
Decomposing Ordinal Sums in
Neural Multi-Adjoint Logic Programs

J. Medina, E. Ḿerida-Casermeiro, and M. Ojeda-Aciego

Dept. Mateḿatica Aplicada. Universidad de Ḿalaga, Email:
{jmedina,merida,aciego }@ctima.uma.es

Abstract. The theory of multi-adjoint logic programs has been introduced as a
unifying framework to deal with uncertainty, imprecise data or incomplete infor-
mation. From the applicative part, a neural net based implementation of homo-
geneous propositional multi-adjoint logic programming on the unit interval has
been presented elsewhere, but restricted to the case in which the only connectives
involved in the program were the usual product, Gödel and Łukasiewicz together
with weighted sums.
A modification of the neural implementation is presented here in order to deal
with a more general family of adjoint pairs, including conjunctors constructed as
an ordinal sum of a finite family of basic conjunctors. This enhancement greatly
expands the scope of the initial approach, since every t-norm (the type of conjunc-
tor generally used in applications) can be expressed as an ordinal sum of product,
Gödel and Łukasiewicz conjunctors.

1 Introduction

The study of reasoning methods under uncertainty, imprecise data or incomplete in-
formation has received increasing attention in the recent years. A number of different
approaches have been proposed with the aim of better explaining observed facts, speci-
fying statements, reasoning and/or executing programs under some type of uncertainty
whatever it might be.

One important and powerful mathematical tool that has been used for this purpose at
theoretical level is fuzzy logic. From the applicative side, neural networks have a mas-
sively parallel architecture-based dynamics inspired by the structure of human brain,
adaptation capabilities, and fault tolerance.

Using neural networks in the context of logic programming is not a completely
novel idea; for instance, in [2] it is shown how fuzzy logic programs can be transformed
into neural nets, where adaptations of uncertainties in the knowledge base increase the
reliability of the program and are carried out automatically.

Regarding the approximation of the semantics of logic programs, the fixpoint of the
TP operator for a certain class of classical propositional logic programs (called acyclic
logic programs) is constructed in [3] by using a 3-layered recurrent neural network, as
a means of providing a massively parallel computational model for logic programming;
this result is later extended in [4] to deal with the first order case.

Recently, a new approach presented in [6] introduced a hybrid framework to han-
dling uncertainty, expressed in the language of multi-adjoint logic but implemented
by using ideas from the world of neural networks. This neural-like implementation
of multi-adjoint logic programming was presented with the restriction that the only

connectives involved in the program were the usual product, Gödel and Łukasiewicz
together with weighted sums. Since the theoretical development of the multi-adjoint
framework does not rely on particular properties of the product, Gödel and Łukasiewicz
adjoint pairs, it seems convenient to allow for a generalization of the implementation to
admit, at least, a family of continuous t-norms (recall that any continuous t-norm can
be interpreted as the ordinal sum of product and Łukasiewicz t-norms).

The purpose of this paper is to present a refined version of the neural implemen-
tation, such that conjunctors which are built as ordinal sums of product, Gödel and
Łukasiewicz t-norms are decomposed into its components and, as a result, the original
neural approach is still applicable. It is worth to remark that the learning capabilities
of neural networks are not used in the implementation; this should not be considered
a negative feature, because it is precisely in the final goal of this research line, a neu-
ral approach to abductive multi-adjoint logic programming, when learning will play a
crucial role.

The structure of the paper is as follows: In Section 2, the syntax and semantics
of multi-adjoint logic programs are introduced; in Section 3, the new proposed neural
model for homogeneous multi-adjoint programs is presented in order to cope with con-
junctors defined as ordinal sums, a high level implementation is introduced and proven
to be sound. The paper finishes with some conclusions and pointers to future work.

2 Preliminary definitions

To make this paper as self-contained as possible, the necessary definitions about multi-
adjoint structures are included in this section. For motivating comments, the interested
reader is referred to [7].

Multi-adjoint logic programming is a general theory of logic programming which
allows the simultaneous use of different implications in the rules and rather general
connectives in the bodies.

The first interesting feature of multi-adjoint logic programs is that a number of
different implications are allowed in the bodies of the rules. The basic definition is the
generalization of residuated lattice given below:

Definition 1. A multi-adjoint latticeL is a tuple(L,�,←1,&1, . . . ,←n,&n) satisfy-
ing the following items:

1. 〈L,�〉 is a bounded lattice, i.e. it has bottom and top elements;
2. >&i ϑ = ϑ &i> = ϑ for all ϑ ∈ L for i = 1, . . . , n;
3. (&i,←i) is anadjoint pairin 〈L,�〉 for i = 1, . . . , n; i.e.

(a) Operation&i is increasing in both arguments,
(b) Operation←i is increasing in the first argument and decreasing in the second,
(c) For anyx, y, z ∈ P , we havex � (y ←i z) if and only if(x&i z) � y.

In the rest of the paper we restrict to the unit interval, although the general frame-
work of multi-adjoint logic programming is applicable to a general lattice.

2.1 Syntax and semantics

A multi-adjoint programis a set of weighted rules〈F, ϑ〉 satisfying

1. F is a formula of the formA ←i B whereA is a propositional symbol called the
headof the rule, andB is a well-formed formula, which is called thebody, built
from propositional symbolsB1, . . . , Bn (n ≥ 0) by the use of monotone operators.

2. Theweightϑ is an element (a truth-value) of[0, 1].

Factsare rules with body1 and aquery(or goal) is a propositional symbol intended as
a question?A prompting the system.

Once presented the syntax of multi-adjoint programs, the semantics is given below.

Definition 2. An interpretationis a mappingI from the set of propositional symbolsΠ
to the lattice〈[0, 1],≤〉.

Note that each of these interpretations can be uniquely extended to the whole set of
formulas, and this extension is denoted asÎ. The set of all the interpretations is de-
notedIL.

The ordering≤ of the truth-valuesL can be easily extended toIL, which also
inherits the structure of complete lattice and is denotedv. The minimum element of
the latticeIL, which assigns0 to any propositional symbol, will be denotedM.

Definition 3.

1. An interpretationI ∈ IL satisfies〈A←i B, ϑ〉 if and only ifϑ ≤ Î (A←i B).
2. An interpretationI ∈ IL is a model of a multi-adjoint logic programP iff all

weighted rules inP are satisfied byI.
3. An elementλ ∈ L is a correct answerfor a programP and a query?A if for any

interpretationI ∈ IL which is a model ofP we haveλ ≤ I(A).

The operational approach to multi-adjoint logic programs used in this paper will
be based on the fixpoint semantics provided by the immediate consequences operator,
given in the classical case by van Emden and Kowalski [9], which can be generalised to
the multi-adjoint framework by means of the adjoint property, as shown below:

Definition 4. LetP be a multi-adjoint program; theimmediate consequences operator,
TP : IL → IL, maps interpretations to interpretations, and forI ∈ IL andA ∈ Π is
given by

TP(I)(A) = sup
{

ϑ &i Î(B) | 〈A←i B, ϑ〉 ∈ P
}

As usual, it is possible to characterise the semantics of a multi-adjoint logic program
by the post-fixpoints ofTP; that is, an interpretationI is a model of a multi-adjoint logic
programP iff TP(I) v I. TheTP operator is proved to be monotonic and continuous
under very general hypotheses.

Once one knows thatTP can be continuous under very general hypotheses [7], then
the least model can be reached in at most countably many iterations beginning with the
least interpretation, that is, the least model isTP ↑ω(M).

2.2 Homogeneous programs

Regarding the implementation as a neural network of [6], the introduction of the so-
calledhomogeneous rulesprovided a simpler and standard representation for any multi-
adjoint program.

Definition 5. A weighted formula is said to behomogeneousif it has one of the forms:

– 〈A←i &i(B1, . . . , Bn), ϑ〉
– 〈A←i @(B1, . . . , Bn), 1〉
– 〈A←i B1, ϑ〉

where A,B1, . . . , Bn are propositional
symbols,(&i,←i) is an adjoint pair, and
@ is an aggregator.

The homogeneous rules represent exactly the simplest type of (proper) rules one
can have in a program. The way in which the translation of a general multi-adjoint
program is homogenized is irrelevant for the purposes of this paper; anyway, it is worth
mentioning that it is a model preserving procedure with linear complexity.

For the sake of self-contention, a brief overview of the neural network from [6] is
presented below.

2.3 The restricted neural implementation

A neural network was considered in which each process unit is associated either to a
propositional symbol of the initial program or to an homogeneous rule of the trans-
formed program. The state of thei-th neuron in the instantt is expressed by its output
function, denotedSi(t). The state of the network can be expressed by means of a state
vectorS(t), whose components are the output of the neurons forming the network; the
initial state ofS is 0 for all the components except those representing a propositional
variable, sayA, in which case its value is defined to be:

SA(0) =

{
ϑA if 〈A← 1, ϑA〉 ∈ P,

0 otherwise.

whereSA(0) denotes the component associated to a propositional symbolA.
The connection between neurons is denoted by a matrix of weightsW , in whichwkj

indicates the existence or absence of connection between unitk and unitj; if the neu-
ron represents a weighted sum, then the matrix of weights also represents the weights
associated to any of the inputs. The weights of the connections related to neuroni (that
is, thei-th row of the matrixW) are represented by a vectorwi•, and are allocated in
an internal vector register of the neuron, which can be seen as a distributed information
system.

The initial truth-value of the propositional symbol or homogeneous rulevi is loaded
in the internal register, together with a signalmi to distinguish whether the neuron is
associated either to a fact or to a rule; in the latter case, information about the type of
operator is also included. Therefore, there are two vectors: one storing the truth-values
v of atoms and homogeneous rules, and anotherm storing the type of the neurons in
the net.

The signalmi indicates the functioning mode of the neuron. Ifmi = 1, then the
neuron is assumed to be associated to a propositional symbol, and its next state is the
maximum value among all the operators involved in its input, its previous state, and the
initial truth-valuevi. More precisely:

Si(t + 1) = max
{

vi,max
k
{Sk(t) | wik > 0}

}
When a neuron is associated to the product, Gödel, or Łukasiewicz implication, respec-
tively, then the signalmi is set to 2, 3, and 4, respectively. Its input is formed by the

external valuevi of the rule, and the outputs of the neurons associated to the body of
the implication.

The output of the neuron mimics the behaviour of the implication in terms of the
adjoint property when a rule of typemi has been used; specifically, the output in the
next instant will be:

Si(t + 1) =



vi

∏
k |wik>0

Sk(t) if mi = 2

min
{

vi,min
k
{Sk(t) | wik > 0}

}
if mi = 3

max{vi +
∑

k |wik>0

(Sk(t)− 1), 0} if mi = 4

A neuron associated to a weighted sum has signalmi = 5, and its output is

Si(t + 1) =
∑

k

w′
ikSk(t) where w′

ik =
wik∑

r

wir

3 Towards a new model of generic neuron

As stated above, the neural net implementation of the immediate consequences operator
of an homogeneous program was introduced for the case of the multi-adjoint lattice
([0, 1],≤,&P ,←P ,&G,←G,&L,←L). As the theoretical development of the multi-
adjoint framework does not rely on particular properties of these three adjoint pairs,
it seems convenient to allow for a generalization of the implementation to, at least, a
family of continuous t-norms, since any continuous t-norm can be interpreted as the
ordinal sum of product and Łukasiewicz t-norms.

Recall the definition of ordinal sum of a family of t-norms:

Definition 6. Let (&i)i∈A be a family of t-norms and a family of non-empty pairwise
disjoint subintervals[ai, bi] of [0, 1]. The ordinal sumof the summands(ai, bi,&i),
i ∈ A is the t-norm& defined as

&(x, y) =

{
ai + (bi − ai) &i(x−ai

bi−ai
, y−ai

bi−ai
) if x, y ∈ [ai, bi)

min(x, y) otherwise

3.1 The proposed model of generic neuron

The model of neuron presented in [6] has to be modified in order to be able to represent
conjunctors defined as ordinal sums of product and Łukasiewicz conjunctions.

To begin with, two new registers are introduced so that it is possible to represent
the (sub-)interval on which the connective will be operating, i.e. to set the values of the
pointsai andbi.

The generic neuron shown in Fig. 1 has a binary signalr, which is shared by all
the neurons. Ifr = 1, then it is possible to modify the content of the internal registers
v, wi., mi, ai andbi by means of the external signals of the same name. Ifr = 0,

Fig. 1.The proposed generic neuron.

then neuron computes an outputSi(t + 1) in terms of its own internal registers and its
network inputs (that is, the outputs of the rest of neurons in the previous stepS(t)).

Depending on the content of the registermi, the selector generates the component
of the generic neuron which gets activated. Whenmi = 1 the value of the registersai

andbi is irrelevant; this is also true whenmi = 5. In this case the neuron operates as a
weighted sum which outputs

Si(t + 1) =
∑

k |wik>0

w′
ikSk(t) where w′

ik =
wik∑

k |wik>0

wik

In the casesmi = 2, mi = 3 andmi = 4 the neuron uses the inputS(t) and the
valuevi to compute a vectorxi

′ as follows:

– Only the valuevi and the componentsk of S(t) such thatwik > 0 will be consid-
ered.

– The vectorx′ is computed asx′k =


1 Sk(t) ≥ bi

Sk(t)−ai

bi−ai
ai ≤ Sk(t) < bi

0 Sk(t) < ai

– The output of the neuron is1 Si(t + 1) =

ai + (bi − ai)&P (x′) if mi = 2
ai + (bi − ai)&G(x′) if mi = 3
ai + (bi − ai)&L(x′) if mi = 4

3.2 Neural representation of ordinal sums

Consider a conjunctor represented as an ordinal sum

& = {〈a1, b1,&1〉, 〈a2, b2,&2〉, . . . , 〈ak, bk,&k〉}
1 The functions corresponding to each case are represented in Fig. 1 as&

′
P , &

′
G, &

′
L, respec-

tively.

where&i can be either&P or &L (since G̈odel conjunctor operates by default out of
the intervals[ai, bi)).

The implementation of such a compound connective needsk+1 neurons, the firstk
are associated to each subinterval of the ordinal sum, and the final one collects all their
outputs and generates the final output of the sum. As shown in Fig. 2, all the neurons of
the block associated with the ordinal sum& receive the output of the neurons associated
to the propositions in the body of the rule, whereas the collecting neuron receives the
output of the rest of the neurons integrating the block of the ordinal sum.

Fig. 2.Neural version of a general ordinal sum.

Let us see the process working on a specific toy example:

Example 1.Consider the ordinal sum defined by& = {(0.1, 0.5,&P), (0.7, 0.9,&L)}
and the program with one rule and two facts:〈p ←& q & s, 0.6〉, 〈q, 0.4〉, 〈s, 0.3〉. The
neural representation needs 6 neurons: three are associated to the propositionsp, q and
s, and the other three are used to implement the rule.

The initialization of the registers allocates the values for the vectorsm,a, b,v and
for the weights matrix as shown below

m = (1, 1, 1, 2, 4, 3)
a = (0.0, 0.0, 0.0, 0.1, 0.7, 0.0)
b = (1.0, 1.0, 1.0, 0.5, 0.9, 1.0)
v = (0.0, 0.4, 0.3, 0.6, 0.6, 0.6)

W =


0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 1 1 1 1 0


3.3 Implementation

A number of simulations have been obtained through a MATLAB implementation in
a conventional sequential computer. A high level description of the implementation is
given below:

1. Initialize the network with the appropriate values ofv, m, W and, in addition, a
tolerance valuetol to be used as a stop criterion. The outputSi(t) of the neurons

associated to facts (which are propositional variables, somi = 1) are initialized
with its truth-valuevi.

2. Repeat
Update all the statesSi of the neurons of the network:
(a) If mi = 1, then:

i. Construct the setJi = {j | wij = 1}. In this case, this amounts to collect
all the rules with headA.

ii. Then, update the state of neuroni as follows:

Si(t) =

{
max{vi,maxJi Sj(t− 1)} if Ji 6= ∅
vi otherwise

(b) If mi = 2, 3, 4, then:
i. Find the neuronsj (if any) which operate on the neuroni, that is, construct

the setJi = {j | wij = 1}.
ii. Then, update the state of neuroni as follows:

Si(t) =


vi

∏
Ji

Sj(t− 1) if mi = 2
min{vi,minJi Sj(t− 1)} if mi = 3
max{vi +

∑
Ji

(Sj(t− 1)− 1), 0} if mi = 4

Recall that whenmi = 2, 3, 4 the neuron corresponds to a product, Gödel,
Łukasiewicz (resp.) implication.

(c) If mi = 5, then the neuron corresponds to an aggregator, and its update follows
a different pattern:

i. Determine the setKi = {j | wij > 0} and calculatesum =
∑

Ki
wij

ii. Update the neuron as follows:

Si(t) =
1

sum

∑
Ki

wij · Sj(t− 1)

Until the stop criterion‖S(t) − S(t − 1)‖ < tol is fulfilled, where‖ · ‖ denotes
euclidean distance.

Example 2.Consider a program with facts〈p ← 1, 0.3〉 and〈q ← 1, 0.4〉 and three
rules 〈p ←& s& q, 0.8〉, 〈s ←& q, 0.7〉, 〈p ←L s, 0.5〉 where the conjunction& is
defined as an ordinal sum by& = {(0.1, 0.5,&P), (0.7, 0.9,&L)}.

The net for the program will consist of ten neurons, and is sketched in Fig. 3, three
of which represent variablesp, q, s, and the rest are needed to represent the rules (three
for each ordinal sum rule and another one for the Łukasiewicz rule).

m = (1, 1, 1, 2, 4, 3, 2, 4, 3, 4)
a = (0.0, 0.0, 0.0, 0.1, 0.7, 0.0, 0.1, 0.7, 0.0, 0.0)
b = (1.0, 1.0, 1.0, 0.5, 0.9, 1.0, 0.5, 0.9, 1.0, 1.0)
v = (0.3, 0.4, 0.0, 0.8, 0.8, 0.8, 0.7, 0.7, 0.7, 0.5)

W =



· · · · · 1 · · · 1
· · · · · · · · · ·
· · · · · · · · 1 ·
· 1 1 · · · · · · ·
· 1 1 · · · · · · ·
· 1 1 1 1 · · · · ·
· 1 · · · · · · · ·
· 1 · · · · · · · ·
· 1 · · · · 1 1 · ·
· · 1 · · · · · · ·



Fig. 3.A network for Example 2.

After running the net, its state vector gets stabilized at

S = (0.325, 0.4, 0.4, 0.325, 0.7, 0.325, 0.4, 0.7, 0.4, 0)

where the last seven components correspond to hidden neurons, the first ones are inter-
preted as the obtained truth-value forp, q ands.

3.4 Relating the net andTP

In this section we relate the behavior of the components of the state vector with the
immediate consequence operator. To begin with, it is convenient to recall that the func-
tionsSi implemented by each neuron are non-decresing. The proof is straightforward,
after analysing the different cases arising from the type of neuron (i.e. the registermi).

Regarding the soundness of the implementation sketched above, the following the-
orem can be obtained, although space restrictions do not allow to include the proof.

Theorem 1. Given a homogeneous programP and a propositional symbolA, then the
sequenceSA(n) approximates the value of the least model ofP in A up to any pre-
scribed level of precision.

4 Conclusions and future work

A new neural-like model has been proposed which extends that recently given to multi-
adjoint logic programming. The model mimics the consequences operator in order to
obtain the least fixpoint of the immediate consequences operator for a given multiad-
joint logic program. This way, it is possible to obtain the computed truth-values of all
propositional symbols involved in the program in a parallel way. This extended ap-
proach considers, in addition to the three most important adjoint pairs in the unit inter-
val (product, G̈odel, and Łukasiewicz) and weighted sums, the combinations as finite
ordinal sums of the previous conjunctors.

We have decided to extend the original generic model of neuron, capable of adapt-
ing to perform different functions according with its inputs. Although it is possible to

consider simpler units, the price to pay is to consider a set ofdifferent unitseach type
representing a different type of homogeneous rule or proposition. This way one has
both advantages and disadvantages: the former are related to the easier description of
the units, whereas the latter arise from the greater complexity of the resulting network.
A complete analysis of the compromise between simplicity of the units and complexity
of the network will be the subject of future work.

Another line of future research deals with further developing the neural approach to
abductive multi-adjoint logic programming [5]; it is in this respect where the learning
capabilities of neural networks are proving to be an important tool.

References

1. C.V. Daḿasio and L. Moniz Pereira. Monotonic and residuated logic programs. InSymbolic
and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’01, pages 748–759.
Lect. Notes in Artificial Intelligence, 2143, 2001.

2. P. Eklund and F. Klawonn. Neural fuzzy logic programming.IEEE Tr. on Neural Networks,
3(5):815–818, 1992.

3. S. Ḧolldobler and Y. Kalinke. Towards a new massively parallel computational model for
logic programming. InECAI’94 workshop on Combining Symbolic and Connectioninst Pro-
cessing, pages 68–77, 1994.

4. S. Ḧolldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of logic programs
by recurrent neural networks.Applied Intelligence, 11(1):45–58, 1999.

5. J. Medina, E. Ḿerida-Casermeiro, and M. Ojeda-Aciego. A neural approach to abductive
multi-adjoint reasoning. InAI - Methodologies, Systems, Applications. AIMSA’02, pages
213–222, Lect. Notes in Computer Science 2443, 2002.

6. J. Medina, E. Ḿerida-Casermeiro, and M. Ojeda-Aciego. A neural approach to extended
logic programs. In7th Intl Work Conference on Artificial and Natural Neural Networks,
IWANN’03, pages 654–661. Lect. Notes in Computer Science 2686, 2003.

7. J. Medina, M. Ojeda-Aciego, and P. Vojtá̌s. Multi-adjoint logic programming with contin-
uous semantics. InLogic Programming and Non-Monotonic Reasoning, LPNMR’01, pages
351–364. Lect. Notes in Artificial Intelligence 2173, 2001.

8. L. Pauĺık. Best Possible Answer is Computable for Fuzzy SLD-Resolution InProceedings
of Gödel’96: Logical Foundations of Mathematics, Computer Science and Physics; Kurt
Gödel’s Legacy, pages 257–266, 1997.

9. M. H. van Emden and R. Kowalski. The semantics of predicate logic as a programming
language.Journal of the ACM, 23(4):733–742, 1976.

10. P. Vojt́ǎs. Fuzzy logic programming.Fuzzy Sets and Systems, 124(3):361–370, 2001.

