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Abstract

The t-concept lattice is introduced as a set of triples associated to graded tabular
information interpreted in a non-commutative fuzzy logic. Following the general
techniques of formal concept analysis, and based on the works by Georgescu and
Popescu, given a non-commutative conjunctor it is possible to provide generaliza-
tions of the mappings for the intension and the extension in two different ways, and
this generates a pair of concept lattices. In this paper, we show that the informa-
tion common to both concept lattices can be seen as a sublattice of the Cartesian
product of both concept lattices. The multi-adjoint framework can be applied to
this general t-concept lattice, and its usefulness is illustrated by a working example.

Key words: concept lattice, multi-adjoint lattice, implication triple, Galois
connection.

1 Introduction

Since its introduction by Wille in the 1980’s, formal concept analysis has
become an important and appealing research topic both from the theoretical
perspective [20, 32, 35] and from the applied one. Regarding applications, we
can find papers ranging from ontology merging [12, 30], to applications to
the Semantic Web by using the notion of concept similarity [13], and from
processing of medical records in the clinical domain [16] to the development
of recommender systems [10].
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Soon after the introduction of “classical” formal concept analysis, a num-
ber of different approaches towards its generalization were introduced and,
nowadays, there are works which extend the theory by using ideas from fuzzy
set theory [3, 23, 24] or fuzzy logic reasoning [2, 5, 11] or from rough set the-
ory [22,33,36] or some integrated approaches such as fuzzy and rough [34], or
rough and domain theory [21].

This paper is related to fuzzy extensions of formal concept analysis, for which
a number of different approaches have been presented. To the best of our
knowledge, the first one was given in [8], although its authors did not advance
much beyond the basic definitions, probably due to the fact that they did not
use residuated implications. This type of mappings, together with complete
residuated lattices as structures for the truth degrees, was used in [3,31], and a
representation theorem was proved directly in a fuzzy framework in [4], setting
the basis of most of the subsequent direct proofs.

In recent years, there has been an increased interest in studying formal concept
analysis based on non-commutative conjunctors. This approach is justified by
the fact that conjunctions learnt usually do not satisfy commutativity.

Non-commutative logic and similarity were used to develop new kinds of con-
cept lattices in [15]. The same approach was developed in an asymmetric way
in [19], where the so-called generalised concept lattices were introduced. More
recently, we can find even further generalisations, such as the variable thresh-
old concept lattices [37] and multi-adjoint concept lattices [27]. Nowadays, a
number of different versions have been introduced and it is not surprising to
discover relationships between them (see for instance [6, 18,26]).

Multi-adjoint concept lattices were introduced [25, 27] as a new general ap-
proach in which the philosophy of the multi-adjoint paradigm [17,29] is applied
to formal concept analysis. With the idea of providing a general framework
in which the different approaches stated above could be conveniently accom-
modated, the authors worked in a general non-commutative environment; and
this naturally led to the consideration of adjoint triples, also called implica-
tion triples [1] or bi-residuated structures [28] as the main building blocks of
a multi-adjoint concept lattice.

Following the general techniques of formal concept analysis and based on
the initial work [15], given a non-commutative conjunctor, it is possible to
provide generalizations of the mappings for the intension and the extension
in two different ways, generating a pair of concept lattices. In this paper,
continuing the study of the multi-adjoint concept lattices, we show that the
common information to both concept lattices can be seen as a sublattice of
the Cartesian product of both concept lattices. In some sense, this common
information may be thought of as “neutral” information with regard to the
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non-commutativity of the conjunctor. The multi-adjoint framework is applied
to this general t-concept lattice, providing an enriched version of the approach
by Georgescu and Popescu; finally, its usefulness is illustrated by a working
example.

The structure of the paper is as follows: in Section 2 we recall the definition
of the multi-adjoint concept lattices and, in particular, the mappings α and β
required in the definition of lattice representing a multi-adjoint concept lattice.
Then, in Section 3, we prove some new results concerning α and β. The concept
lattice of t-concepts is introduced in Section 4, and its representation theorem
is stated and proved in Section 5. A detailed example follows in order to show
the flexibility and expressive power of the use of t-concepts.

2 Multi-adjoint concept lattices

To make this paper self-contained, we will recall some definitions and results
from [27] which will be used hereafter.

The first definition introduces the basic building blocks of the multi-adjoint
concept lattices, the adjoint triples, which are generalisations of the notion of
adjoint pair under the hypothesis of having a non-commutative conjunctor.

The lack of commutativity of the conjunctor, directly provides two different
ways of generalising the well-known adjoint property between a t-norm and
its residuated implication, depending on which argument is fixed in the con-
junction.

Definition 1 Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1×P2 → P3,
↙ : P3 × P2 → P1, ↖ : P3 × P1 → P2 be mappings, 1 then (&,↙,↖) is an
adjoint triple with respect to P1, P2, P3 if:

(1) & is order-preserving in both arguments.
(2) ↙ and ↖ are order-preserving in the consequent and order-reversing in

the antecedent.
(3) x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x, where x ∈ P1,

y ∈ P2 and z ∈ P3.

Example 2 The usual pairs formed by a t-norm and its residuated implica-
tion can be seen as degenerate examples of adjoint triples. As a t-norm is
commutative, we have that ↙ and ↖ coincide, and are equal to the residuated
implication.

1 Note that the arrow symbol↙ also appears in [14], but with a different meaning.
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Note that in the domain and codomain of the considered conjunctor we have
three (in principle) different sorts, thus providing a more flexible language to
a potential user. Furthermore, notice that no boundary condition is required,
in difference to the usual definition of multi-adjoint lattice [29] or implication
triple [1]. Nevertheless, some boundary conditions follow from the definition,
specifically, from the adjoint property (condition (3) above).

Lemma 3 (see [27]) If (P1,≤1), (P2,≤2), (P3,≤3) have bottom element and
(&,↙,↖) is an adjoint triple, then (P1,≤1) and (P2,≤2) have top element
and for all x ∈ P1, y ∈ P2 and z ∈ P3 the following properties hold:

(1) ⊥1 & y = ⊥3, x&⊥2 = ⊥3.
(2) z ↖ ⊥1 = >2, z ↙ ⊥2 = >1.

Example 4 Let us consider the following conjunctor and pair of implica-
tions defined by the regular partition of [0, 1] into four subintervals [0, 1]4 =
{0, 1/4, 1/2, 3/4, 1}.

& 0 1/4 1/2 3/4 1

0 0 0 0 0 0

1/4 0 0 0 0 1/4

1/2 0 0 0 0 1/4

3/4 0 0 1/4 1/2 3/4

1 0 1/4 1/2 3/4 1

↙ 0 1/4 1/2 3/4 1

0 1 3/4 1/2 1/2 0

1/4 1 1 3/4 1/2 1/2

1/2 1 1 1 3/4 1/2

3/4 1 1 1 1 3/4

1 1 1 1 1 1

↖ 0 1/4 1/2 3/4 1

0 1 3/4 3/4 1/4 0

1/4 1 1 1 1/2 1/4

1/2 1 1 1 3/4 1/2

3/4 1 1 1 1 3/4

1 1 1 1 1 1

We have that the operator & is not commutative because

3/4 & 1/2 = 1/4 6= 0 = 1/2 & 3/4

and, moreover (&,↙,↖) is an adjoint triple.

In order to provide more flexibility into our language, we will allow the exis-
tence of several adjoint triples for a given triplet of posets. Notice, however,
that since these triplets will be used as the underlying structures of our gen-
eralization of concept lattice, it is reasonable to require the lattice structure
on some of the posets in the definition of adjoint triple.

Definition 5 A multi-adjoint frame L is a tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and, for
all i ∈ {1, . . . , n}, (&i,↙i,↖i) is an adjoint triple with respect to L1, L2, P .
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For short, a multi-adjoint frame will be denoted as (L1, L2, P,&1, . . . ,&n).

Following the usual approach to formal concept analysis, given a frame, we
define a multi-adjoint context as a tuple consisting of sets of objects and
attributes and a fuzzy relation among them; in addition, the multi-adjoint
approach also includes a function which assigns an adjoint triple to each object
(or attribute). This feature is important in that it allows for defining subgroups
of objects or attributes in terms of different degrees of preference, see [27].
Formally, the definition is the following:

Definition 6 Given a multi-adjoint frame (L1, L2, P,&1, . . . ,&n), a context
is a tuple (A,B,R, σ) such that A and B are non-empty sets (usually inter-
preted as attributes and objects, respectively), R is a P -fuzzy relation R : A×
B → P and σ : B → {1, . . . , n} is a mapping which associates any element in
B with some particular adjoint triple in the frame. 2

Once we have fixed a multi-adjoint frame and a context for that frame, we
can define the following mappings ↑σ : LB2 −→ LA1 and ↓

σ
: LA1 −→ LB2 which

can be seen as generalisations of those given in [5, 19]:

g↑σ(a) = inf{R(a, b)↙σ(b) g(b) | b ∈ B} (1)

f ↓
σ

(b) = inf{R(a, b)↖σ(b) f(a) | a ∈ A} (2)

It is not difficult to show that these two arrows generate a Galois connec-
tion [27]. This concept is defined below:

Definition 7 Let (P1,≤1) and (P2,≤2) be posets, and ↓ : P1 → P2, ↑ : P2 →
P1 mappings, the pair (↑, ↓) forms a Galois connection between P1 and P2

whenever the following conditions hold:

(1) ↑ and ↓ are order-reversing.
(2) x ≤1 x

↓↑ for all x ∈ P1.
(3) y ≤2 y

↑↓ for all y ∈ P2.

Proposition 8 (see [27]) Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame
and (A,B,R, σ) be a context, then the pair (↑σ , ↓

σ
) is a Galois connection be-

tween LA1 and LB2 .

Now, a multi-adjoint concept is a pair 〈g, f〉 satisfying that g ∈ LB2 , f ∈ LA1
and that g↑σ = f and f ↓

σ
= g; where (↑σ , ↓

σ
) is the Galois connection defined

above.

2 A similar theory could be developed by considering a mapping τ : A→ {1, . . . , n}
which associates any element in A with some particular adjoint triple in the frame.
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Definition 9 The multi-adjoint concept lattice associated to a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑σ = f, f ↓
σ

= g}

in which the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2

(equivalently f2 �1 f1).

The ordering defined above provides M with the structure of a complete
lattice. This follows from Proposition 8 (the arrows (↑σ , ↓

σ
) forms a Galois

connection) and the theorem below.

Theorem 10 (see [9]) Let (L1,�1), (L2,�2) be complete lattices, let (↑, ↓)
be a Galois connection between L1, L2 and consider C = {〈x, y〉 | x↑ = y, x =
y↓;x ∈ L1, y ∈ L2}; then (C,�) is a complete lattice, where∧

i∈I
〈xi, yi〉 = 〈

∧
i∈I
xi, (

∨
i∈I
yi)
↓↑〉;

∨
i∈I
〈xi, yi〉 = 〈(

∨
i∈I
xi)
↑↓,
∧
i∈I
yi〉

and 〈x1, y1〉 � 〈x2, y2〉 if and only if x1 �1 x2.

Example 11 Let us consider the set B = {Mercury,Earth, Jupiter,Neptune}
of objects, the attributes A = {size, dist, temp}, together with the fuzzy relation
in Figure 1, which (roughly) assigns a weighted value corresponding to the
degree in which every particular attribute is satisfied by an object.

R Mercury Earth Jupiter Neptune

size 1/4 1/2 1 3/4

dist 1/4 1/2 3/4 1

temp 1/4 1/2 3/4 1

Fig. 1. Fuzzy relation between the objects and the attributes.

We will consider the frame ([0, 1]4, [0, 1]4, [0, 1]4,≤,≤,≤,&), and the context
(A,B,R, σ), where (&,↙,↖) is the adjoint triple defined in Example 4 and
σ is the constant mapping that applies the conjunctor & to each attribute. 3

In order to give an example of concept in this formal context, let us obtain
an element of the corresponding concept lattice M generated by the mapping
g0 : B → [0, 1]4 defined as g(b) = 0, for all b ∈ B. The concept obtained
is 〈g↑↓0 , g

↑
0〉 which is shown in Figure 2, where the last row in each table is

obtained by the infimum of the corresponding column (that is, by applying the
definitions of g↑0 and g↑↓0 ).

3 A more complex example with a non-constant σ can be seen in the final section.
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size dist temp

Mercury 1 1 1

Earth 1 1 1

Jupiter 1 1 1

Neptune 1 1 1

g↑0 1 1 1

Mercury Earth Jupiter Neptune

size 1/4 1/2 1 3/4

dist 1/4 1/2 3/4 1

temp 1/4 1/2 3/4 1

g↑↓0 1/4 1/2 3/4 3/4

Fig. 2. Concept 〈g↑↓0 , g
↑
0〉 obtained from g0.

The concept obtained in Figure 2 can be interpreted as the order of the planets
considering completely all attributes. We can summarize the representation of
this concept as in Figure 3.

g0 g↑↓0 g↑0

Mercury 0 1/4 size 1

Earth 0 1/2 dist 1

Jupiter 0 3/4 temp 1

Neptune 0 3/4

Fig. 3. Representation of concept 〈g↑↓0 , g
↑
0〉 obtained from g0.

Another possibility to build a concept is to consider mappings defined on the
set of attributes. For instance, we can consider the mapping fs : A → [0, 1]4,
where the attribute “size” is the only initially assumed (this means that fs is
defined as fs(size) = 1, fs(dist) = 0 and fs(temp) = 0). After applying the
mapping ↓, in Figure 4, we obtain an order among the planets as if we consider
mainly the attribute “size”, and neglect the rest of attributes.

fs f ↓↑s f ↓s

size 1 1 Mercury 1/4

dist 0 3/4 Earth 1/2

temp 0 3/4 Jupiter 1

Neptune 3/4

Fig. 4. Concept 〈f↓s , f↓↑s 〉 obtained from fs.

On the other hand, if we consider the mappings fd : A → [0, 1]4, ft : A →
[0, 1]4, defined as fd(size) = 0, fd(dist) = 1, fd(temp) = 0 and ft(size) = 0,
ft(dist) = 0, ft(temp) = 1, respectively, we obtain the same concept in both
cases. This occurs because the attributes dist and temp are certainly correlated.
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A possible consequence of this fact, although out of the scope of this paper, is
that in order to obtain the concepts of M we could erase one of the attributes
above because of the existence of redundant information.

fd ft f ↓↑d f ↓↑t f ↓d f ↓t

size 0 0 3/4 3/4 Mercury 1/4 1/4

dist 1 0 1 1 Earth 1/2 1/2

temp 0 1 1 1 Jupiter 3/4 3/4

Neptune 1 1

Fig. 5. Concept 〈f↓d , f
↓↑
d 〉 obtained from fd, and 〈f↓t , f

↓↑
t 〉 obtained from ft.

From now on, we will fix a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and con-
text (A,B,R, σ). Moreover, to improve readability, we will write (↑, ↓) instead
of (↑σ , ↓

σ
) and ↙b, ↖b instead of ↙σ(b), ↖σ(b).

In the next section, we will present some new properties about the functions α
and β involved in the representation (or fundamental) theorem for the multi-
adjoint framework presented in [27]. In order to do this, we will recall some
necessary definitions.

Definition 12 Given a complete lattice L, a subset K ⊆ L is infimum-dense
(resp. supremum-dense) if and only if for all x ∈ L there exists K ′ ⊆ K such
that x = inf(K ′) (resp. x = sup(K ′)).

The notion of multi-adjoint concept lattice represented by a complete lattice
is presented in the definition below:

Definition 13 A multi-adjoint concept lattice (M,�) is represented by a
complete lattice (V,v) if there exists a pair of mappings α : A×L1 → V and
β : B × L2 → V such that:

1a) α[A× L1] is infimum-dense;
1b) β[B × L2] is supremum-dense; and
2) For all a ∈ A, b ∈ B, x ∈ L1, y ∈ L2:

β(b, y) v α(a, x) if and only if x&b y ≤ R(a, b)

From the definition of representability the following properties follow:

Proposition 14 (see [27]) Given a complete lattice (V,v) which represents
a multi-adjoint concept lattice (M,�), and mappings f ∈ LA1 and g ∈ LB2 , we
have:

(1) β is order-preserving in the second argument.
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(2) α is order-reversing in the second argument.
(3) g↑(a) = sup{x ∈ L1 | vg v α(a, x)}, where vg = sup{β(b, g(b)) | b ∈ B}.
(4) f ↓(b) = sup{y ∈ L2 | β(b, y) v vf}, where vf = inf{α(a, f(a)) | a ∈ A}.
(5) If gv(b) = sup{y ∈ L2 | β(b, y) v v}, then sup{β(b, gv(b)) | b ∈ B} = v.
(6) If fv(a) = sup{x ∈ L1 | v v α(a, x)}, then sup{α(a, fv(a)) | a ∈ A} = v.

Finally, the fundamental theorem for multi-adjoint concept lattices presented
in [27] is the following.

Theorem 15 (see [27]) A complete lattice (V,v) represents a multi-adjoint
concept lattice (M,�) if and only if (V,v) is isomorphic to (M,�).

3 New results about the mappings α and β

In this section, we introduce some new interesting properties about the map-
pings α and β which appear in the representation theorem. So, let us assume a
complete lattice (V,v) which represents a multi-adjoint concept lattice (M,�)
and the mappings α : A× L1 → V , β : B × L2 → V .

We will restate below the isomorphism constructed in fundamental theorem,
based on both the α and β functions, since these expressions will be used later.

Proposition 16 (see [27]) If a complete lattice (V,v) represents a multi-
adjoint concept lattice (M,�), then there exists an isomorphism ϕ : M→ V
and two mappings β : B × L2 → V , α : A× L1 → V , such that:

ϕ(〈g, f〉) = sup{β(b, g(b)) | b ∈ B} = inf{α(a, f(a)) | a ∈ A}

for all concepts 〈g, f〉 ∈ M.

The following result introduces some continuity-related properties of α and β
in their second argument.

Proposition 17 The applications β : B × L2 → V , α : A × L1 → V satisfy
that:

(1) For all indexed set Y = {yi}i∈I ⊆ L2 and b ∈ B:

β(b, sup{yi | i ∈ I}) = sup{β(b, yi) | i ∈ I}

(2) For all indexed set X = {xi}i∈I ⊆ L1 and a ∈ A:

α(a, sup{xi | i ∈ I}) = inf{α(a, xi) | i ∈ I}
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PROOF. 1. Let b ∈ B and Y = {yi}i∈I ⊆ L2, as α[A×L1] is infimum-dense
and β(b, supY ) ∈ V , there exists an indexing set Λ such that β(b, supY ) =
inf{α(aj, xj) | j ∈ Λ}; as a result β(b, supY ) v α(aj, xj) for every j ∈ Λ.
From Proposition 14(1), we obtain that β(b, yi) v α(aj, xj), for every i ∈ I
and j ∈ Λ, and hence sup{β(b, yi) | i ∈ I} v α(aj, xj) for every j ∈ Λ, then

sup{β(b, yi) | i ∈ I} v inf{α(aj, xj) | j ∈ Λ} = β(b, supY )

For the other inequality, let us consider sup{β(b, yi) | i ∈ I}; as α[A × L1] is
infimum-dense, there exists an indexing set Λ′ such that sup{β(b, yi) | i ∈ I} =
inf{α(aj, xj) | j ∈ Λ′}. Now, for all i ∈ I and j ∈ Λ′ we obtain that β(b, yi) v
α(aj, xj), therefore, from Definition 13(2), xj &b yi ≤ R(aj, b). Now, as (&b,↙b

,↖b) is an adjoint triple, we have the following chain of equivalent statements:

xj &b yi ≤ R(aj, b) for all i ∈ I
yi �2 R(aj, b)↖b xj for all i ∈ I

supY �2 R(aj, b)↖b xj
xj &b supY ≤ R(aj, b)

so, β(b, supY ) v α(aj, xj) for every j ∈ Λ′, and thus

β(b, supY ) v inf{α(aj, xj) | j ∈ Λ′} = sup{β(b, yi) | i ∈ I}

2. The core of the proof is the same; it follows by, firstly, interchanging
supremum-dense and infimum-dense and, secondly, the implications ↖ and
↙. 2

We continue below by proving some boundary conditions fulfilled by α and β.

Proposition 18 The applications α : A × L1 → V and β : B × L2 → V are
such that α(a,⊥1) = >V and β(b,⊥2) = ⊥V for all b ∈ B and a ∈ A.

PROOF. Given a ∈ A, let us prove that α(a,⊥1) = >V . Firstly, recall that
Lemma 3 implies that ⊥1 &b y ≤ R(a, b) for all b ∈ B and y ∈ L2; now, from
Definition 13(2) we obtain that β(b, y) v α(a,⊥1) for all b ∈ B and y ∈ L2,
that is, α(a,⊥1) is an upper bound of the set of elements β(b, y) for all b ∈ B
and y ∈ L2. Now, as β is supremum-dense, there is an indexing set Λ such
that >V = sup{β(bi, yi) | i ∈ Λ}, therefore, we have that: >V v α(a,⊥1).
Hence, >V = α(a,⊥1).

The other equality follows similarly. 2

From the propositions above, we obtain the following corollary which states
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the behaviour of α and β regarding suprema of any set (including the empty
set, contrariwise to Proposition 17).

Corollary 19 The applications β : B×L2 → V , α : A×L1 → V satisfy that:

(1) β(b, supY ) = sup{β(b, y) | y ∈ Y }, for all Y ⊆ L2 and b ∈ B.

(2) α(a, supX) = inf{α(a, x) | x ∈ X}, for all X ⊆ L1 and a ∈ A.

Now, the following property shows that any subset of A × L1 is related to a
concept. This result will be used in the next section in order to generalize the
framework introduced in [15].

Proposition 20 Given a multi-adjoint concept lattice (M,�) represented by
a complete lattice (V,v) and the mappings α : A× L1 → V , β : B × L2 → V ,
we have that for each K ⊆ A × L1, there exists a unique concept 〈g, f〉 ∈ M
such that

inf{α(a, x) | (a, x) ∈ K}= sup{β(b′, g(b′)) | b′ ∈ B}
= inf{α(a′, f(a′)) | a′ ∈ A}

Analogously, for each N ⊆ B × L2, there exists a unique concept 〈g, f〉 ∈ M
such that

sup{β(b, y) | (b, y) ∈ N}= sup{β(b′, g(b′)) | b′ ∈ B}
= inf{α(a′, f(a′)) | a′ ∈ A}

PROOF. Given K ⊆ A×L1, let us consider the sets Ka = {x | (a, x) ∈ K},
and the function h : A→ L1 defined as h(a) = supKa.

By Corollary 19, we have that, for all a′ ∈ A, the following equality holds

α(a′, h(a′)) = inf{α(a′, x) | x ∈ Ka′}

Therefore:

inf{α(a′, h(a′)) | a′ ∈ A}= inf{inf{α(a′, x) | x ∈ Ka′} | a′ ∈ A}
= inf{α(a′, x) | (a′, x) ∈ K}

Finally, we obtain the following chain of equalities:
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inf{α(a, x) | (a, x) ∈ K} = inf{α(a′, h(a′)) | a′ ∈ A}
(1)
= sup{β(b′, h↓(b′)) | b′ ∈ B}
(2)
= ϕ(〈h↓, h↓↑〉)
(3)
= inf{α(a′, h↓↑(a′)) | a′ ∈ A}

where equality (1) follows by Proposition 14 (items 4 and 5), and equalities
(2), (3) by Proposition 16. This means that the concept whose existence is
postulated in the statement is 〈h↓, h↓↑〉.

Now, the uniqueness follows from the isomorphism ϕ:

As ϕ(〈h↓, h↓↑〉) = sup{β(b, h↓(b)) | b ∈ B}, if there would exist another con-
cept 〈g, f〉 such that sup{β(b, g(b)) | b ∈ B} = inf{α(a, x) | (a, x) ∈ K}, we
would have:

ϕ(〈h↓, h↓↑〉) = sup{β(b, h↓(b)) | b ∈ B}
= inf{α(a, x) | (a, x) ∈ K}
= sup{β(b, g(b)) | b ∈ B}
=ϕ(〈g, f〉)

Thus, 〈h↓, h↓↑〉 = 〈g, f〉.

The second statement follows similarly. 2

4 Multi-adjoint t-concept lattice

In this section a new construction based on the previous notion of multi-adjoint
concept lattice is presented. The t-concepts are introduced as a generalisation
of the approach given in [15] for non-commutative conjunctors, which pro-
vides greater flexibility and, hence, allows for specifying and solving a greater
number of problems in more complex knowledge-based systems.

The basic structure we will work with is that of multi-adjoint frame, where the
complete lattices 〈L1,�1〉, 〈L2,�2〉 coincide, and we will denote 〈L,�〉. This
way, given a context (A,B,R, σ), besides the Galois connection (↑, ↓) defined
for the multi-adjoint concept lattice, it is possible to define an alternative
version as follows:

g↑op(a) = inf{R(a, b)↖b g(b) | b ∈ B}
f ↓

op

(b) = inf{R(a, b)↙b f(a) | a ∈ A}

12



The definition above is indeed a Galois connection because of Proposition 8,
since it coincides with the Galois connection defined by equations (1), (2),
on the multi-adjoint frame (L,L, P,&

op
1 , . . . ,&

op
n ) and context (A,B,R, σ),

being &
op
i : L × L → P and x&

op
i y = y&i x for all i ∈ {1, . . . , n}. Since

the implications are permuted, if the initial adjoint triples are (&i,↖i,↙i

), then the adjoint triples considered are (&
op
i ,↙i,↖i). Now, we have two

Galois connections (↑, ↓), (↑op , ↓op), on which two different multi-adjoint concept
lattices (M,�), (Mop,�) can be defined. 4

Both lattices are different if at least one conjunctor &i is non-commutative,
but are certainly related. This suggests to consider the following subsets of
M×Mop:

N1 = {(〈g, f1〉, 〈g, f2〉) | 〈g, f1〉 ∈ M, 〈g, f2〉 ∈ Mop}
N2 = {(〈g1, f〉, 〈g2, f〉) | 〈g1, f〉 ∈ M, 〈g2, f〉 ∈ Mop}

which, together with the orderings

(〈g, f1〉, 〈g, f2〉) � (〈g′, f ′1〉, 〈g′, f ′2〉) if and only if g � g′

(〈g1, f〉, 〈g2, f〉) � (〈g′1, f ′〉, 〈g′2, f ′〉) if and only if f ′ � f

are sublattices of M×Mop and, thus, are complete lattices.

Now we will show that Georgescu and Popescu’s framework can be reproduced
by means of the multi-adjoint framework. In [26] it has been proved that the
concept lattices defined in [15] can be constructed in terms of generalized con-
cept lattices [19]. On the other hand, in [27] it was proved that generalized
concept lattices can be embedded into the multi-adjoint framework. As a re-
sult, we can obtain that every non-commutative fuzzy concept lattice L, in
the sense of Georgescu and Popescu, can be embedded into a specific product,
M×Mop, of multi-adjoint concept lattices. Specifically, the theorem below
shows that, there exists a particular choice of multi-adjoint frame and context
such that L is isomorphic to the sublattice N1 of M×Mop.

Theorem 21 Given a complete generalized residuated lattice (L,�,&,↙,↖)
and a residuated context (A,B,R), then there exists a multi-adjoint concept
lattice, M, such that the sublattice N1 is isomorphic to the non-commutative
fuzzy concept lattice L.

PROOF. Follows by from [26, Thm 6] and [27, Thm 14]. 2

4 Note that the ordering relation is the same for both lattices, although its domain
might differ from one to another.
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The theorem above justifies considering the general construction of N1 as a
generalized concept lattice. However, it is important to note that the theorem
above shows a strict embedding of the framework by Georgescu-Popescu into
our framework. Their construction explicitly assumes that (L,&,>) should
be a commutative monoid, but N1 can be defined as well by directly consid-
ering an adjoint triple which, obviously needs not be either commutative nor
associative.

The particular form of the elements of N1 suggests to abuse a little bit the
notation, denote them as 〈g, f1, f2〉, and use the term t-concept to refer to
them (t- for triple).

Note that we will concentrate hereafter on the lattice N1, but similar results
can be obtained for N2.

Example 22 In Example 11 the attributes have been evaluated in the left ar-
gument &, and the objects in the right argument. Due to the non-commutativity
of &, we obtain greater values for the attributes than for the objects (although,
in this trivial example, it only appears in one case) and it seems that we’d
rather consider the other possibility, the attributes in the right of & and the
objects in the left. Therefore, starting again from the mapping g0, the concept
in Figure 6 is obtained.

g0 g↑
op↓op

0 g↑
op

0

Mercury 0 1/2 size 1

Earth 0 1/2 dist 1

Jupiter 0 3/4 temp 1

Neptune 0 3/4

Fig. 6. Concept obtained from g0 and the opposite conjunction.

We can see that the concepts 〈g↑↓0 , g
↑
0〉 and 〈g↑

op↓op
0 , g↑

op

0 〉 are different. Now,
if we would like to maintain both results until we have enough information
on how to decide what result better fits our needs, it is reasonable to consider
the corresponding t-concept, which considers the two possible results arising
from the non-commutative character of conjunction. The t-concept 〈g, g↑, g↑op〉
generated from g0 is shown in Figure 7. Note that, in this particular case,
g↑ = g↑

op
, but this is not the rule, as we will see in the more complex example

in Section 6.
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g0 g g↑ g↑
op

Mercury 0 1/2 size 3/4 3/4

Earth 0 3/4 dist 3/4 3/4

Jupiter 0 1 temp 3/4 3/4

Neptune 0 1

Fig. 7. t-concept obtained from g0

5 The representation theorem of the lattice of t-concepts N1

We start this section by introducing some preliminary definitions and results
needed for the statement and proof of the representation theorem.

The technical notion of characteristic mapping, introduced below, is not re-
lated to the statement of the representation theorem, but to its proof.

Definition 23 Given a set A, a poset P with bottom element ⊥, and elements
a ∈ A, x ∈ P , the characteristic mapping @x

a : A → P , read “at point a the
value is x”, is defined as:

@x
a(a
′) =

x, if a′ = a

⊥, otherwise

The following lemma will be used in the proof of the representation theorem.

Lemma 24 (see [27]) Given the multi-adjoint concept lattice (M,�), and
given a ∈ A, b ∈ B, x ∈ L1 and y ∈ L2, the following equalities hold:

@x
a
↓(b′) =R(a, b′)↖b′ x for all b′ ∈ B

@y
b
↑(a′) =R(a′, b)↙b y for all a′ ∈ A

Definition 25 Given two complete lattices (V1,v1), (V2,v2) which represent
the multi-adjoint concept lattices (M,�), (Mop,�), respectively, the sublattice
V of V1 × V2 is defined as:

V =

{(
inf

(a,x)∈K1

α1(a, x), inf
(a,x)∈K2

α2(a, x)

)
| (K1, K2) ∈ K

}

where K = {(K1, K2) | K1, K2 ⊆ A×L and inf(a,x)∈K1 @x
a
↓ = inf(a,x)∈K2 @x

a
↓op}

and α1, α2 are the maps given in Definition 13 associated to (M,�), (Mop,�)
respectively.
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The following result proves that the sublattice above is isomorphic to the
complete sublattice of t-concepts N1 of M×Mop:

Proposition 26 Let (V1,v1), (V2,v2) be the complete lattices which repre-
sent two multi-adjoint concept lattices (M,�1), (Mop,�2) respectively, then
N1 is isomorphic to the sublattice V of V1 × V2.

PROOF. From Proposition 16 we have that there exist two isomorphisms
ϕ1 : M→ V1, ϕ2 : Mop → V2 defined as:

ϕ1(〈g, f〉) = inf{α1(a, f(a)) | a ∈ A};
ϕ2(〈g, f〉) = inf{α2(a, f(a)) | a ∈ A}

Hence, we have only to show that the image of the restriction to N1 of the
isomorphism ϕ1 × ϕ2 : M×Mop → V1 × V2 is V , that is, ϕ1 × ϕ2(N1) = V .

Firstly, we will check that if 〈g, f1, f2〉 ∈ N1 then ϕ1×ϕ2(〈g, f1, f2〉) ∈ V . Let us
consider the subsets K1 = {(a, f1(a)) | a ∈ A} and K2 = {(a, f2(a)) | a ∈ A}
of A× L, we have that:

inf
(a,x)∈K1

@x
a
↓ = inf

a∈A
(@f1(a)

a )↓
(4)
= f ↓1

(∗)
= f2

↓op (4)
= inf

a∈A
(@f2(a)

a )↓
op

= inf
(a,x)∈K2

@x
a
↓op

where (4) follows by Equation (2) and Lemma 24, and (∗) is given because
〈g, f1, f2〉 is a t-concept, thus (K1, K2) ∈ K. Moreover,

inf
(a,x)∈K1

α1(a, x) = inf
a∈A

α1(a, f1(a)) = ϕ1(〈g, f1〉)

inf
(a,x)∈K2

α2(a, x) = inf
a∈A

α2(a, f2(a)) = ϕ2(〈g, f2〉)

hence the pair (ϕ1(〈g, f1〉), ϕ2(〈g, f2〉)) is in the required subset V of V1 × V2.

Let us now consider an arbitrary element of V , that is, a pair of the form
(inf(a,x)∈K1 α1(a, x), inf(a,x)∈K2 α2(a, x)), with (K1, K2) ∈ K. By Proposition 20
we have that there are (unique) concepts 〈g1, f1〉 ∈ M, 〈g2, f2〉 ∈ Mop satis-
fying that

( inf
(a,x)∈K1

α1(a, x), inf
(a,x)∈K2

α2(a, x)) = (inf
a∈A

α1(a, f1(a)), inf
a∈A

α2(a, f2(a)))

= (ϕ1(〈g1, f1〉), ϕ2(〈g2, f2〉))

where the last equality is given by definition of ϕ1 and ϕ2, and g1 satisfies that
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g1(a)
(1)
= inf{R(a, b)↖ sup

(a,xi)∈K1

{xi} | a ∈ A}

(2)
= inf{ inf

(a,xi)∈K1

{R(a, b)↖ xi} | a ∈ A}

= inf
(a,x)∈K1

{R(a, b)↖ x}

(3)
= inf

(a,x)∈K1

{@x
a
↓(b)}

where (1) follows by the construction of g1 (given in the proof of Proposi-
tion 20), (2) follows as a consequence of the adjoint property, and (3) fol-
lows because of Lemma 24. In a similar way, we can prove that g2(b) =
inf(a,x)∈K2{@x

a
↓op(b)}.

Recalling that (K1, K2) ∈ K, we obtain that g1 = g2 and, as a consequence

( inf
(a,x)∈K1

α1(a, x), inf
(a,x)∈K2

α2(a, x)) = ϕ1 × ϕ2(〈g1, f1, f2〉) 2

We can now introduce the representation theorem to the multi-adjoint t-
concept lattice N1 as a generalization of that by Georgescu and Popescu.

Theorem 27 A lattice (V,v) is isomorphic to a complete lattice of t-concepts
(N1,�) if and only if there exist two complete lattices (V1,v1) and (V2,v2)
such that they represent the multi-adjoint concept lattices (M,�), (Mop,�),
and there exists an isomorphism ν from V to the sublattice V of V1 × V2.

PROOF. Firstly, let ψ : V → N1 be an isomorphism and (M,�), (Mop,�)
the multi-adjoint concept lattices associated to the Galois connections (↑, ↓)
and (↑op , ↓

op
) respectively. Now, considering V1 = M, V2 = Mop and, by the

representation theorem on multi-adjoint concept lattices, (V1,v1) and (V2,v2)
represent the multi-adjoint concept lattices (M,�1) and (Mop,�2); and, by
Proposition 26, there exists an isomorphism ϕ from N1 to V , thus ν = ϕ ◦ ψ
is an isomorphism from V to V .

Conversely, we have two complete lattices (V1,v1) and (V2,v2) which rep-
resent the multi-adjoint concept lattices (M,�), (Mop,�), and an isomor-
phism ν from V to the sublattice V of V1 × V2. Then, from Proposition 26,
there exists an isomorphism ϕ : V → N1 and therefore ϕ ◦ ν : V → N1 is an
isomorphism. 2

As a consequence of the previous results, we can obtain the representation
theorem of the framework presented in [15].
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Corollary 28 Let I : B×A→ P be a relation. A lattice (V,v) is isomorphic
to L if and only if there exist two complete lattices (V1,v1) and (V2,v2) and
five applications:

α1 : A× L→ V1; β1 : B × L→ V1; ν : V → V1 × V2

α2 : A× L→ V2; β2 : B × L→ V2;

such that:

(1) α1[A×L] is infimum dense in V1 and α2[A×L] is infimum dense in V2.
(2) β1[B × L] is supremum-dense in V1 and β2[B × L] is supremum-dense

in V2.
(3) For each a ∈ A, b ∈ B, x, y ∈ L:

β1(b, y) v1 α1(a, x) iff x& y � I(b, a)

β2(b, y) v2 α2(a, x) iff x&
op y � I(b, a)

(4) ν is a join-preserving monomorphism from V onto V1×V2 such that, for
any v ∈ V , there exist K1, K2 ⊆ A × L satisfying that inf(a,x)∈K1 @x

a
↓ =

inf(a,x)∈K2 @x
a
↓op and such that ν(v) is equal to the pair:

( inf
(a,x)∈K1

(sup
b∈B

β1(b, I(b, a)↖ x)), inf
(a,x)∈K2

(sup
b∈B

β2(b, I(b, a)↖ x)))

PROOF. Items (1), (2) and (3) are equivalent to the fact that V1 and V2

represent the concept lattices L, Lop, respectively, considering the relation
R : A×B → P defined as R(a, b) = I(b, a) and Theorem 21.

For item (4) we will prove that the image of V by ν is V . For this, we have
only to show the following equalities:

sup{β1(b, R(a, b)↖ x) | b ∈ B}=α1(a, x)

sup{β2(b, R(a, b)↙ x) | b ∈ B}=α2(a, x)

For the first one (the proof for the second is analogous) we have, by Lemma 24,
that R(a, b)↖ x = @x

a
↓(b); now, using Proposition 14, we obtain that

sup{β1(b,@
x
a
↓(b)) | b ∈ B} = inf{α1(a

′,@x
a(a
′)) | a′ ∈ A} (∗)

= α1(a, x)

where the equality (∗) holds by Proposition 18. 2

Finally, we present some preliminary facts about the computation of the t-
concepts.
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It is well known that, given a Galois connection (↑, ↓) the elements of the
corresponding concept lattice can be generated from the fixpoints of ↑↓ (which
are also the fixpoints of ↓↑). Now, we will show that the t-concepts can be
obtained either from the fixpoints of the mapping ↑↓↑op↓

op
or ↑op↓

op↑↓. Similarly,
t-concepts of N2 can be obtained from the fixpoints of either ↓↑↓op↑

op
or ↓op↑

op↓↑.
As a consequence, we have a tool to obtain the minimum t-concept containing
a given subset g or f and, in particular, a method to obtain all t-concepts in
either N1 or N2.

From now on, we will write ⇑, ⇓ instead of ↑op , ↓
op

, respectively. Firstly, let
us start with the following result, which is applicable to any pair of Galois
connections.

Proposition 29 Consider two lattices 〈L1,�1〉, 〈L2,�2〉, two Galois connec-
tions (↑, ↓), (⇑, ⇓) between them, and one element g ∈ L2, then the following
statements are equivalent:

(1) g is a fixpoint of ↑↓⇑⇓ : L2 → L2.
(2) g is a fixpoint of ↑↓ : L2 → L2, and of ⇑⇓ : L2 → L2.
(3) g is a fixpoint of ⇑⇓↑↓ : L2 → L2.

PROOF. (1 =⇒ 2). We have to show that g = g↑↓. This results as a conse-
quence of the following chain of inequalities

g ≤ g↑↓ ≤ g↑↓⇑⇓ = g

which hold because (↑, ↓) and (⇑, ⇓) are Galois connections.

The result for the other Galois connection, as g is a fixpoint of ↑↓⇑⇓, one can

write g⇑⇓ = g↑↓⇑⇓⇑⇓
(∗)
= g↑↓⇑⇓ = g, where (∗) follows from the properties of the

Galois connection (⇑, ⇓).

(2 =⇒ 1). As g = g↑↓ = g⇑⇓, we have g↑↓⇑⇓ = g⇑⇓ = g.

The equivalence between (2) and (3) follows similarly. 2

The following corollary states that N1 coincides with the set of fixpoints of
↑↓⇑⇓ : LB → LB.

Corollary 30 Given the lattice of t-concepts N1, we have 〈g, g↑, g⇑〉 ∈ N1 if
and only if g ∈ LB is a fixpoint of ↑↓⇑⇓ : LB → LB.
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6 A working example

A store has three different departments (decor, wear, and a travel agency) and
four candidates from the staff which will be promoted. The owners of the store
want to designate one general manager out of these four, whereas the other
three will be promoted to head of each department.

Assume that there exists a fuzzy relation between each worker and the dif-
ferent departments (which could have been made by using, for instance, the
time that each one has worked for each department, the sales obtained in the
last evaluation period on each department, etc). According to the discussion
in the board of directors, the choice can be made on the basis of giving more
importance to values associated to each worker, or to those associated to each
department. Although it was clear that neither condition was determinant,
finally, there was no agreement on which of the two conditions is more impor-
tant.

A non-commutative operator such as &: [0, 1] × [0, 1] → [0, 1] defined by
x& y = x2 · y, might be useful for the purposes of this example.

It is not difficult to check that the operators ↙ : [0, 1] × [0, 1] → [0, 1] and
↖ : [0, 1]× [0, 1]→ [0, 1] defined by

z ↙ y =


1 if y = 0;

min

{√
z

y
, 1

}
otherwise.

z ↖ x =


1 if x = 0;

min
{
z

x2
, 1
}

otherwise.

for all x, y, z ∈ [0, 1], allow to build an adjoint triple (&,↙,↖). Note that
the two different implications are suitable representations of the two possible
biases between worker-based or department-based reasoning. This way, if we
consider the corresponding t-concept, we would obtain a unique evaluation of
the candidates integrating both criteria.

R Anne Beth Chris Daphne

Decor 0.2 0.5 0.8 0.6

Wear 0.6 0.65 0.7 0.4

Travel 0.4 0.6 0.7 0.2

Fig. 8. Fuzzy relation between the objects and the attributes.

As a result, we can interpret the initial problem as that of finding a t-concept
by starting from a mapping representing the initial state and considering the
set A = {Decor,Wear,Travel} as the set of attributes, and the set B =
{Anne,Beth,Chris,Daphne} as the set of objects, which are related by the
fuzzy relation R in Figure 8.
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g0 g g↑ g⇑

Anne 0 0.49 0.64 0.83 Decor

Beth 0 0.78 0.91 1 Wear

Chris 0 0.84 0.67 0.99 Travel

Daphne 0 0.45

Fig. 9. t-concept to obtain the manager.

Obtaining the best candidate for Decor

fD0 f f↓ f⇓

Decor 1 1 Anne 0.2 0.45

Wear 0 0.87 Beth 0.5 0.71

Travel 0 0.62 Chris 0.8 0.89

Daphne 0.52 0.57

Obtaining the best candidate for Wear

fW0 f f↓ f⇓

Decor 0 0.58 Anne 0.6 0.59

Wear 1 1 Beth 0.65 0.81

Travel 0 0.71 Chris 0.7 0.84

Daphne 0.4 0.53

Obtaining the best candidate for Travel

fT0 f f↓ f⇓

Decor 0 0.71 Anne 0.4 0.53

Wear 0 1 Beth 0.6 0.77

Travel 1 1 Chris 0.7 0.84

Daphne 0.2 0.45

Fig. 10. t-concepts for obtaining the chief of each department.

In order to detect the best candidate, we start from the constantly zero map-
ping g0 in order to obtain, by iteration, a least fixpoint and obtain the ex-
tension of the corresponding t-concept, as stated in the previous section. The
obtained values are presented in Figure 9. As a result, we notice that Chris is
globally the best candidate, and should be promoted to general manager.

Now, in order to perform the choice of the head of each department, we start
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from an evaluation which focuses on each department separately. In this case,
we calculate the t-concepts starting from the evaluations fD0 , fW0 , fT0 . Attend-
ing to the obtained results, see Figure 10, the final decision can be made.

One notices that Chris gets the best scores, if we discard this result, since she
will be promoted to General Manager, we obtain that Decor will be headed
by Daphne, Wear by Anne, and Travel by Beth.

t-concept related to Anne

g0 g g↑ g⇑

Anne 1 1 Decor 0.45 0.2

Beth 0 1 Wear 3/4 0.6

Chris 0 1 Travel 0.53 0.4

Daphne 0 0.71

t-concept related to Beth

g0 g g↑ g⇑

Anne 0 0.63 Decor 0.56 0.5

Beth 1 1 Wear 0.81 0.65

Chris 0 1 Travel 0.59 0.6

Daphne 0 0.58

t-concept related to Chris

g0 g g↑ g⇑

Anne 0 0.59 Decor 0.58 0.58

Beth 0 0.93 Wear 0.84 0.7

Chris 1 1 Travel 0.61 0.7

Daphne 0 0.54

t-concept related to Daphne

g0 g g↑ g⇑

Anne 0 0.63 Decor 0.56 0.5

Beth 0 1 Wear 0.63 0.4

Chris 0 1 Travel 0.45 0.2

Daphne 1 1

Fig. 11. t-concepts for each candidate
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Assigning Anne the alternative adjoint triple

g0 g g↑ g⇑

Anne 0 0.58 Decor 0.84 0.8

Beth 0 0.71 Wear 0.84 0.7

Chris 0 0.84 Travel 0.67 0.7

Daphne 0 0.45

Assigning Beth the alternative adjoint triple

g0 g g↑ g⇑

Anne 0 0.53 Decor 0.61 0.71

Beth 0 1 Wear 0.87 0.81

Chris 0 0.93 Travel 0.63 0.78

Daphne 0 0.51

Fig. 12. Alternative t-concepts for obtaining the manager.

Another approach might have been performed in order to confirm the decisions
before the announcement. For instance, consider a different starting point in
which each candidate is evaluated separately against each department; this
way, one starts with evaluations gA0 , gB0 , gC0 , gD0 being the characteristic func-
tions for each of the candidates. The results are presented in Figure 11.

After analyzing the results, one obtains again the same results, in that Chris
should be the general manager, Decor will be headed by Daphne, Wear by
Anne, and Travel by Beth.

Now, consider that a particular worker receives some added value due, for
instance, to a policy of equality in order to balance the staff. We can implement
a uniform extra score to this particular worker by assigning her a different
adjoint triple. It is worth to remark that the assignment of a different adjoint
triple to a worker needs not modify the final results. In Figure 12, alternative
results concerning the choice of manager are presented; in each case, a worker
has been assigned the adjoint triple associated to the conjunctor x3y2. We see
that, although Anne’s data are treated with the alternative conjunctor, the
final choice for the manager does not get modified; however, Beth becomes
the best candidate when she is assigned the alternative conjunctor.
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7 Conclusions

The concept lattice of t-concepts has been introduced as a generalization
of [15]. Continuing the study of the multi-adjoint concept lattices, we showed
that the common information to the two sided concept lattices generated from
the two possible residual implications associated to a non-commutative con-
junctor, can be seen as a sublattice of the Cartesian product of both concept
lattices. Such common information can be thought of as “neutral” information
with regard to the non-commutativity of the conjunctor. The resulting theory
allows for obtaining a simpler proof of a general representation theorem for
t-concepts, which can be easily instantiated to obtain the representation theo-
rem in [15]. A working example has been presented which shows the flexibility
and expressive power of the use of t-concepts.
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[18] S. Krajči. Every concept lattice with hedges is isomorphic to some generalized
concept lattice. In Intl Workshop on Concept Lattices and their Applications,
pages 1–9, 2005.
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