
Mathware & Soft Computing ?? (20??)

A neural implementation of multi-adjoint logic

programs via sf-homogenization

J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

Dept. Matemática Aplicada. Universidad de Málaga∗

{jmedina,merida,aciego}@ctima.uma.es

Abstract

A generalization of the homogenization process needed for the neural im-
plementation of multi-adjoint logic programming (a unifying theory to deal
with uncertainty, imprecise data or incomplete information) is presented here.
The idea is to allow to represent a more general family of adjoint pairs, but
maintaining the advantage of the existing implementation recently introduced
in [6]. The soundness of the transformation is proved and its complexity is
analysed. In addition, the corresponding generalization of the neural-like
implementation of the fixed point semantics of multi-adjoint is presented.

1 Introduction

The study of reasoning methods under uncertainty, imprecise data or incomplete
information has received increasing attention in the recent years. A number of
different approaches have been proposed with the aim of better explaining observed
facts, specifying statements, reasoning and/or executing programs under some type
of uncertainty whatever it might be.

One important and powerful mathematical tool that has been used for this
purpose at theoretical level is fuzzy logic. From the applicative side, neural net-
works have a massively parallel architecture-based dynamics which are inspired by
the structure of human brain, adaptation capabilities, and fault tolerance. The
recent paradigm of soft computing promotes the use and integration of different
approaches for the problem solving.

The main advantages of fuzzy logic systems are the capability to express non-
linear input/output relationships by a set of qualitative if-then rules, and to handle
both numerical data and linguistic knowledge, especially the latter, which is ex-
tremely difficult to quantify by means of traditional mathematics. The main ad-
vantage of neural networks, on the other hand, is the inherent learning capability,
which enables the networks to adaptively improve their performance.

∗ Partially supported by TIC2003-09001-C02-01.

1

2 J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

Recently, a new approach presented in [6] introduced a hybrid framework to
handling uncertainty, expressed in the language of multi-adjoint logic but imple-
mented by using ideas from the world of neural networks. The handling of uncer-
tainty inside their logic model is based on the use of a generalised set of truth-values
as a generalization of [11]. On the other hand, multi-adjoint logic programming [8]
generalizes residuated logic programming [1] in that several different implications
are allowed in the same program, as a means to facilitate the task of specification.

Considering several implications in the same program is interesting because it
provides a more flexible framework for the specification of problems, for instance,
in situations in which connectives are built from the users preferences. In these
contexts, it is likely that knowledge is described by a many-valued logic program
where connectives have many-valued truth functions and, perhaps, aggregation
operators (such as arithmetic mean or weighted sum) where different implications
could be needed for different purposes, and different aggregators are defined for
different users, depending on their preferences.

The neural-like implementation of multi-adjoint logic programming in [6] had
the restriction that the only connectives involved in the program were the usual
product, Gödel and Lukasiewicz together with weighted sums. A key point of the
implementation was a preprocessing of the initial program to transform it into a
homogeneous program. As the theoretical development of the multi-adjoint frame-
work does not rely on particular properties of the product, Gödel and Lukasiewicz
adjoint pairs, it seems convenient to allow for a generalization of the implementa-
tion to admit, at least, a family of continuous t-norms (recall that any continuous
t-norm can be interpreted as the ordinal sum of product and Lukasiewicz t-norms).

The authors presented in [7] a different neural approach allowing for ordinal
sums in the initial program, which uses the same homogenization process intro-
duced in [6]. The purpose of this paper is to present a “finer” homogenization
process for multi-adjoint logic programs such that conjunctors which are built as
ordinal sums of product, Gödel and Lukasiewicz t-norms are decomposed into its
components so that, as a result, the original neural approach is still applicable.

The structure of the paper is as follows: In Section 2, the syntax and semantics
of multi-adjoint logic programs are introduced, together with the homogenization
procedure; in Section 3, the translation from multi-adjoint programs into homo-
geneous programs is extended in order to cope with conjunctors defined as ordinal
sums, the preservation of the semantics is proved under this extended transform-
ation, and the complexity of the translation is studied. Section 4 introduces the
modification of the neural net of [6] in order to include the modification of the
homogenization process and the comparison with the sequence of iterations of the
TP operator is presented; then, some comments about related approaches are given
in Section 5. The paper finishes with some conclusions and pointers to future work.

2 Preliminary definitions

To make this paper as self-contained as possible, the necessary definitions about
multi-adjoint structures are included in this section. For motivating comments, the

A neural implementation of multi-adjoint programs via sf-homogenization 3

interested reader is referred to [8].
Multi-adjoint logic programming is a general theory of logic programming which

allows the simultaneous use of different implications in the rules and rather general
connectives in the bodies.

The first interesting feature of multi-adjoint logic programs is that a number of
different implications are allowed in the bodies of the rules. The basic definition is
the generalization of residuated lattice given below:

Definition 1 A multi-adjoint lattice L is a tuple (L,�,←1, &1, . . . ,←n, &n) sat-
isfying the following items:

1. 〈L,�〉 is a bounded lattice, i.e. it has bottom and top elements;

2. >&i ϑ = ϑ &i> = ϑ for all ϑ ∈ L for i = 1, . . . , n;

3. (&i,←i) is an adjoint pair in 〈L,�〉 for i = 1, . . . , n; i.e.

(a) Operation &i is increasing in both arguments,

(b) Operation ←i is increasing in the first argument and decreasing in the
second argument,

(c) For any x, y, z ∈ P , we have that x � (y ←i z) holds if and only if
(x &i z) � y holds.

In the rest of the paper we restrict to the unit interval, although the general
framework of multi-adjoint logic programming is applicable to a general lattice.

2.1 Syntax of multi-adjoint logic programs

A multi-adjoint program is a set of weighted rules 〈F, ϑ〉 satisfying the following
conditions:

1. F is a formula of the form A←i B where A is a propositional symbol called
the head of the rule, and B is a well-formed formula, which is called the body,
built from propositional symbols B1, . . . , Bn (n ≥ 0) by the use of monotone
operators.

2. The weight ϑ is an element (a truth-value) of [0, 1].

Facts are rules with body1 1 and a query (or goal) is a propositional symbol
intended as a question ?A prompting the system.

2.2 Semantics of multi-adjoint logic programs

Once presented the syntax of multi-adjoint programs, the semantics is given below.

Definition 2 An interpretation is a mapping I from the set of propositional sym-
bols Π to the lattice 〈[0, 1],≤〉.

1It is also customary to use write > instead of 1, and even not to write any body.

4 J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

Note that each of these interpretations can be uniquely extended to the whole set
of formulas, and this extension is denoted as Î. The set of all the interpretations
is denoted IL.

The ordering ≤ of the truth-values L can be easily extended to IL, which also
inherits the structure of complete lattice and is denoted v. The minimum element
of the lattice IL, which assigns 0 to any propositional symbol, will be denoted M.

Definition 3

1. An interpretation I ∈ IL satisfies 〈A←i B, ϑ〉 if and only if ϑ ≤ Î (A←i B).

2. An interpretation I ∈ IL is a model of a multi-adjoint logic program P iff all
weighted rules in P are satisfied by I.

The operational approach to multi-adjoint logic programs used in this paper
will be based on the fixpoint semantics provided by the immediate consequences
operator, given in the classical case by van Emden and Kowalski [10], which can
be generalised to the framework of multi-adjoint logic programs by means of the
adjoint property, as shown below:

Definition 4 Let P be a multi-adjoint program; the immediate consequences op-
erator, TP : IL → IL, maps interpretations to interpretations, and for I ∈ IL and
A ∈ Π is given by

TP(I)(A) = sup
{

ϑ &i Î(B) | 〈A←i B, ϑ〉 ∈ P
}

As usual, it is possible to characterise the semantics of a multi-adjoint logic
program by the post-fixpoints of TP; that is, an interpretation I is a model of
a multi-adjoint logic program P iff TP(I) v I. The TP operator is proved to be
monotonic and continuous under very general hypotheses.

Once one knows that TP can be continuous under very general hypotheses [8],
then the least model can be reached in at most countably many iterations beginning
with the least interpretation, that is, the least model is TP ↑ω(M).

2.3 Obtaining a homogeneous program

Regarding the implementation as a neural network of [6], the introduction of the
so-called homogeneous rules, provided a simpler and standard representation for
any multi-adjoint program.

Definition 5 A weighted formula is said to be homogeneous if it has one of the
following forms:

• 〈A←i &i(B1, . . . , Bn), ϑ〉

• 〈A←i @(B1, . . . , Bn), 1〉

• 〈A←i B1, ϑ〉

A neural implementation of multi-adjoint programs via sf-homogenization 5

where A,B1, . . . , Bn are propositional symbols.

In the rest of this section we briefly recall the procedure for translating a multi-
adjoint logic program into one containing only homogeneous rules. The procedure
handles separately rules and facts, the latter are not related to the purpose of this
paper, therefore we will only recall the procedure presented for homogenizing rules.

Two types of transformations are considered: The first one handles the main
connective of the body of the rule, whereas the second one handles the subcom-
ponents of the body.

T1. A weighted rule 〈A←i &j(B1, . . . ,Bn), ϑ〉 is substituted by the following pair
of formulas:

〈A←i A1, ϑ〉
〈A1 ←j &j(B1, . . . ,Bn), 1〉

where A1 is a fresh propositional symbol, and 〈←j , &j〉 is an adjoint pair.

For the case 〈A ←i @(B1, . . . ,Bn), ϑ〉 in which the main connective of the
body of the rule happens to be an aggregator, the transformation is similar:

〈A←i A1, ϑ〉
〈A1 ← @(B1, . . . ,Bn), 1〉

where A1 is a fresh propositional symbol, and ← is a designated implication.

T2. A weighted rule 〈A←i Θ(B1, . . . ,Bn), ϑ〉, where Θ is either &i or an aggreg-
ator, and a component Bk is assumed to be either of the form &j(C1, . . . , Cl)
or @(C1, . . . , Cl), is substituted by the following pair of formulas in either case:

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉
〈A1 ←j &j(C1, . . . , Cl), 1〉

or

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉
〈A1 ← @(C1, . . . , Cl), 1〉

where A1 is a fresh propositional symbol.
The procedure to transform the rules of a program so that all the resulting

rules are homogeneous, is presented in Fig. 2. It is based in the two previous
transformations, and in its description by abuse of notation the terms T1-rule
(resp. T2-rule) are used to mean an adequate input rule for transformation T1
(resp. T2).

6 J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

Program Homogenization
begin

repeat
for each T1-rule do

Apply transformation T1
end-for

for each T2-rule do
Apply transformation T2

end-for
until neither T1-rules nor T2-rules exist

end

Figure 1: Pseudo-code for translating into a homogeneous program.

3 Considering compound conjunctors

As stated in the introduction, a neural net implementation of the immediate con-
sequences operator of an homogeneous program was introduced in [6] for the case
of the multi-adjoint lattice ([0, 1],≤, &P ,←P , &G,←G, &L,←L). As the theoretical
development of the multi-adjoint framework does not rely on particular properties
of these three adjoint pairs, it seems convenient to allow for a generalization of
the implementation to, at least, a family of continuous t-norms, for any continuous
t-norm can be interpreted as the ordinal sum of product and Lukasiewicz t-norms.

In order to maintain the most of the proposed implementation, it makes sense
to consider an extra process in the homogenization process in order to further
translate a program with new types of t-norms into one on which the original
neural approach is still applicable.

Recall the definition of ordinal sum of a family of t-norms:

Definition 6 Let (&i)i∈Λ be a family of t-norms and a family of non-empty pair-
wise disjoint subintervals [ai, bi] of [0, 1]. The ordinal sum of the summands (ai, bi, &i),
i ∈ Λ is the t-norm & defined as

&(x, y) =

{
ai + (bi − ai) &i(x−ai

bi−ai
, y−ai

bi−ai
) x, y ∈ [ai, bi]

min(x, y) otherwise

In order to simplify the notation of ordinal sum, let us introduce suitable func-
tions for change of scale, to be able to switch between the intervals [0, 1] and [ai, bi].
Given the unit interval [0, 1] and a subset [ai, bi] ⊆ [0, 1], the function

fi : [ai, bi]→ [0, 1], with fi(x) =
x− ai

bi − ai

is bijective, and its inverse is

f−1
i : [0, 1]→ [ai, bi], with f−1

i (x) = ai + (bi − ai)x

A neural implementation of multi-adjoint programs via sf-homogenization 7

Now, given a t-norm &i consider the following (adapted) t-norm2:

x &∗
i y =

{
f−1

i (fi(x) &i fi(y)) if x, y ∈ [ai, bi]
min{x, y} otherwise (1)

for all x, y ∈ [0, 1].
With the notations above it is obvious that the ordinal sum of the summands

(ai, bi, &i), i ∈ Λ can be written as

x & y = min{x &∗
i y | i ∈ Λ} (2)

With this expression for the ordinal sum, we can introduce a third type of
transformation, to be applied to those rules of a homogeneous program with a
finite ordinal sum in the body. i.e. Λ = {1, . . . , n}.

T3. The homogeneous rule3 〈A ←s B1 &s B2, ϑ〉, where & is expressed as in (2)
is substituted by the following n + 1 formulas:

〈A1 ←∗
s B1 &∗

1 B2, ϑ〉
...

〈An ←∗
n B1 &∗

n B2, ϑ〉
〈A←G &G(A1, . . . , An), ϑ〉

where A1, . . . , An are fresh propositional symbols, and ←∗
i are the adjoint

implications of &∗
i .

After applying this transformation to a homogeneous program, we obtain an-
other homogeneous program in whose bodies no t-norm appears as an ordinal sum.
This kind of homogenous program is called sum-free homogeneous program (in short
sf-homogeneous program).

Example 1 Consider the elements a1 = 0.1, b1 = 0.5, a2 = 0.7, b2 = 0.9 and the
ordinal sum &s defined as

x &s y

 f−1
1 (f1(x) &P f1(y)) if x, y ∈ [a1, b1]

f−1
2 (f2(x) &L f2(y)) if x, y ∈ [a2, b2]

min{x, y} otherwise

Then if we have the homogeneous rule 〈A ←s B1 &s B2, 1〉, applying T3, this is
transformed in4

〈A1 ←∗
P B1 &∗

P B2, 1〉 sf-homogeneous
〈An ←∗

L B1 &∗
L B2, 1〉 sf-homogeneous

〈A←G &G(A1, . . . , An), 1〉 sf-homogeneous
2For example, if we have that [ai, bi] = [0, 1] then x &∗

P y = x &P y.
3To simplify the presentation, let us assume that the body has just two arguments.
4Note that it is not necessary to specify the type of the implications in the rules because the

weights are 1. Usually, we will omit the subscript in these cases.

8 J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

The procedure to transform the rules of a program so that all the resulting rules
are sf-homogeneous, is presented in Fig. 2. In its description by abuse of notation
we use the terms T1-rule (resp. T2-rule, T3-rule) to mean an adequate input rule
for transformation T1 (resp. T2, T3).

Program sf-Homogenization
begin

repeat
for each T1-rule do

Apply transformation T1
end-for

for each T2-rule do
Apply transformation T2

end-for

for each T3-rule do
Apply transformation T3

end-for

until neither T1- nor T2- nor T3-rules exist
end

Figure 2: Pseudo-code for translating into a sf-homogeneous program.

3.1 Preservation of the semantics

It is necessary to check that the semantics of the initial program has not been
changed by the transformation. The following results will show that every model
of the sf-homogenized program P∗ is also a model of the original program P and,
in addition, the minimal model of P∗ is also the minimal model of P.

Theorem 1 Let P be a homogeneous program, then every model of the program
P∗, obtained after to apply the sf-homogenization process to P, is also a model of P
when restricted to the variables occurring in P.

Proof: It will be sufficient to show that the transformation T3 satisfies that every
model of its output is also a model of its input, as the proof for T1 and T2 was
given in [6].

Assume that I is a model of the rules

〈A1 ← B1 &∗
1 B2, 1〉, . . . , 〈An ← B1 &∗

n B2, 1〉
〈A←G &G(A1, . . . , An), 1〉

therefore we have

Î(B1 &∗
i B2) ≤ I(Ai) and Î(&G(A1, . . . , An)) ≤ I(A)

A neural implementation of multi-adjoint programs via sf-homogenization 9

for all i ∈ {1, . . . , n}. Now, by monotonicity, we have

&G(Î(B1 &∗
1 B2), . . . , Î(B1 &∗

n B2)) ≤ I(A)

Recall that we want to prove that I satisfies the rule 〈A ←i B1 & B2, 1〉, that is,
Î(B1 & B2) ≤ I(A), where & is an ordinal sum of &∗

i , i ∈ {1, . . . , n}. But this is
true by Equation (2) above, since we have

I(B1) & I(B2) = mini∈{1,...,n}{I(B1) &∗
i I(B2)}

= &G(Î(B1 &∗
1 B2), . . . , Î(B1 &∗

n B2))
≤ I(A)

qed

Theorem 2 Given a program P, the minimal model of the program P∗ obtained
after applying sf-homogenization, is also a model of P when restricted to variables
in P.

The idea underlying the proof is to consider any model I of P, then extend it
to P∗ in such a way that it is also a model of P∗, finally use minimality on P∗. The
key point is to notice that, for every “fresh” propositional variable Ai introduced
by the process, there is only one rule headed with Ai in the resulting program.
This feature allows the extension of any model I to these new symbols in purely
recursive terms.
Proof:

Let M∗ be the minimal model of P∗, and let M denote its restriction to P. By
the Theorem 1 we have that M is also a model of P, so we have only to prove that
it is minimal.

Once again, only the behaviour of transformation T3 has to be taken into
account.

Given a model I of P, consider a rule 〈Ai ← B1 &∗
i B2, 1〉, where Ai is a pro-

positional variable in P∗ but not in P. We argued above that there can be only one
such rule headed with Ai, therefore the following extension of I makes sense:

I∗(Ai) = Î(B1 &∗
i B2)

Obviously, by definition this extension I∗ is also a model of P∗, therefore the
minimal model M∗ of P∗ satisfies M∗ v I∗. Now, by restricting the domain back
to the variables in P we obtain M v I. Therefore, M is the minimal model of P.

qed

3.2 Complexity issues

In [6] it was shown that the complexity of the algorithm for transforming a multi-
adjoint program into a homogeneous one is linear on the size of the program.
Specifically, the following theorem was stated and proved

10 J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

Theorem 3 Let 〈A ←i Θ(B1, . . . ,Bl), ϑ〉 be a rule with n connectives in the body
(n ≥ 1), then:

• The number of homogeneous rules obtained after applying the procedure is n,
if either Θ = &i or Θ = @ with ϑ = 1; and n + 1 otherwise.

• The number of transformations applied by the procedure is n − 1 if either
Θ = &i or Θ = @ with ϑ = 1; and n otherwise.

Back to the sf-homogenization process, it can also be shown to be linear on
the size of the program. The following theorem shows a precise calculation of the
complexity of the homogenization procedure.

Theorem 4 Let 〈A ←i Θ(B1, . . . ,Bl), ϑ〉 be a rule with n connectives in the body
(n ≥ 1), out of which exactly m are constructed as ordinal sums of ki basic con-
nectives for each i ∈ {1, . . . ,m} then:

• The number of homogeneous rules obtained after applying the procedure is
bounded by n + m +

∑m
i=1 ki, if either Θ = &i or Θ = @ with ϑ = 1; and

n + m +
∑m

i=1 ki + 1 otherwise.

• The number of transformations Ti applied by the procedure is n + 2m − 1 if
either Θ = &i or Θ = @ with ϑ = 1; and n + 2m otherwise.

Proof: Concatenate the thesis of Theorem 3 with the fact that an application of
T3 generates exactly k + 1 rules, provided that the ordinal sum was built out of
k intervals, because in each homogeneous rule there is only one operator in the
body. qed

4 The neural implementation to use ordinal sums

A neural-based implementation of multi-adjoint logic program has already been
presented, which is able to calculate the minimal model of a multi-adjoint logic pro-
gram built solely from product, Gödel and Lukasiewicz adjoint pairs and weighted
sums. In this section, we introduce an extension which is able to work on programs
whose conjunctors are built as finite ordinal sums.

4.1 The structure of the neural net

A neural net is built from a sf-homogeneous program where each process unit
is associated either to a propositional symbol of the initial program or to an sf-
homogeneous rule. The state of the i-th neuron in the instant t is expressed by
its output function, denoted Si(t). The state of the network can be expressed by
means of a state vector ~S(t), whose components are the output of the neurons
forming the network; the initial state of ~S is 0 for all the components except those
representing a propositional variable, say A, in which case its value is defined as:

SA(0) =

{
ϑA if 〈A← 1, ϑA〉 ∈ P,

0 otherwise.

A neural implementation of multi-adjoint programs via sf-homogenization 11

where SA(0) denotes the component associated to a propositional symbol A.
The connection between neurons is denoted by a matrix of weights W , in which

wkj indicates the existence or absence of connection between unit k and unit j; if
the neuron represents a weighted sum, then the matrix of weights also represents
the weights associated to any of the inputs. The weights of the connections related
to neuron i (that is, the i-th row of the matrix W) are represented by an n-upla
Wi•, and are allocated in an internal vector register of the neuron, which can be
seen as a distributed information system.

The initial truth-value of the propositional symbol or sf-homogeneous rule vi

is loaded in the internal register, together with a signal mi to distinguish whether
the neuron is associated either to a fact or to a rule; in the latter case, information
about the type of operator is also included. Moreover, it is necessary introduce the
(sub-)intervals on which the new connective will be operating, i.e. to set the values
of the extremes of interval ai and bi. Therefore, there are four vectors: the first
storing the truth-values ~v of atoms and sf-homogeneous rules, the second ~m storing
the type of the neurons in the net and the last two representing the (sub-)intervals
of the components of the ordinal sums.

A signal mi indicates the functioning mode of the neuron. If mi = 1, then the
neuron is assumed to be associated to a propositional symbol, and its next state
is the maximum value among all the operators involved in its input, its previous
state, and the initial truth-value vi. More precisely:

Si(t + 1) = max
{

vi, max
k
{Sk(t) | wik > 0}

}
Note that for this case, the values introduced as extremes of interval are, naturally,
ai = 0 and bi = 1.

When a neuron is associated to the product, Gödel, or Lukasiewicz implication,
respectively, then the signal mi is set to 2, 3, and 4, respectively. Its input is formed
by the external value vi of the rule, the outputs of the neurons associated to the
body of the implication and the extremes ai, bi of the interval of each connective.

The output of the neuron mimics the behaviour of the implication in terms of
the adjoint property when a rule of type mi has been used.

Before specifying the output of each neuron i in the net, we need to consider
the following set, which takes care of the truth-value assigned to the neuron and
its input values. We define the following set of relevant values for the neuron i:

Ji(t) = {vi} ∪ {Sk(t) | wik > 0}

Now we can specify the output in the next instant of each neuron:

Si(t + 1) =

&∗

p(Ji(t)) if mi = 2

&G(Ji(t)) if mi = 3

&∗
L(Ji(t)) if mi = 4

Note that we do not use the starred version for the Gödel connective, since the
default connective in the definition of ordinal sums is precisely the minimum.

12 J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

�

Figure 3: A generic neuron.

When mi = 5 the value of the registers ai and bi is irrelevant. In this case the
neuron operates as a weighted sum which outputs

Si(t + 1) =
∑

k |wik>0

w′
ikSk(t) where w′

ik =
wik∑

k |wik>0

wik

A generic neuron is shown in Fig. 3 above.

Example 2 Consider the conjunctor &s = {(0.1, 0.5, &P), (0.7, 0.9, &L)} defined
as an ordinal sum and the following toy program

〈p←s q &s r, 1〉 〈q ← 1, 0.5〉 〈r ← 1, 0.8〉

After sf-homogenization we obtain a program with the rules

〈p1← q &∗
1 r, 1〉 〈p2← q &∗

2 r, 1〉 〈p←G p1 &G p2, 1〉

and the two initial facts

〈q ← 1, 0.5〉 〈r ← 1, 0.8〉

Thus, we have five propositional symbols, out of which two are fresh, and five
rules. As a result, the neural network has six neurons, three associated to initial
propositional symbols p, q, r and three to the proper sf-homogeneous rules.

The values of the first neuron associated to p are the following: v1 = 0 because
there is not a fact information about p, m1 = 1 since p is a propositional symbol,
a1 = 0 and b1 = 1 by the previous reason and its row in the matrix W is W1• =
(0, 0, 0, 0, 0, 1) because only the last rule has p in the head. The two following

A neural implementation of multi-adjoint programs via sf-homogenization 13

neurons are associated to two propositional symbols and then their values are
calculated similarly.

The fourth neuron is associated to the rule 〈p1 ← q &∗
1 r, 1〉 and then v4 = 1

(it is the weight of the rule), m4 = 2 by the product conjunctor, a4 = 0.1 and
b4 = 0.5 because it comes from the first interval of the ordinal sum &s, and W4• =
(0, 1, 1, 0, 0, 0) since it uses the output of the second and third neurons which are
associated to q and r respectively. Similarly, we can obtain the initial values for
the rest of the neurons.

Finally, to initialize the net we introduce:

• The vector ~v = (0, 0.5, 0.8, 1, 1, 1).

• The vector ~m = (1, 1, 1, 2, 4, 3).

• The vector ~a = (0, 0, 0, 0.1, 0.7, 0).

• The vector ~b = (1, 1, 1, 0.5, 0.9, 1).

• The matrix

W =

· · · · · 1
· · · · · ·
· · · · · ·
· 1 1 · · ·
· 1 1 · · ·
· · · 1 1 ·

4.2 Implementation of the neural network

A number of simulations have been obtained through a MATLAB implementation
in a conventional sequential computer. A high level description of the implement-
ation is given below:

1. Initialize the network is with the appropriate values of ~v, ~m, ~a, ~b, W and,
in addition, a tolerance value tol to be used as a stop criterion. The output
Si(t) of the neurons associated to facts (which are propositional variables, so
mi = 1) are initialized with its truth-value vi.

2. Repeat Update all the states Si of the neurons of the network :

(a) If mi = 1, then:

i. Construct the following set, which amounts to collect all the rules
with head A:

Ji(t) = {vi} ∪ {Sk(t) | wik > 0}

ii. Then, update the state of neuron i as follows:

Si(t + 1) = max Ji(t)

(b) If mi = 2, 3, then:

14 J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

i. Find the outputs of the neurons j (if any) which operate on the
neuron i and consider vi, that is, construct the set

Ji(t) = {vi} ∪ {Sk(t) | wik > 0}

ii. Then, update the state of neuron i as follows:

Si(t + 1) =

&∗

p(Ji(t)) if mi = 2

&G(Ji(t)) if mi = 3

&∗
L(Ji(t)) if mi = 4

(c) If mi = 5, then the neuron corresponds to an aggregator, and its update
follows a different pattern:

i. Determine the set Ki = {j | wij > 0} and calculate sum =
∑

Ki
wij

ii. Update the neuron as follows:

Si(t + 1) =
1

sum

∑
Ki

wij · Sj(t)

Until the stop criterion ‖~S(t) − ~S(t − 1)‖2 < tol is fulfilled, where ‖ · ‖2
denotes euclidean distance.

Example 3 Consider a program with facts 〈p← 1, 0.3〉 and 〈q ← 1, 0.4〉 and rules
〈p←s s &s q, 1〉, 〈s←s q, 0.7〉, 〈p←L s, 0.5〉 where &s = {(0.1, 0.5, &P), (0.7, 0.9, &L)}
is an ordinal sum.

Then, the sf-homogeneous program is

〈p1 ← s &∗
1 q, 1〉 〈p2 ← s &∗

2 q, 1〉 〈p← p1 &G p2, 1〉
〈s1 ←∗

1 q, 0.7〉 〈s2 ←∗
2 q, 0.7〉 〈s← s1 &G s2, 1〉

〈p←L s, 0.5〉

with the same facts 〈p← 1, 0.3〉 and 〈q ← 1, 0.4〉.
The net for the program is sketched in Fig. 4, and consists of ten neurons: three

of which represent variables p, q, s, and the rest are needed to represent the rules
(three for each ordinal sum rule and another one for the Lukasiewicz rule). The
initial values of the net are:

• The vector ~v = (0.3, 0.4, 0, 1, 1, 1, 0.7, 0.7, 1, 0.5).

• The vector ~m = (1, 1, 1, 2, 4, 3, 2, 4, 3, 4).

• The vector ~a = (0, 0, 0, 0.1, 0.7, 0, 0.1, 0.7, 0, 0).

• The vector ~b = (1, 1, 1, 0.5, 0.9, 1, 0.5, 0.9, 1, 1).

A neural implementation of multi-adjoint programs via sf-homogenization 15

Figure 4: A network for Example 3.

• The matrix

W =

· · · · · 1 · · · 1
· · · · · · · · · ·
· · · · · · · · 1 ·
· 1 1 · · · · · · ·
· 1 1 · · · · · · ·
· · · 1 1 · · · · ·
· 1 · · · · · · · ·
· 1 · · · · · · · ·
· · · · · · 1 1 · ·
· · 1 · · · · · · ·

After running the net, its state vector gets stabilized at

~S = (0.325, 0.4, 0.4, 0.325, 0.4, 0.325, 0.4, 0.4, 0.4, 0.32)

where the last seven components correspond to hidden neurons, the first ones are
interpreted as the obtained truth-value for p, q and s.

4.3 Relating the net and TP

In this section we relate the behavior of the components of the state vector with
the immediate consequence operator. To begin with, it is convenient to recall
that the functions Si implemented by each neuron are non-decresing. The proof is
straightforward, after analysing the different cases arising from the type of neuron
(i.e. the register mi).

Regarding the soundness of the implementation sketched above, the following
theorem can be obtained.

16 J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

Theorem 5 Given a sf-homogeneous program P and a symbol A, then

TP
n(M)(A) = SA(2n− 2) for n ≥ 1.

The proof of this theorem is similar to that given in [6], thus we do not repeat
it here. By the previous theorem we obtain the following corollary:

Corollary 1 Given a homogeneous program P and a propositional symbol A, then
the sequence SA(n) approximates the value of the least model of P in A up to any
prescribed level of precision.

Regarding the convergence of the network, by Cor. 1 and Knaster-Tarski the-
orem (assuming continuity of TP) it is the case that the net always obtains an
approximation to the fixed point up to any level of precision. In the case that TP
reaches the fixpoint after a finite number of steps, then the network always con-
verges to the exact value of the minimal model. This happens for some special
types of programs, for instance in [9] termination in finitely many steps is proved
for homogeneous programs with only one conjunction connective and without ag-
gregators.

5 Related approaches

The use of neural networks in the context of logic programming is not a new idea;
for instance, Eklund and Klawonn showed in [2] how fuzzy logic programs can be
transformed into neural nets, where adaptations of uncertainties in the knowledge
base increase the reliability of the program and are carried out automatically. On
the other hand, Hölldobler and Kalinke implemented in [3] the fixpoint of the TP
operator for a certain class of classical propositional logic programs (called acyclic
logic programs) by using a 3-layered recurrent neural network; this result is later
extended in [4] to deal with the first order case.

Our approach somehow tries to join the two approaches above, and it is inter-
esting since our logic is much richer than classical or the usual versions of fuzzy
logic in the literature, although we only consider the propositional case. Although
there are some results regarding the expressive power of feed-forward multilayered
neural nets, such as Kůrková’s theorem [5], the structure of our net is not described
as an n-layered network, instead a more straightforward approach is used.

The authors presented in [7] a different neural approach which allows ordinal
sums in the initial program as well. In that paper, the homogenization process
introduced in [6] was assumed to be applied. In this paper, we extend, in a natural
way, the neural net in [6] making some changes due to the introduction of the new
rule T3 for the sf-homogenization.

Specifically, in the net for ordinal sums presented in [7], each neuron associ-
ated to an ordinal sum needs as input, apart from the outputs of the neurons in
charge of the intermediate calculations, the outputs of the neurons associated to
the propositional symbols occurring in the body of the rule. This resulted in a poor
performance due to, among other reasons, to the need of using output obtained two

A neural implementation of multi-adjoint programs via sf-homogenization 17

steps back, i.e. the calculation of Si(t + 1) depend on some Sk(t− 1). The solution
to this problem, also given in [7], introduced as a side effect that the output of the
net could not be related to the TP operator in the same easy manner as in [6].

In the approach given in this paper, we solve simultaneously the two technical
problems stated in the previous paragraph, in that only the outputs obtained in
the previous time step are needed and, moreover, the statement of the theorem
relating the net and the TP operator can be recovered (Theorem 5). This is a
beneficial effect of the modification proposed for the homogenization process, i.e.
use sf-homogenization instead of the homogenization of [6], which has just been
introduced in this paper.

6 Conclusions and future work

It has been shown that the homogenization process for multi-adjoint logic programs
can be adapted so that it can “decompose” conjunctors defined as an ordinal sum.
From the theoretical point of view, the neural implementation proposed here, inher-
its the intrinsic relationship between the neural net and the TP operator; whereas,
from the practical point of view, this approach is potentially as well-behaved as
that presented in [7].

A different approach to the solution of the problem studied in this paper would
be to modify directly the neural implementation so that the ordinal sum constructor
can be conveniently represented by the net. Then, it would be interesting to make
a comparison of the efficiency of the treatment of compound conjunctors via this
extended sf-homogenization an the modified neural approach. As future work, we
are planning a thorough comparison between the different approaches.

References

[1] C.V. Damásio and L. Moniz Pereira. Monotonic and residuated logic programs.
In Symbolic and Quantitative Approaches to Reasoning with Uncertainty, EC-
SQARU’01, pages 748–759. Lect. Notes in Artificial Intelligence, 2143, 2001.

[2] P. Eklund and F. Klawonn. Neural fuzzy logic programming. IEEE Tr. on
Neural Networks, 3(5):815–818, 1992.

[3] S. Hölldobler and Y. Kalinke. Towards a new massively parallel computational
model for logic programming. In ECAI’94 workshop on Combining Symbolic
and Connectioninst Processing, pages 68–77, 1994.

[4] S. Hölldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of
logic programs by recurrent neural networks. Applied Intelligence, 11(1):45–58,
1999.

[5] V. Kůrková. Kolmogorov’s theorem and multilayer neural networks, Neural
Networks 5: 501-506, 1992.

18 J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

[6] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. A neural implement-
ation of multi-adjoint logic programming. Journal of Applied Logic, 2(3):301-
324, 2004.

[7] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. Decomposing Or-
dinal Sums in Neural Multi-Adjoint Logic Programs. Lect. Notes in Artificial
Intelligence 3315:717–726, 2004.

[8] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming
with continuous semantics. In Lect. Notes in Artificial Intelligence 2173:351–
364, 2001.

[9] L. Pauĺık. Best Possible Answer is Computable for Fuzzy SLD-Resolution
In Proceedings of Gödel’96 : Logical Foundations of Mathematics, Computer
Science and Physics; Kurt Gödel’s Legacy, pages 257–266, 1997.

[10] M. H. van Emden and R. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733–742, 1976.

[11] P. Vojtáš. Fuzzy logic programming. Fuzzy Sets and Systems, 124(3):361–370,
2001.

