of-
magnitude reasoning, Re(OM), is presented in Section 3. Next, in Section 4 a
translation function is given, which transforms a multimodal formula in OM
into a relational formula in Re(OM). Then, Section 5 introduces the relational
proof system for the logic Re(OM), together with proofs of some axioms of the
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proof system MQN of [3]. The next two sections are devoted to the soundness
and completeness of the relational proof system. Finally, some conclusions are
presented, together with prospects of future work.

2 The modal language OM

In our syntax we consider three types of modal connectives, each one associated
to certain order relation:

−→
� and

←−
� to deal with the usual ordering <, the

connectives
−→
� and

←−
� to deal with a second ordering @ and the connectives

−→
�n

and
←−
�n to deal with a third order relation ≺ (the specific conditions required on

@ and ≺ will be stated later).
The intuitive meanings of each modal connective is as follows:

−→
�A means A is true for all numbers which are greater than the current one.
−→
�A is read A is true for all numbers which are greater than and comparable

with the current one.←−
�A means A is true for all numbers which are less than the current one.
←−
�A means A is true for all numbers which are less than and comparable with

the current one.−→
�n A means A is true for all numbers which are from which the current one is

negligible.
←−
�n A means A is true for all numbers which are negligible from the current one.

The intuitive description of the meaning of the negligibility-related modalities
deserves some explaining comments. Depending on the particular context in
which we are using the concept of negligibility, several possible definitions can
arise. We have chosen to use an intrinsically directional notion of negligibility,
in that negligible numbers are always to the left. There are other approaches in
which the negligibility relation is bi-directional, so a point x can be negligible
wrt points smaller than x and also wrt points greater than x, for instance, in [4,
13] it is the absolute value of an element that is considered before considering
the negligibility relation, whereas in [1] yet another definition of bidirectional
neglibility is presented.

The syntax of our initial language for qualitative reasoning with comparability
and negligibility is introduced below:
The alphabet of the language OM is defined by using:

– A stock of atoms or propositional variables, V.
– The classical connectives ¬,∧,∨ and → and the constants > and ⊥.
– The unary modal connectives

−→
� ,
←−
� ,
−→
� ,
←−
� ,
−→
�n and

←−
�n .

– The constants α+ and α−.
– The auxiliary symbols: (, ).

3



Formulas are generated from V ∪ {α+, α−,>,⊥} by the construction rules of
classical propositional logic adding the following rule: If A is a formula, then so
are
−→
�A,

←−
�A,

−→
�A,

←−
�A,

−→
�n A and

←−
�n A.

The mirror image of A is the result of replacing in A each occurrence of
−→
� ,
←−
� ,−→

� ,
←−
� ,
−→
�n ,
←−
�n , α+, α− by

←−
� ,
−→
� ,
←−
� ,
−→
� ,
←−
�n ,
−→
�n , α−, α+, respectively. We shall

use the symbols
−→
♦ ,
←−
♦ ,
−→
� ,
←−
� ,
−→
♦n and

←−
♦n as abbreviations respectively of ¬−→�¬,

¬←−�¬, ¬−→�¬, ¬←−�¬, ¬−→�n ¬ and ¬←−�n ¬.
The intended meaning of our language is based on a multi-modal approach,
therefore the semantics is given by using the concept of frame.

Definition 1. A multimodal qualitative frame for OM (or, simply, a frame)
is a tuple Σ = (S, +α,−α, <,≺), where

1. (S, <) is a linearly ordered set.
2. +α and −α are designated points in S (called frame constants) and allow to

form the sets Obs+, Inf, and Obs− that are defined as follows:

Obs− = {x ∈ S | x ≤ −α};
Inf = {x ∈ S | −α < x < +α};

Obs+ = {x ∈ S | +α ≤ x}

3. ≺ is a restriction of <, i.e. ≺⊆<, and satisfies:

(i) If x ≺ y < z, then x ≺ z

(ii) If x < y ≺ z, then x ≺ z

(iii) If x ≺ y, then either x /∈ Inf or y /∈ Inf

We will use x @ y as an abbreviation of “x < y and x, y ∈ Eq, where Eq ∈
{Inf,Obs+,Obs−}”.

It is worth noticing that as a consequence of items (i) and (ii) we have the
transitivity of ≺; on the other hand, item (iii) states that two non-observable
elements cannot be compared by the negligibility relation.

Definition 2. Let Σ be a multimodal qualitative frame, a multimodal qualita-
tive model on Σ is an ordered pair M = (Σ, h), where h is a meaning function
(or, interpretation) h : V −→ 2S.

Any interpretation can be uniquely extended to the set of all formulas in OM
(also denoted by h) by means of the usual conditions for the classical boolean
connectives and the constants > and ⊥, and the following conditions for the
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modal operators and frame constants:

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such that x < y}

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such that x @ y}

h(
−→
�n A) = {x ∈ S | y ∈ h(A) for all y such that x ≺ y}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such that y < x}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such that y @ x}

h(
←−
�n A) = {x ∈ S | y ∈ h(A) for all y such that y ≺ x}

h(α+) = {+α}
h(α−) = {−α}

The concepts of truth and validity are defined in a straightforward manner.

3 The relational language Re(OM)

Syntax of Re(OM)

The alphabet of the language Re(OM) consists of the disjoint sets listed below:

– A (nonempty) set OV = {x, y, z, . . . } of object variables.
– A set OC = {α−, α+} of object constants.
– A (nonempty) set RV = {P,Q,R, . . . } of binary relation variables.
– A set RC = {1, 1′,ℵ−,ℵ+, <, @,≺} of relation constants.
– A set OP = {−,∪,∩, ; ,−1} of relational operation symbols.

Definition 3.

– The set of relation terms RT is the smallest set of expressions that includes
all the relational variables and relational constants and is closed with respect
to the operation symbols from OP.

– The set FR of formulas, consists of expressions of the form xRy where x, y
denote individual (or object) variables or constants and R is a relational
term built from the relational variables and the relational operators.

The defined relations >,≤ and ≥ will be used hereafter in order to simplify some
relational formulas. The definition of these relations is given as follows:

> := <−1 ≤ := < ∪ 1′ ≥ := <−1 ∪ 1′

Semantics of Re(OM)

A model for Re(OM) is a pair M = (W,m) where W = W ′ ∪ {−α, +α} for a
nonempty set W ′, and m is the meaning function m : RV → ℘(W ×W ) such
that:
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1. Assigns elements of W to object constants as follows:

(a) m(α−) = −α

(b) m(α+) = +α

2. Assigns binary relations on W to relation constants as follows:
For relation constants we should have:

(a) m(1) = W ×W

(b) m(1′) = {(w,w) | w ∈W}
(c) m(ℵ−) = {−α} ×W

(d) m(ℵ+) = {+α} ×W

(e) m(<) is an irreflexive, transitive and linear relation in W satisfying that
(−α, +α) ∈ m(<).
Notice that the linearity of m(<) allows to divide W into the classes
Obs−, Obs+ and Inf, defined as in the previous section.

(f) m(@) = m(<) ∩
(
(Obs− ×Obs−) ∪ (Inf× Inf) ∪ (Obs+ ×Obs+)

)
Notice that, as a consequence of this requirement, m(@) turns out to
inherit irreflexivity, left and right linearity and transitivity from m(<).

(g) m(≺) is a restriction of m(<), i.e. m(≺) ⊆ m(<), which satisfies the
following frame conditions:

∀x, ∀y if (x, y) ∈ m(≺) and (y, z) ∈ m(<), then (x, z) ∈ m(≺) (fc-i)
∀x, ∀y if (x, y) ∈ m(<) and (y, z) ∈ m(≺), then (x, z) ∈ m(≺) (fc-ii)
∀x, ∀y if x ∈ Inf and (x, y) ∈ m(≺), then (+α, y) ∈ m(< ∪ 1′) (fc-iii)
∀x, ∀y if x ∈ Inf and (y, x) ∈ m(≺), then (y,−α) ∈ m(< ∪ 1′) (fc-iv)

Notice that these conditions mimic the requirements (3.i)–(3.iii) in the
definition of frame for OM . The required conditions ensure that m(≺)
is irreflexive and transitive.

3. Assigns binary relations on W to relation variables.
4. Assigns operations on binary relations to the relational operation symbols

in OP.
5. Extends homomorphically to the set of formulas in the usual manner:

(a) m(R ∪ S) = m(R) ∪m(S) (union of relations)
(b) m(R ∩ S) = m(R) ∩m(S) (intersection of relations)
(c) m(R; S) = m(R); m(S) (composition of relations)
(d) m(−R) = −m(R) (opposite relation)
(e) m(R−1) = m(R)−1 (inverse relation)

6



We list below a set of frame conditions which are entailed by the requirements
on the function m and will be used later:

∀x∀y, (x, y) ∈ m(ℵ−) if and only if (x,−α) ∈ m(1′) (fc-1)

∀x∀y, (x, y) ∈ m(ℵ+) if and only if (x, +α) ∈ m(1′) (fc-2)
∀x, if (x,−α) ∈ m(1′) then (x, +α) ∈ m(<) (fc-3)
∀x,∀y if (x,−α) ∈ m(1′) then (x, y) /∈ m(@) (fc-4)
∀x,∀y if (y, +α) ∈ m(1′) then (x, y) /∈ m(@) (fc-5)

∀x∀y, if x ∈ Inf and (x, y) ∈ m(@), then (−α, y) ∈ m(<) (fc-6)
∀x∀y, if x ∈ Inf and (x, y) ∈ m(@), then (y, +α) ∈ m(<) (fc-7)

∀x∀y, if (x,−α) ∈ m(<) and (x, y) ∈ m(@), then (y,−α) ∈ m(< ∪ 1′) (fc-8)
∀x∀y, if (x, y) ∈ m(<) and (y,−α) ∈ m(< ∪ 1′), then (x, y) ∈ m(@) (fc-9)
∀x∀y, if (x, y) ∈ m(<) and (+α, x) ∈ m(< ∪ 1′), then (x, y) ∈ m(@) (fc-10)
∀x∀y, if (x, y) ∈ m(<) and x ∈ Inf and y ∈ Inf, then (x, y) ∈ m(@) (fc-11)

∀x, ∀y if (x, y) ∈ m(@), then (x, y) ∈ m(<) (fc-12)

Furthermore, it can be proved that the fulfillment of all the frame conditions,
plus the requirements of < being irreflexive, linear and transitive entail the
properties from 2.c to 2.f in the definition of model. This fact will be used later
during the proof of completeness.
Finally, the notions of satisfiability and validity in the relational logic are intro-
duced as follows:

Definition 4.

– A valuation in a model M is a function v : OS→ W such that v(c) = m(c)
for all constant symbols.4 We say that v satisfies a relational formula xRy
if (v(x), v(y)) ∈ m(R).

– A relational formula xRy is true in M if every valuation in M satisfies
xRy. Moreover, if xRy is true in every model, we say that xRy is valid in
the relational logic.

4 Translation from OM to Re(OM)

A translation function t from the language of OM to the language of Re(OM)
is introduced in this section.
The translation function t : Π → RV from the set of propositional variables to
the set of relational variables is defined for propositional connectives as follows:

t(p) := P ; 1 t(¬A) := −t(A)
t(A ∨B) := t(A) ∪ t(B) t(A ∧B) := t(A) ∩ t(B)
t(A→ B) := −t(A) ∪ t(B)

4 Notice the use of OS to denote the union of OV and OC.
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For the modal connectives, the translation is based on the general schema, which
translates a modality based on a relation R as follows:

t(〈R〉A) := R; t(A) t([R]A) := −(R;−t(A))

Specifically, in our case we have the following for the future connectives (for the
past connectives the translation is similar):

– t(
−→
♦A) :=<; t(A)

– t(
−→
�A) := −(<;−t(A))

– t(
−→
�A) :=@; t(A)

– t(
−→
�A) := −(@;−t(A))

– t(
−→
♦n A) :=≺; t(A)

– t(
−→
�n A) := −(≺;−t(A))

Finally, the α-constants are translated, as expected, into the ℵ-relational con-
stants:

t(α−) = ℵ− t(α+) = ℵ+

Proposition 1. In relational logic Re(OM) we can verify both validity and en-
tailment of logic OM , namely

1. A formula A of logic OM is valid iff a formula x t(A) y of the corresponding
logic Re(OM) is valid, where x, y are any object variables such that x 6= y,

2. A1, . . . , An |= A in OM iff x
(
1;−(t(A1) ∩ · · · ∩ t(An)); 1 ∪ t(A)

)
y is valid

in Re(OM).

5 Relational proof systems for modal Re(OM)

Relational proofs have the form of finitely branching trees whose nodes are finite
sets of formulas. Given a relational formula xAy, where A may be a compound
relational expression, we successively apply decomposition or specific rules. In
this way we form a tree whose root consists of xAy and each node (except the
root) is obtained by an application of a rule to its predecessor node. We stop
applying rules to formulas in a node after obtaining an axiomatic set, or when
none of the rules is applicable to the formulas in this node. Such a tree is referred
to as a proof tree for the formula xAy. A branch of a proof tree is said to be
closed whenever it contains a node with an axiomatic set of formulas. A tree is
closed iff all of its branches are closed.

5.1 Rules for the calculus of binary relations with equality

In the present section we, first, recall the deduction rules for the classical rela-
tional logic [9], that is the logic whose formulas xAy are built from the terms A
generated by relation variables and constants 1 and 1′ with the standard rela-
tional operations of union, intersection, complement, composition and converse.
Second, we define the specific rules that characterise the specific relations of
Re(OM). The rules apply to finite sets of relational formulas. As usual, we omit
the set brackets when presenting the rules. The rules that refer to relational
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operations are decomposition rules. They enable us to decompose a formula in a
set into some simpler formulas. As a result of decomposition we usually obtain
finitely many new sets of formulas. The rules that encode properties of relational
or object constants are referred to as specific rules. They enable us to modify a
set to which they are applied, they have a status of structural rules. The role
of axioms is played by what is called axiomatic sets. A variable is said to be
restricted in a rule whenever it does not appear in any formula of the upper set
in that rule.
A rule is said to be correct in Re(OM) whenever the following holds: the upper
set of formulas in the rule is valid iff all the lower sets are valid, where the
validity of a finite set of formulas is understood as a validity of the (metalevel)
disjunction of its elements. It follows that the branching in a rule is interpreted
as conjunction.
As usual, we present the rules in a form of schemes. A scheme of the form A/B,
where A and B are finite sets of formulas represents a family of rules Γ ∪A/Γ ∪B
for any finite set Γ of formulas, and similarly for the branching rules.
We recall here the standard rules for the calculus of binary relations. Note that
the comma is interpreted disjunctively, whereas the vertical bar is interpreted
conjunctively.
Firstly, we consider the rules for ∪:

x(R ∪ S)y
xRy, xSy

(∪)
x−(R ∪ S)y

x−Ry | x−Sy
(−∪)

Rules for ∩
x(R ∩ S)y
xRy | xSy

(∩)
x−(R ∩ S)y
x−Ry, x−Sy

(−∩)

Rules for double complement and inverse relation

x−−Ry

xRy
(−−)

xR−1y

yRx
(−1)

x−R−1y

y−Rx
(−−1)

Now, we state the rules for the composition

x(R; S)y
xRz, x(R; S)y | zSy, x(R; S)y

z any variable (; )

x−(R; S)y
x−Rz, z−Sy

z new variable (−; )

Finally, the rules for equality are introduced, where z is any variable

xRy

xRz, xRy | y1′z, xRy
(1′-1)

xRy

x1′z, xRy | zRy, xRy
(1′-2)
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5.2 Specific Rules for Re(OM)

Here we introduce the rules for handling the specific object constants and relation
symbols <,@ and ≺ of the language Re(OM).
The rules below interpret adequately the behaviour of the relation constants ℵ−
and ℵ+:

xℵ−y

x1′α−, xℵ−y
(c1a)

x−ℵ−y

x−1′α−, x−ℵ−y
(c1b)

xℵ+y

x1′α+, xℵ+y
(c2a)

x−ℵ+y

x−1′α+, x−ℵ+y
(c2b)

The following rule expresses that α− precedes α+

x < α+

x1′α−, x < α+
(c3)

The remaining rules are stated below. The numbering of the rules reflects their
relationship with the corresponding frame conditions:

x−@y

x1′α−, x−@y
(c4)

x−@y

y1′α+, x−@y
(c5)

x ≤ α−, α+ ≤ x, x− @y

x ≤ α−, α+ ≤ x, x− @y, y ≤ α− (c6)
x ≤ α−, α+ ≤ x, x− @y

x ≤ α−, α+ ≤ x, x− @y, α+ ≤ y
(c7)

α− ≤ x, x− @ y

α− ≤ x, x− @ y, α− < y
(c8)

x− < y, α− < y

x− < y, α− < y, x− @y
(c9)

x− < y, x < α+

x− < y, x < α+, x− @y
(c10)

x ≤ α−, α+ ≤ x, y ≤ α−, α+ ≤ y, x @ y

x ≤ α−, α+ ≤ x, y ≤ α−, α+ ≤ y, x @ y, x < y
(c11) x−@y

x−@y, x−<y
(c12)

We include below the rules for irreflexivity and linearity properties of the relation
constant <.

x < x (Iref) y−<x | x−<y | x−1′y
(Lin)

The transitivity for the three relation constants is stated by the rule below,
where R ∈ {<,@,≺}

xRy

xRy, xRz, | xRy, zRy
(Tran)
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The following cut-like rule will be needed later in the proof of completeness

x @ y | x−@ y
(cut- @)

Finally, the following rules for ≺ reflect the frame conditions for negligibility:

x < y
x ≺ y, x < y (n-0)

x ≺ z
x ≺ y, x ≺ z | y < z, x ≺ z

y any var (n-i)

x ≺ z
x < y, x ≺ z | y ≺ z, x ≺ z

y any var (n-ii)

α+ ≤ y

α− < x,α+ ≤ y | x < α+, α+ ≤ y | x ≺ y, α+ ≤ y
(n-iii)

y ≤ α−

α− < x, y ≤ α− | x < α+, y ≤ α− | y ≺ x, y ≤ α− (n-iv)

Axiomatic sets

An axiomatic set is any finite set of formulas which includes a subset of either
of the following forms for a relational term R and x, y are any object variables.
We have to introduce schemas of axiomatic sets for the universal relation, the
identity relation and linearity, together with others which allow us to adequately
interpret the constant relation symbols ℵ, together with the symbols ±α.
The axiomatic sets of Re(OM) state valid formulas of the system, the following
postulate the behaviour of the universal relation 1 and the equality relation 1′,
the tertium non datur, and the conditions related to the constant symbols α−

and α+ are expressed by

{x1y} {x1′x} {x−Ry, xRy} {α− < α+}

where x, y ∈ OS and R ∈ RT.

5.3 Proving some axioms of MQN

In this section we show the relational proof system at work, and prove some
of the axioms of the system MQN of qualitative order-of-magnitude reasoning
presented in [3].

Example 1. Axiom (c4): α− → −→�A
The translated version of the axiom in the relational language is

−ℵ− ∪ −(@;−(A; 1))
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We consider x(−ℵ−∪−(@;−(A; 1)))y, apply the rule (∪), and then, the following
tree is generated:

x−ℵ−y , x− (@;−(A; 1))y

x−ℵ−y, x−1′α−, x− (@;−(A; 1))y

x−ℵ−y, x−1′α−, x− @ z, −−z(A; 1)y

x−ℵ−y, x−1′α−, x− @ z, z(A; 1)y

Γ, zAw | Γ, w1y
(; ) w new

(−−)

(−; ) any z

(c1b)

where Γ = x−ℵ−y, x−1′α−, x− @ z.
The right branch closes because of w1y, whereas rule (c4) applies to the left
branch against x−1′α−, obtaining

x−1′α− , x1′α− , x−@ z, zAw

which closes.

Example 2. Axiom (c1):
←−
♦α− ∨ α− ∨

−→
♦α−

x(>;ℵ−)y , xℵ−y, x(<;ℵ−)y

x < α−, xℵ−y, x(>;ℵ−)y, x(<;ℵ−)y | α−ℵ−y, xℵ−y, x(>;ℵ−)y, x(<;ℵ−)y
(; )[z/α−]

Note that the right branch closes, since it contains an axiomatic set for ℵ−. On
the other hand, the left branch continues as follows, where we use Γ to denote
the pair of formulas x(>;ℵ−)y, x(<;ℵ−)y

x < α−, xℵ−y, x(>;ℵ−)y, x(<;ℵ−)y

x < α−, xℵ−y , x > α−, Γ | x < α−, xℵ−y, α−ℵ−y , Γ
(; )[z/α−]

the left branch closes after applying (c1a) and linearity, whereas the right branch
closes because of the axiomatic set for ℵ.

6 Soundness of the relational proof system

Recall that a rule is said to be correct if the validity of the upper set entails the
validity of the lower set and vice versa.
The frame conditions stated in Section 3 are used here in order to prove sound-
ness of the relational proof system: we will show the equivalence between the
correctness of the specific rules of Re(OM) and the validity of the corresponding
frame conditions. As a result, since all the frame conditions hold in every model
of Re(OM), we get that the specific rules of Re(OM) are all correct.
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Proposition 2.

1. For k ∈ {1, 2}, rules (ck a) and (ck b) are correct for a deduction system of
Re(OM) iff in every model of Re(OM) condition (fc-k) is satisfied.

2. For k ∈ {3, . . . , 12}, rule (c k) is correct for a deduction system of Re(OM)
iff in every model of Re(OM) condition (fc-k) is satisfied.

3. For j ∈ {i, ii, iii, iv}, rule (n j) is correct for a deduction system of Re(OM)
iff in every model of Re(OM) condition (fc-j) is satisfied.

Proof. 1. Let us prove the case of (fc-2), since the other is similar:
Assume that the rules are correct and, and let us prove the two implications
which form the frame condition. We proceed by contradiction and consider that
the frame condition

∀x∀y, (x, y) ∈ m(ℵ+) if and only if (x, +α) ∈ m(1′) (fc-2)

does not hold.
Reasoning by cases, on the one hand, suppose that for some objects a, b we have
(a, +α) ∈ m(1′) and (a, b) /∈ m(ℵ+). Consider the following instance of rule
(c2a), in which we add the context Γ = x−1′α+ to both the upper and lower
sets:

xℵ+y, x−1′α+

xℵ+y, x1′α+, x−1′α+

The lower set is valid, so since the rule is correct, the upper set must be valid,
that is, the formula ∀x∀y(xℵ+y ∨ x−1′α+) is valid in first order logic. But the
valuation v such that v(x) = a and v(y) = b is a counterexample.
On the other hand, suppose conversely that for some objects a, b we have (a, b) ∈
m(ℵ+) and (a, +α) /∈ m(1′). Consider the following instance of rule (c2b), in
which we add the context Γ = x1′α+ to both the upper and lower sets:

x1′α+, x−ℵ+y

x1′α+, x−1′α+, x−ℵ+y

The lower set is valid, so since the rule is correct, the upper set must be valid,
that is, the formula ∀x∀y(x1′α+ ∨ x−ℵ+y) is valid in first order logic. But the
valuation v such that v(x) = a and v(y) = b is a counterexample.
Reciprocally, assume the validity of the frame condition (fc-1+) and let us prove
that both rules (c1+a) and (c1+b) are correct. Clearly, validity of the upper set
of the rules implies validity of the lower set. Now, assuming validity of the lower
set, validity of the upper set follows easily from the frame condition.

2. For k = 3.
Assume that the rule is correct and suppose that (fc-3) does not hold, i.e., for
some object a we have (a,−α) ∈ 1′ and (a, +α) /∈<. Consider the following
instance of rule (c3)

x < α+, x−1′α−

x1′α−, x < α+, x−1′α−

13



Clearly, the lower set is valid, so since the rule is correct, the upper set must be
valid. This means that the formula ∀x(x < α+ ∨ x−1′α−) is valid in first order
logic. But the valuation v such that v(x) = a does not satisfy that formula, a
contradiction.
Reciprocally, assume (fc-3). Validity of the upper set of the rule implies validity
of the lower set. Assuming validity of the lower set, validity of the upper set
follows from the frame condition.
The proof for the rest of the cases is similar, we just introduce the context to be
used when considering the instance for the corresponding rule.
For k = 4, assume Γ = x(−1′)α−.
For k = 5, assume Γ = y(−1′)α+.
For k = 6, assume Γ = α− < y.
For k = 7, assume Γ = y < α+.
For k = 8, assume Γ = y ≤ α−.
For k = 9, 10, 11, assume Γ = x @ y.
For k = 12, assume Γ = x < y.

3. For j = 0, the context Γ = x−≺ y proves that the rule (n-0) is correct if and
only if ≺ is a restriction of <.
For j = i, take the context x−≺ y, y−< z.
For j = ii, consider Γ = x−< y, y−≺ z
For j = iii, assume Γ = x ≤ α−, α+ < x, x−≺ y.
For j = iv, assume Γ = x ≤ α−, α+ < x, y−≺ x.

ut

The rest of the rules are the standard ones for defining properties related of
order relations and the equality. As a result, we have the following proposition:

Proposition 3.

1. All the rules of the deduction system for Re(OM) are correct.
2. All the axiomatic sets are valid.

The soundness theorem follows from the correcteness of the rules and from va-
lidity of the axiomatic sets of the system.

Proposition 4 (Soundness). If there is a closed proof tree for a formula xAy,
then xAy is valid.

7 Completeness of the relational proof system

A completeness proof for dual tableaux systems involves a notion of a complete
proof tree. Intuitively, a proof tree is complete if all the rules that can be applied
to its nodes have been applied. A non-closed branch b of a proof tree is complete
whenever it satisfies some appropriate completion conditions. The conditions say
that given a rule applicable to a node of b, there is a node on b which contains
a set of formulas resulting from an application of that rule.

14



Completion conditions. A non-closed branch b of a proof tree is said to be
complete whenever for all x, y ∈ OS it satisfies the completion conditions on
Table 1.
It is known that any proof tree can be extended to a complete proof tree. A
complete and non-closed branch is said to be open.
Let b be an open branch of a proof tree. We define a branch structure M b =
(W b,mb):

W b = OV ∪OC
mb(R) = {(x, y) ∈W b ×W b | xRy /∈ b} for R ∈ RV ∪ RC

mb(α+) = α+, mb(α−) = α−

and mb extends homomorphically to all the relation terms.
Let vb : OV→W b rOC be an identity valuation, i.e., vb(x) = x for every object
variable x.
Throughout the paper we shall often write Rb for mb(R).

Note that, as in the case of first order logic with equality, the relation 1′b can
only be proved to be an equivalence relation.

Lemma 1. The relation 1′b is an equivalence relation.

Proof. 1′b is reflexive: We have x1′x /∈ b (otherwise b would be closed) which
means, by definition of mb, that (x, x) ∈ 1′b.
1′b is symmetric: In order to reach a contradiction, consider x, y ∈W b such that
(x, y) ∈ 1′b but (y, x) /∈ 1′b, then by definition of mb we have both x1′y /∈ b and
y1′x ∈ b. Now from the completion condition (cpl 1′-1), we have either y1′y ∈ b
or x1′y ∈ b. Since b is open, we obtain x1′y ∈ b, a contradiction.
1′b is transitive: Consider x, y, z ∈ W b such that (x, y) ∈ 1′b, (y, z) ∈ 1′b and
(x, z) /∈ 1′b, which means, by definition of mb, that x1′y /∈ b, y1′z /∈ b and
x1′z ∈ b. Given x1′z ∈ b, from the completion condition (cpl Tran) we have
either x1′y ∈ b or y1′z ∈ b and we reach a contradiction in both cases. ut

In order to obtain the expected behaviour of 1′b as the equality relation, we
consider a quotient model [M b]1′b =

(
[W b]1′b , n

)
where:

– [W b]1′b is the set of equivalence classes of W b wrt 1′b.
– n(R) =

{
([x]1′b , [y]1′b) | (x, y) ∈ Rb

}
for R ∈ RT.

– Valuation u in [M b]1′b is such that u(x) = [x]1′b .

Now, we have the following proposition:

Proposition 5.

1. For every formula xAy, [M b]1′b , u |= xAy iff M b, vb |= xAy.
2. [M b]1′b is a model of Re(OM).
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(cpl ∪) If x(R ∪ S)y ∈ b, then both xRy ∈ b and xSy ∈ b
(cpl −∪) If x− (R ∪ S)y ∈ b, then either x−Ry ∈ b or x− Sy ∈ b
(cpl ∩) If x(R ∩ S)y ∈ b, then either xRy ∈ b or xSy ∈ b
(cpl −∩) If x− (R ∩ S)y ∈ b, then both x−Ry ∈ b and x− Sy ∈ b
(cpl −−) If x−−Ry ∈ b, then xRy ∈ b
(cpl −1) If xR−1y ∈ b, then yRx ∈ b
(cpl −−1) If x−R−1y ∈ b, then y −Rx ∈ b
(cpl ;) If x(R; S)y ∈ b, then for every z ∈ OS, either xRz ∈ b or zSy ∈ b
(cpl −;) If x− (R; S) ∈ b, then for some z ∈ OS both x−Rz ∈ b and z − Sy ∈ b
(cpl 1′-1) If xRy ∈ b, then for every z ∈ OS either xRz ∈ b or y1′z ∈ b
(cpl 1′-2) If xRy ∈ b, then for every z ∈ OS either x1′z ∈ b or zRy ∈ b
(cpl c1a) If xℵ−y ∈ b then x1′α− ∈ b
(cpl c1b) If x−ℵ−y ∈ b, then x−1′α− ∈ b
(cpl c2a) If xℵ+y ∈ b then x1′α+ ∈ b
(cpl c2b) If x−ℵ+y ∈ b, then x−1′α+ ∈ b
(cpl c3) If x < α+ ∈ b then x1′α− ∈ b
(cpl c4) If x−@ y ∈ b then x1′α− ∈ b
(cpl c5) If x−@ y ∈ b then y1′α+ ∈ b
(cpl c6) If x ≤ α− ∈ b, α+ ≤ x ∈ b and x−@ y ∈ b, then y ≤ α− ∈ b
(cpl c7) If x ≤ α− ∈ b, α+ ≤ x ∈ b and x−@ y ∈ b, then α+ ≤ y ∈ b
(cpl c8) If α− ≤ x ∈ b and x−@ y ∈ b, then α− < y ∈ b
(cpl c9) If both x−< y ∈ b and α− < y ∈ b, then x−@ y ∈ b
(cpl c10) If both x−< y ∈ b and x < α+ ∈ b, then x−@ y ∈ b
(cpl c11) If x ≤ α− ∈ b, α+ ≤ x ∈ b, y ≤ α− ∈ b, α+ ≤ y ∈ b and x @ y ∈ b then

x < y ∈ b,
(cpl c12) If x−@ y ∈ b, then x−< y ∈ b
(cpl cut-@) Either x @ y ∈ b or x−@ y ∈ b
(cpl n-0) If x < y ∈ b, then x ≺ y ∈ b
(cpl n-i) If x ≺ z ∈ b, then for every y ∈ OS either x ≺ y ∈ b or y < z ∈ b
(cpl n-ii) If x ≺ z ∈ b, then for every y ∈ OS either x < y ∈ b or y ≺ z ∈ b
(cpl n-iii) If α+ ≤ y ∈ b, then α− < x ∈ b or x < α+ ∈ b or x ≺ y ∈ b
(cpl n-iv) If y ≤ α− ∈ b, then α− < x ∈ b or x < α+ ∈ b or y ≺ x ∈ b
(cpl Iref) x < x ∈ b
(cpl Tran) If xRy ∈ b, then for every z ∈ OS, either xRz ∈ b or zRy ∈ b (where

R ∈ {<, @,≺}).
(cpl Lin) Either x−< y ∈ b or x− 1′y ∈ b or y−< x ∈ b

Table 1. Completion conditions.
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Proof.
1. This condition is easily verified using the corresponding definitions.
2. We only give the proofs for some conditions on the model; the proofs of the
remaining conditions are similar.

(a) n(1) = [W b]1′b × [W b]1′b

Since b is open, x1y /∈ b for all x, y ∈ OS. So, by definition of mb, we get
(x, y) ∈ mb(1); note that this means that M b, vb |= x1y. Now, by the item 1
above, we have [M b]1′b , u |= x1y. Hence ([x]1′b , [y]1′b) ∈ n(1).

(c) n(ℵ−) = {[α−]1′b} × [W b]1′b

We have that

([x]1′b , [y]1′b) ∈ n(ℵ−) if and only if [M b]1′b , u |= xℵ−y

if and only if M b, vb |= xℵ−y (by item 1 above)
if and only if (x, y) ∈ mb(ℵ−)
if and only if xℵ−y /∈ b.

On the other hand, we have

[x]1′b 6= [α−]1′b if and only if ([x]1′b , [α−]1′b) /∈ n(1)
if and only if [M b]1′b , u 6|= x1′α− (by item 1 above)
if and only if M b, vb 6|= x1′α−

if and only if x1′α− ∈ b.

If either n(ℵ−) ⊂ {[α−]1′b} × [W b]1′b or n(ℵ−) ⊃ {[α−]1′b} × [W b]1′bwould
not hold, then completion conditions (cpl c1a) and (cpl c1b) would generate
a contradiction.

In the proofs of the remaining conditions we shall abuse the notation and the
symbols of quotient classes will not be written, and moreover, we shall write Ab

instead of n(A), and W b instead of [W b]1′b .

fc-3 Let us show that ∀x ∈W b, if (x, α−) ∈ 1′b then (x, α+) ∈<b.
Assume that (x, α−) ∈ 1′b and suppose that (x, α+) /∈<b. By definition of
mb we get x1′α− /∈ b and x < α+ ∈ b. From the completion condition (cpl
c2) we get x1′α− ∈ b. Hence (x, α−) /∈ 1′b, a contradiction.

fc-4 We show that ∀x, y ∈W b if (x, α−) ∈ 1′b, then (x, y) /∈@b.
Assume that (x, α−) ∈ 1′b and (x, y) ∈@b. By definition of mb, we have
x1′α− /∈ b and x @ y /∈ b. From the completion condition (clp c4) we get
x− @ y /∈ b, and by the completion condition (cpl cut-@) we have x @ y ∈ b,
so by definition of mb we obtain (x, y) /∈@b, a contradiction.
Condition fc-5 can be proved in a similar way as condition above.

fc-6 ∀x, y ∈W b if x ∈ Infb and (x, y) ∈ @b, then (α−, y) ∈<b.
Assume that (α−, x) ∈<b, (x, α+) ∈<b (that is, x ∈ Infb) and (x, y) ∈@b.
Suppose also that (α−, y) /∈<b. By definition of mb, we get α− < x /∈ b,
x < α+ /∈ b, x @ y /∈ b and α− < y ∈ b. Now we have y ≤ α− /∈ b
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(otherwise b should be closed). From the completion condition (clp c6) we
obtain x ≤ α− /∈ b or α+ ≤ x /∈ b or x− @ y /∈ b. From the completion
condition (cpl cut-@) we get x @ y /∈ b and, by definition of mb, we have
that (x, α−) ∈≤b or (α+, x) ∈≤b or (x, y) /∈@b. In any case we easily reach
a contradiction.
Condition fc-7 can be proved in a similar way as condition above.

fc-8 ∀x, y ∈W b, if (x, α−) ∈<b and (x, y) ∈@b, then (y, α−) ∈≤b.
Assume that (x, α−) ∈<b and (x, y) ∈@b. Suppose also that (y, α−) /∈≤b.
By definition of mb, we get α− < x /∈ b, x < α+ /∈ b, x @ y /∈ b and
y ≤ α− ∈ b. Now we have α− < y /∈ b (otherwise b should be closed).
From the completion condition (clp c8) we get α− ≤ x /∈ b or x− @ y /∈ b.
Hence by completion condition (cpl cut-@) and definition of mb, we have
that (α−, x) ∈≤b or (x, y) /∈@b. In any case we get a contradiction with the
hypothesis.

fc-9 ∀x, y ∈W b, if (x, y) ∈<b and (y, α−) ∈≤b, then (x, y) ∈@b.
Suppose that (x, y) ∈<b and (y, α−) ∈≤b. In order to reach a contradiction
assume also that (x, y) /∈@b. Then x @ y ∈ b, i.e., x− @ y /∈ b (otherwise b
should be closed). From the completion condition (clp c9) we get x− < y /∈ b
or α− < y /∈ b. Thus, by definition of mb, we have (x, y) /∈<b or (α−, y) ∈<b.
In any case we get a contradiction.
Condition fc-10 can be proved in a similar way as condition above.

fc-11 ∀x, y ∈W b, if (x, y) ∈<b, x ∈ Infb and y ∈ Infb, then (x, y) ∈@b.
Assume (x, y) ∈<b, (α−, x) ∈<b, (x, α+) ∈<b, (α−, y) ∈<b and (y, α+) ∈<b.
We have to prove that (x, y) ∈@b. Then x < y /∈ b, α− < x /∈ b, x < α+ /∈
b, α− < y /∈ b and y < α+ /∈ b. If it were (x, y) /∈@b, then x @ y ∈ b. From
the completion condition (clp c8) we get x < y ∈ b, a contradiction.

fc-12 ∀x, y ∈W b, if (x, y) ∈@b, then (x, y) ∈<b.
Assume that (x, y) ∈@b and (x, y) /∈<b. Then by definition of mb, we get
x @ y /∈ b and x < y ∈ b. From the completion condition (cpl cut-@),
we obtain x−@ y ∈ b. Now by the completion condition (cpl c12) we get
x−< y ∈ b. As a result b is closed, a contradiction.

fc-0 ∀x, y ∈W b, if (x, y) ∈≺b, then (x, y) ∈<b.
Assume that (x, y) ∈≺b. Thus by definition of mb we have x ≺ y /∈ b. If
it were (x, y) /∈<b also, then by definition of mb again, we obtain x < y ∈
b. Then by the completion condition (cpl n-0), we get x ≺ y ∈ b too, a
contradiction.

fc-i ∀x, y ∈W b, if both (x, y) ∈≺b and (y, z) ∈<b, then (x, z) ∈≺b.
Assume that (x, y) ∈≺b and (y, z) ∈<b. Then x ≺ y /∈ b and y < z /∈ b. If it
were (x, z) /∈≺b also, then x ≺ z ∈ b. By the completion condition (clp n-i)
we obtain either x ≺ y /∈ b or y < z /∈ b. In both cases we get a contradiction.

fc-ii ∀x, y ∈ W b,if both (x, y) ∈<b and (y, z) ∈≺b, then (x, z) ∈≺b. The proof is
similar to the item above by using (clp n-ii) instead of (clp n-i).

fc-iii ∀x, y ∈W b, if x ∈ Infb and (x, y) ∈≺b, then (α+, y) ∈≤b.
Assume that (α−, x) ∈<b, (x, α+) ∈<b and (x, y) ∈≺b and also (α+, y) /∈≤b.
Then, by definition of mb, we obtain α− < x /∈ b, x < α+ /∈ b, x ≺ y /∈ b
and α+ ≤ y ∈ b. Given α+ ≤ y ∈ b, by the completion condition (cpl n-iii)
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we have that α− < x ∈ b or x < α+ ∈ b or x ≺ y ∈ b, which lead us a
contradiction in any case.

fc-iv The proof is similar to that of the item above. ut

Proposition 6. For every open branch b of a proof tree and for every formula
xAy the following holds: M b, vb |= xAy implies xAy /∈ b.

The standard proof is by induction on the structure of term A.
Now the completeness theorem follows.

Theorem 1 (Completeness). If a formula is valid, then there is a closed proof
tree for it.

Proof. Assume that a formula xAy is valid. Suppose all the proof trees for xAy
are not closed. Take any of those trees. We may assume that it is complete.
Let b be one of its open branches (which exists by the König’s lemma). Since
xAy ∈ b, by the previous proposition we know that vb does not satisfy xAy in
M b. Therefore also the valuation u in the quotient model M b/1′b does not satisfy
xAy, a contradiction. ut

8 Conclusions

A relational deduction system for the logic OM of order of magnitude reasoning
has been presented. OM is a propositional logic with modal operators determined
by three accessibility relations related to each other and their converses. We
defined a translation from the language of OM to a target relational language
such that both accessibility relations from the frames of OM and the formulas
of OM became the relational terms. All the frame conditions on the accessibility
relations were postulated as the axioms in the target language.
Two groups of deduction rules have been defined: those that characterize the re-
lational operators of the target language which corresponded to the propositional
operators of OM, and those that reflect the axioms imposed on the accesibility
relations.
We proved completeness of our proof system adjusting a standard method to the
specific features of OM. The key steps of the proof include a development of the
completion conditions associated with every rule which enable us to express the
notion of a complete proof tree (or equivalently a saturated proof tree) and a
development of a branch structure determined by a branch of a proof tree which
must then be proved to be a model of the target relational language.
An implementation of translation procedures from the languages of nonclassical
logics to relational languages is presented in [6]. Another recent implementation
of the core rules of relational proof systems is described in [5]; further work is
planned on relational proof systems for variants of OM logic and on implemen-
tation of the specific rules for OM within the latter system.
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