
Multi-Adjoint Logic Programming with
Continuous Semantics

Jesús Medina,1 Manuel Ojeda-Aciego,1 and Peter Vojtáš2

1 Dept. Matemática Aplicada. Universidad de Málaga. � � �

{jmedina,aciego}@ctima.uma.es
2 Inst. Computer Science. Academy of Science of Czech Republic.†

vojtas@cs.cas.cz

Abstract. Considering different implication operators, such as �Lukasie-
wicz, Gödel or product implication in the same logic program, naturally
leads to the allowance of several adjoint pairs in the lattice of truth-
values. In this paper we apply this idea to introduce multi-adjoint logic
programs as an extension of monotonic logic programs. The continuity
of the immediate consequences operators is proved and the assumptions
required to get continuity are further analysed.

1 Introduction

One can find several papers in the literature on applications of definite fuzzy
logic programming which are based either on �Lukasiewicz, or product, or Gödel
implications on the unit real interval (an overview can be seen in [9]); for more
complex systems it is reasonable to allow room for several different implications.
In [2] an extension was presented in which the set of truth-values is generalised
to a residuated lattice (in order to embed hybrid probabilistic logic programs).
Another generalisation of the set of truth-values is that given by the structure
of bilattice, which has been used to handle negation in logic programming [5].

The purpose of this work is to provide a further generalisation of the frame-
work given in [2, 3] so that: (1) it is possible to use a number of different implic-
ations in the rules of our programs, (2) the algebraic requirements on residuated
lattices are weaken and (3) we focus on the continuity of the immediate con-
sequences operator by providing sufficient conditions for continuity.

A general theory of logic programming which allows the simultaneous use
of different implications in the rules and rather general connectives in the bod-
ies is presented. Models of these programs are post-fixpoints of the immediate
consequences operator, which is proved to be monotonic under very general hy-
potheses.

The final part of the paper deals with the continuity of the immediate con-
sequences operator, which is proved under the assumption of continuity of all

� � � Partially supported by Spanish DGI project BFM2000-1054-C02-02 and Junta de
Andalućıa project TIC-115.

† Supported by Grant GAČR 201/00/1489

c© Springer-Verlag. Lect. Notes in Artificial Intelligence 2173:351–364, 2001

the operators in the program (but, possibly, the implications). This theorem is
also re-stated in terms of lower-semicontinuity of the operators.

2 Preliminary definitions

We will make extensive use of the constructions and terminology of universal
algebra, in order to define formally the syntax and the semantics of the languages
we will deal with. A minimal set of concepts from universal algebra, which will
be used in the sequel in the style of [2], are introduced below.

2.1 Some Definitions from Universal Algebra

Definition 1 (Graded set). A graded set is a set Ω with a function which
assigns to each element ω ∈ Ω a number n ≥ 0, called the arity of ω.

Definition 2 (Ω-Algebra). Given a graded set Ω, an Ω-algebra A is a pair
〈A, I〉 where A is a nonempty set called the carrier, and I is a function which
assigns maps to the elements of Ω as follows:

1. Each element ω ∈ Ωn, n > 0, is interpreted as a map I(ω):An → A, denoted
by ωA.

2. Each element c ∈ Ω0 (i.e., c is a constant) is interpreted as an element I(c)
in A, denoted by cA.

Finally, the last definition needed will be that of subalgebra of an Ω-algebra,
which generalises the concept of substructure of an algebraic structure. The
definition is straightforward.

Definition 3 (Subalgebra of an Ω-algebra). Given an Ω-algebra A = 〈A, I〉,
an Ω-subalgebra B, is a pair 〈B, J〉, such that B ⊂ A and

1. J(c) = I(c) for all c ∈ Ω0.
2. Given ω ∈ Ωn, then J(ω):Bn → B is the restriction of I(ω):An → A.

2.2 Multi-Adjoint Lattices and Multi-Adjoint Algebras

The main concept we will need in this section is that of adjoint pair, firstly
introduced in a logical context by Pavelka [8], who interpreted the poset structure
of the set of truth-values as a category, and the relation between the connectives
of implication and conjunction as functors in this category. The result turned
out to be another example of the well-known concept of adjunction, introduced
by Kan in the general setting of category theory in 1950.

Definition 4 (Adjoint pair). Let 〈P,�〉 be a partially ordered set and (←,&)
a pair of binary operations in P such that:

(a1) Operation & is increasing in both arguments, i.e. if x1, x2, y ∈ P such that
x1 � x2 then (x1 & y) � (x2 & y) and (y &x1) � (y &x2);

(a2) Operation ← is increasing in the first argument (the consequent) and de-
creasing in the second argument (the antecedent), i.e. if x1, x2, y ∈ P such
that x1 � x2 then (x1 ← y) � (x2 ← y) and (y ← x2) � (y ← x1);

(a3) For any x, y, z ∈ P , we have that x � (y ← z) holds if and only if (x& z) � y
holds.

Then we say that (←,&) forms an adjoint pair in 〈P,�〉.

The need of the monotonicity of operators ← and & is clear, if they are to
be interpreted as generalised implications and conjunctions. The third property
in the definition, which corresponds to the categorical adjointness; but can be
adequately interpreted in terms of multiple-valued inference as asserting that
the truth-value of y ← z is the maximal x satisfying x& z �P y, and also the
validity of the following generalised modus ponens rule [6]:

If x is a lower bound of ψ ← ϕ, and z is a lower bound of ϕ then a lower
bound y of ψ is x& z.

In addition to (a1)-(a3) it will be necessary to assume the existence of bottom
and top elements in the poset of truth-values (the zero and one elements), and the
existence of joins (suprema) for every directed subset; that is, we will assume a
structure of complete lattice but nothing about associativity, commutativity and
general boundary conditions of &. In particular, the requirement that (L,&,
)
has to be a commutative monoid in a residuated lattice is too restrictive, in that
commutativity needn’t be required in the proofs of soundness and correctness [9].
Here in this generality we are able to work with approximations of t-norms
and/or conjunctions learnt from data by a neural net like in [7].

Extending the results in [2, 3, 9] to a more general setting, in which different
implications (�Lukasiewicz, Gödel, product) and thus, several modus ponens-like
inference rules are used, naturally leads to considering several adjoint pairs in
the lattice. More formally,

Definition 5 (Multi-Adjoint Lattice). Let 〈L,�〉 be a lattice. A multi-adjoint
lattice L is a tuple (L,�,←1,&1, . . . ,←n,&n) satisfying the following items:

(l1) 〈L,�〉 is bounded, i.e. it has bottom (⊥) and top (
) elements;
(l2) (←i,&i) is an adjoint pair in 〈L,�〉 for i = 1, . . . , n;
(l3)
&i ϑ = ϑ &i
 = ϑ for all ϑ ∈ L for i = 1, . . . , n.

Remark 1. Note that residuated lattices are a special case of multi-adjoint lat-
tice, in which the underlying poset has a lattice structure, has monoidal structure
wrt ⊗ and
, and only one adjoint pair is present.

From the point of view of expressiveness, it is interesting to allow extra
operators to be involved with the operators in the multi-adjoint lattice. The
structure which captures this possibility is that of a multi-adjoint algebra.

Definition 6 (Multi-Adjoint Ω-Algebra). Let Ω be a graded set containing
operators ←i and &i for i = 1, . . . , n and possibly some extra operators, and let
L = (L, I) be an Ω-algebra whose carrier set L is a lattice under �.

We say that L is a multi-adjoint Ω-algebra with respect to the pairs (←i,&i)
for i = 1, . . . , n if L = (L,�, I(←1), I(&1), . . . , I(←n), I(&n)) is a multi-adjoint
lattice.

In practice, we will usually have to assume some properties on the extra oper-
ators considered. These extra operators will be assumed to be either conjunctors
or disjunctors or aggregators.

Example 1. Consider Ω = {←P ,&P ,←G,&G,∧L,@}, the real unit interval U =
[0, 1] with its lattice structure, and the interpretation function I defined as:

I(←P)(x, y) = min(1, x/y) I(&P)(x, y) = x · y

I(←G)(x, y) =
{ 1 if x ≤ y

0 otherwise
I(&G)(x, y) = min(x, y)

I(@)(x, y, z) = 1
6 (x + 2y + 3z) I(∧L)(x, y) = max(0, x + y − 1)

that is, connectives are interpreted as product and Gödel connectives, a weighted
sum and �Lukasiewicz implication; then 〈U, I〉 is a multi-adjoint Ω-algebra with
one aggregator and one additional conjunctor (denoted ∧L to make explicit that
its adjoint implicator is not in the language).

Note that the use of aggregators as weighted sums somehow covers the ap-
proach taken in [1] when considering the evidential support logic rules of com-
bination.

��

2.3 General Approach to the Syntax of Propositional Languages

The syntax of the propositional languages we will work with will be defined by
using the concept of Ω-algebra. To begin with, the concept of alphabet of the
language is introduced below.

Definition 7 (Alphabet). Let Ω be a graded set, and Π a countably infinite
set. The alphabet AΩ,Π associated to Ω and Π is defined to be the disjoint union
Ω ∪ Π ∪ S, where S is the set of auxiliary symbols “(”, “)” and “,”.

In the following, we will use only AΩ to designate an alphabet, for deleting the
reference to Π cannot lead to confusion.

Definition 8 (Expressions). Given a graded set Ω and alphabet AΩ. The Ω-
algebra E = 〈AΩ

∗, I〉 of expressions is defined as follows:

1. The carrier AΩ
∗ is the set of strings over AΩ.

2. The interpretation function I satisfies the following conditions for strings
a1, . . . , an in AΩ

∗:
– cE = c, where c is a constant operation (c ∈ Ω0).
– ωE(a1) = ω a1, where ω is an unary operation (ω ∈ Ω1).
– ωE(a1, a2) = (a1ω a2), where ω is a binary operation (ω ∈ Ω2).
– ωE(a1, . . . , an) = ω(a1, . . . , an), where ω is a n-ary operation (ω ∈ Ωn)

and n > 2.

Note that an expression is only a string of letters of the alphabet, that is,
it needn’t be a well-formed formula. Actually, the well-formed formulas is the
subset of the set of expressions defined as follows:

Definition 9 (Well-formed formulas). Let Ω be a graded set, Π a countable
set of propositional symbols and E the algebra of expressions corresponding to
the alphabet AΩ,Π . The well-formed formulas (in short, formulas) generated by
Ω over Π is the least subalgebra F of the algebra of expressions E containing Π.

The set of formulas, that is the carrier of F, will be denoted FΩ . It is well-
known that least subalgebras can be defined as an inductive closure, and it is
not difficult to check that it is freely generated, therefore it satisfies the unique
homomorphic extension theorem stated below:

Theorem 1. Let Ω be a graded set, Π a set of propositional symbols, F the
corresponding Ω-algebra of formulas. Let L be an arbitrary Ω-algebra with car-
rier L. Then, for every function J :Π → L there is a unique homomorphism
Ĵ :FΩ → L such that:

1. For all p ∈ Π, Ĵ(p) = J(p);
2. For each constant c ∈ Ω0, Ĵ(cF) = cL;
3. For every ω ∈ Ωn with n > 0 and for all Fi ∈ FΩ with i = 1, . . . , n

Ĵ(ωF(F1, . . . , Fn)) = ωL(Ĵ(F1), . . . , Ĵ(Fn)).

3 Syntax and Semantics of Multi-Adjoint Logic Programs

Multi-adjoint logic programs will be constructed from the abstract syntax in-
duced by a multi-adjoint algebra on a set of propositional symbols. Specifically,
we will consider a multi-adjoint Ω-algebra L whose extra operators are either
conjunctors, denoted ∧1, . . . ,∧k, or disjunctors, denoted ∨1, . . . ,∨l, or aggreg-
ators, denoted @1, . . . ,@m. (This algebra will host the manipulation the truth-
values of the formulas in our programs.)

In addition, let Π be a set of propositional symbols and the corresponding
algebra of formulas F freely generated from Π by the operators in Ω. (This
algebra will be used to define the syntax of a propositional language.)

Remark 2. As we are working with two Ω-algebras, and to discharge the nota-
tion, we introduce a special notation to clarify which algebra an operator belongs
to, instead of continuously using either ωL or ωF. Let ω be an operator symbol
in Ω, its interpretation under L is denoted

.
ω (a dot on the operator), whereas

ω itself will denote ωF when there is no risk of confusion.

3.1 Syntax of Multi-Adjoint Logic Programs

The definition of multi-adjoint logic program is given, as usual, as a set of rules
and facts. The particular syntax of these rules and facts is given below:

Definition 10 (Multi-Adjoint Logic Programs). A multi-adjoint logic pro-
gram is a set P of rules of the form 〈(A ←i B), ϑ〉 such that:

1. The rule (A ←i B) is a formula of F;
2. The confidence factor ϑ is an element (a truth-value) of L;
3. The head of the rule A is a propositional symbol of Π.
4. The body formula B is a formula of F built from propositional symbols

B1, . . . , Bn (n ≥ 0) by the use of conjunctors &1, . . . ,&n and ∧1, . . . ,∧k,
disjunctors ∨1, . . . ,∨l and aggregators @1, . . . ,@m .

5. Facts are rules with body
.
6. A query (or goal) is a propositional symbol intended as a question ?A prompt-

ing the system.

Note that an arbitrary composition of conjunctors, disjunctors and aggregators
is also an aggregator.

Sometimes, we will represent the above pair as A
ϑ←i @[B1, . . . , Bn], where1

B1, . . . , Bn are the propositional variables occurring in the body and @ is the
aggregator obtained as a composition.

3.2 Semantics of Multi-Adjoint Logic Programs

Definition 11 (Interpretation). An interpretation is a mapping I:Π → L.
The set of all interpretations of the formulas defined by the Ω-algebra F in the
Ω-algebra L is denoted IL.

Note that by the unique homomorphic extension theorem, each of these inter-
pretations can be uniquely extended to the whole set of formulas FΩ .

The ordering � of the truth-values L can be easily extended to the set of
interpretations as usual:

Definition 12 (Lattice of interpretations). Consider two interpretations
I1, I2 ∈ IL. Then, 〈IL,�〉 is a lattice where I1 � I2 iff I1(p) � I2(p) for all
p ∈ Π. The least interpretation � maps every propositional symbol to the least
element ⊥ of L.

A rule of a multi-adjoint logic program is satisfied whenever the truth-value
of the rule is greater or equal than the confidence factor associated with the rule.
Formally:

Definition 13 (Satisfaction, Model). Given an interpretation I ∈ IL, a
weighted rule 〈A ←i B, ϑ〉 is satisfied by I iff ϑ � Î (A ←i B). An interpret-
ation I ∈ IL is a model of a multi-adjoint logic program P iff all weighted rules
in P are satisfied by I.
1 Note the use of square brackets in this context.

Note the following equalities

Î(A ←i B) = Î(A) .←i Î(B) = I(A) .←i Î(B)

and the evaluation of Î(B) proceeds inductively as usual, till all propositional
symbols in B are reached and evaluated under I. For the particular case of a
fact (a rule with
 in the body) satisfaction of 〈A ←i
, ϑ〉 means

ϑ � Î(A ←i
) = I(A) .←i

by property (a3) of adjoint pairs this is equivalent to ϑ
.

&i
 � I(A) and this by
assumption (l3) of multi-adjoint lattices gives ϑ � I(A).

Definition 14. An element λ ∈ L is a correct answer for a program P and a
query ?A if for an arbitrary interpretation I:Π → L which is a model of P we
have λ � I(A).

4 Fix-point semantics

It is possible to generalise the immediate consequences operator, given by van
Emden and Kowalski in [4], to the framework of multi-adjoint logic programs as
follows:

Definition 15. Let P be a multi-adjoint logic program. The immediate con-
sequences operator TL

P
: IL → IL, mapping interpretations to interpretations, is

defined by considering

TL
P

(I)(A) = sup
{

ϑ
.

&i Î(B) | A
ϑ←i B ∈ P

}

Note that all the suprema involved in the definition do exist because L is assumed
to be a lattice.

As it is usual in the logic programming framework, the semantics of a multi-
adjoint logic program is characterised by the post-fixpoints of TL

P
.

Theorem 2. An interpretation I of IL is a model of a multi-adjoint logic pro-
gram P iff TL

P
(I) � I.

Proof: Assume we have an interpretation I for the program P, then we have the
following chain of equivalent statements for all rule A

ϑ←i B in P

ϑ � Î(A ←i B)
ϑ � Î(A) .←i Î(B)

ϑ
.

&i Î(B) � Î(A) = I(A)

sup{ϑ
.

&i Î(B) | A
ϑ←i B ∈ P} � I(A)
TL

P
(I)(A) � I(A)

Thus, if I is a model of P, then for every A occurring in the head of a rule
we have TL

P
(I)(A) � I(A). If A is not the head of any rule, we have TL

P
(I)(A) =

sup ∅ = ⊥ ≤ I(A) and, therefore, I is a post-fixpoint for TL
P

.

Reciprocally, assume that I is a post-fixpoint for TL
P

, then any rule A
ϑ←i B

is fulfilled.
�

Note that the fixpoint theorem works even without any further assumptions
on conjunctors (definitely they need not be commutative and associative).

The monotonicity of the operator TL
P

, for the case of only one adjoint pair,
has been shown in [3]. The proof for the general case is similar.

Theorem 3 (Monotonicity of T L
P

). The operator TL
P

is monotonic.

Proof: Consider I and J two elements of IL such that I � J . We have to show
that

TL
P

(I) � TL
P

(J)

Let A be a propositional symbol in Π,

TL
P

(I)(A) = sup
{

ϑ
.

&i Î(B) | A
ϑ←i B ∈ P

}

If we had Î(B) ≤ Ĵ(B) for all B, then we would also have ϑ
.

&i Î(B) �
ϑ

.
&i Ĵ(B) for all i, since operators

.
&i are increasing. Now, by taking suprema

TL
P

(I)(A) � TL
P

(J)(A) for all A

Therefore, it is sufficient to prove that Î(B) � Ĵ(B) for all B. We will use
structural induction:

If B is an atomic formula, then it is obvious, ie

Î(B) = I(B) � J(B) = Ĵ(B)

For the inductive case, consider B = @[B1, . . . ,Bn] and assume that Î(Bi) �
Ĵ(Bi) for all i = 1, . . . , n. By definition of the rules, we know that @ behaves as
an aggregator, and therefore, using the induction hypothesis

Î(B) =
.
@[Î(B1), . . . , Î(Bn)]

�
.
@[Ĵ(B1), . . . , Ĵ(Bn)]

= Ĵ(B)

�

Due to the monotonicity of the immediate consequences operator, the se-
mantics of P is given by its least model which, as shown by Knaster-Tarski’s
theorem, is exactly the least fixpoint of TL

P
, which can be obtained by transfin-

itely iterating TL
P

from the least interpretation �.

The proof of the monotonicity of the TL
P

operator in [2] is accompanied by
the following statement, surely due to their wanting to stress the embedding of
different logic programming paradigms:

The major difference to classical logic programming is that our TL
P

may
not be continuous, and therefore more than countably many iterations
may be necessary to reach the least fixpoint.

In the line of the previous quotation, we would like to study sufficient conditions
for the continuity of the TL

P
operator.

5 On the continuity of the T L
P

operator

A first result in this approach is that whenever every operator in Ω turns out
to be continuous in the lattice, then TP is also continuous and, consequently, its
least fixpoint can be obtained by a countably infinite iteration from the least
interpretation.

Let us state the definition of continuous function which will be used.

Definition 16. Let L be a complete upper lattice and let f :L → L be a mapping.
We say that f is continuous if it preserves suprema of directed sets, that is, given
a directed set X one has

f(supX) = sup{f(x) | x ∈ X}

A mapping g:Ln → L is said to be continuous provided that it is continuous in
each argument separately.

Definition 17. Let F be a language interpreted on a multi-adjoint Ω-algebra L,
and let ω be any operator symbol in the language. We say that ω is continuous
if its interpretation under L, that is

.
ω, is continuous in L.

Now we state and prove a technical lemma which will allow us to prove the
continuity of the immediate consequences operator.

Lemma 1. Let P be a program interpreted on a multi-adjoint Ω-algebra L, and
let B be any body formula in P. Assume that all the operators @ in B are con-
tinuous, let X be a directed set of interpretations, and write S = supX; then

Ŝ(B) = sup{Ĵ(B) | J ∈ X}

Proof: Follows by induction. �

Theorem 4. If all the operators occurring in the bodies of the rules of a pro-
gram P are continuous, and the adjoint conjunctions are continuous in their
second argument, then TL

P
is continuous.

Proof: We have to check that for each directed subset of interpretations X and
each atomic formula A

TL
P

(supX)(A) = sup{TL
P

(J)(A) | J ∈ X}

Let us write S = supX, and consider the following chain of equalities:

TL
P

(supX)(A) = sup{ϑ
.

&i Ŝ(B) | A
ϑ←i B ∈ P}

(1)
= sup{ϑ

.
&i sup{Ĵ(B) | J ∈ X} | A

ϑ←i B ∈ P}
(2)
= sup{ϑ

.
&i Ĵ(B) | J ∈ X, and A

ϑ←i B ∈ P}
= sup{sup{ϑ

.
&i Ĵ(B) | A

ϑ←i B ∈ P} | J ∈ X}
= sup{TL

P
(J)(A) | J ∈ X}

where equality (1) follows from Lemma 1 and equality (2) follows from the con-
tinuity of the operators

.
&i. �

In some sense, it is possible to reverse the implication in the theorem above.

Theorem 5. If the operator TL
P

is continuous for all program P on L, then any
operator in the body of the rules is continuous.

Proof: Let @ be an n-ary connective. Assume an ordering on Ln defined on
components. Denoting a tuple (y1, . . . , yn) ∈ Ln as ȳ, the ordering in Ln is:
ȳ ≤ z̄ iff yi � zi for i = 1, . . . , n.

Let Y be a directed set in Ln, and let us check that
.
@(supY) = sup{

.
@(y1, . . . , yn) | (y1, . . . , yn) ∈ Y)}

The inequality

sup{
.
@(y1, . . . , yn) | (y1, . . . , yn) ∈ Y } �

.
@(supY) (1)

follows directly by monotonicity of @ and the definition of supremum.
For the other inequality, given n propositional symbols A1, . . . , An ∈ Π and a

tuple ȳ = (y1, . . . , yn) ∈ Ln, consider the interpretation Iȳ defined as I(Ai) = yi

for i = 1, . . . , n and ⊥ otherwise. This way we have Iȳ � Iz̄ if and only if ȳ ≤ z̄.
Consider, now, the set XY of interpretations Iȳ for all ȳ ∈ Y , and also

consider its supremum, SY = supXY . By the ordering in Ln we have, for all
ȳ ∈ Y

(y1, . . . , yn) =
(
Iȳ(A1), . . . , Iȳ(An)

)
≤

(
SY (A1), . . . , SY (An)

)
therefore we have

supY ≤
(
SY (A1), . . . , SY (An)

)
now, by the monotonicity of

.
@ we have

.
@(supY) �

.
@

(
SY (A1), . . . , SY (An)

)
= ŜY (@(A1, . . . , An)) (2)

On the other hand, consider the program P below consisting of only a rule

P =
{
A

�←i @(A1, . . . , An)
}

by the assumption of monotonicity of TL
P

we have the following chain of equalities

ŜY (@(A1, . . . , An)) =

.

&i ŜY (@(A1, . . . , An))

= sup{ϑ
.

&i ŜY (B) | A
ϑ←i B ∈ P}

= TL
P

(SY)(A)
= sup{TL

P
(Jȳ)(A) | Jȳ ∈ XY }

= sup{sup{ϑ
.

&i Jȳ(B) | A
ϑ←i B ∈ P} | Jȳ ∈ XY }

= sup{

.

&i Ĵȳ(@(A1, . . . , An)) | Jȳ ∈ XY }
= sup{

.
@(Jȳ(A1), . . . , Jȳ(An)) | Jȳ ∈ XY }

= sup{
.
@(y1, . . . , yn) | (y1, . . . , yn) ∈ Y }

Finally, by Eqns. (2) and (1) and this result we have

sup{
.
@(y1, . . . , yn)} �

.
@(supY) � ŜY (@(A1, . . . , An)) = sup{

.
@(y1, . . . , yn)}

�

Another Approach to the Continuity of T L
P

It is possible to generalise the previous theorem by requiring weaker continuity
conditions on the operators but, at the same time, restricting the structure of
the set of truth-values.

Definition 18. Let L be a poset and f :Ln → L a function. We say that f
is lower-semicontinuous, for short LSC, in (ϑ1, . . . , ϑn) ∈ Ln if for all ε <
f(ϑ1, . . . , ϑn) there exist δi for i = 1, . . . , n such that whenever (µ1 . . . , µn) sat-
isfies δi < µi ≤ ϑi then ε < f(µ1, . . . , µn) ≤ f(ϑ1, . . . , ϑn).

A function f is said to be lower-semicontinuous (or LSC) if it is lower-
semicontinuous in every point in its domain.

It is obvious that the composition of two lower-semicontinuous functions is
also lower-semicontinuous.

Definition 19. A cpo L is said to satisfy the supremum property if for all set
X ⊂ L and for all ε we have that if ε < supX then there exists δ ∈ X such that
ε < δ ≤ supX.

Lemma 1 also holds assuming LSC and the supremum property and, there-
fore, the continuity of the TL

P
operator is obtained from the combined hypotheses

of LSC of the operators and the supremum property of the lattice of truth-values.

Lemma 2. Let P be a program interpreted on a multi-adjoint Ω-algebra L whose
carrier has the supremum property for directed sets. Let B be any body formula
in P, and a assume that all the operators in B are LSC. Let X be a directed set
of interpretations, and write S = supX; then

Ŝ(B) = sup{Ĵ(B) | J ∈ X}
Proof sketch: The following inequality is straightforward.

sup{Ĵ(B) | J ∈ X} � Ŝ(B)

Now, assume the strict inequality and get a contradiction, using LSC and the
supremum property separately on each argument to obtain elements Ji(B), then
apply directedness to get an uniform interpretation J0(B), finally use once again
LSC to get a contradiction. �

Theorem 6. If L satisfies the supremum property, and all the operators in the
body are LSC and

.
&i are LSC in their second argument, then the operator TL

P

is continuous.

Proof: Let us prove that for a directed set X and S = supX we have that

TL
P

(S)(A) = sup{TL
P

(J)(A) | J ∈ X}
by showing that TL

P
(S)(A) fulfils the properties of a supremum for the set

{TL
P

(J)(A) | J ∈ X}.
1. Clearly, by monotonicity of the operator TL

P
and the fact that S = supX,

we have that TL
P

(S)(A) is an upper bound for all the TL
P

(J)(A) with J ∈ X
and, therefore

sup{TL
P

(J)(A) | J ∈ X} � TL
P

(S)(A)
2. Reasoning by contradiction, assume the strict inequality

sup{TL
P

(J)(A) | J ∈ X} ≺ TL
P

(S)(A)

As TL
P

(S)(A) = sup{ϑ
.

&i Ŝ(B) | A
ϑ←i B ∈ P} by the supremum property

taking ε = sup{TL
P

(J)(A) | J ∈ X} we have that there exist a rule A
ϑ←iB ∈ P

such that

sup{TL
P

(J)(A) | J ∈ X} = ε ≺ ϑ
.

&i Ŝ(B) � TL
P

(S)(A)

By using lower-semicontinuity of ϑ
.

&i on the strict inequality, we have that
there exists δ ≺ Ŝ(B) such that whenever δ ≺ λ � Ŝ(B) then ε ≺ ϑ

.
&i λ �

ϑ
.

&i Ŝ(B).
Now, by Lemma 2, we have that Ŝ(B) = sup{Ĵ(B) | J ∈ X}, we can apply
once again the supremum property and select an element J0 ∈ X such that
δ ≺ Ĵ0(B) � Ŝ(B). For this element, by LSC of ϑ

.
&i we have that

ε ≺ ϑ
.

&i Ĵ0(B) � ϑ
.

&i Ŝ(B)

But this is contradictory with the fact that ε = sup{TL
P

(J)(A) | J ∈ X} =

sup{ϑ
.

&i Ĵ(B) | A
ϑ←i B ∈ P and J ∈ X}.

�

6 Conclusions and future work

We have presented a general theory of logic programming which allows the sim-
ultaneous use of different implications in the rules and rather general connectives
in the bodies.

We have shown that models of our programs are post-fixpoints of the immedi-
ate consequences operator TL

P
, and the it is monotonic under very general hypo-

theses. In addition we have proved the continuity of TL
P

under the assumption of
continuity of the operators in the language (but, possibly, the implications). This
hypothesis of continuity of the operators can be relaxed to lower-semicontinuity,
whenever we are working with a lattice with the supremum property. As future
work we are planning to develop a complete procedural semantics for multi-
adjoint programs and further investigate lattice with the supremum property.

Acknowledgements

We thank C. Damásio and L. Moniz Pereira for communicating the existence of
first drafts of their papers, on which this research began.

References

1. J.F. Baldwin, T.P. Martin, and B.W. Pilsworth. FRIL-Fuzzy and Evidential Reas-
oning in AI. Research Studies Press (John Wiley), 1995.

2. C.V. Damásio and L. Moniz Pereira. Hybrid probabilistic logic programs as resid-
uated logic programs. In Logics in Artificial Intelligence, JELIA’00, pages 57–73.
Lect. Notes in Artificial Intelligence, 1919, Springer-Verlag, 2000.

3. C.V. Damásio and L. Moniz Pereira. Monotonic and residuated logic programs. In
Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, ECSQARU’01, pages 748–759. Lect. Notes in Artificial Intelli-
gence 2173, Springer-Verlag, 2001.

4. M. van Emden and R. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM, 23(4):733–742, 1976.

5. M.C. Fitting. Bilattices and the semantics of logic programming. Journal of Logic
Programming, 11:91–116, 1991.

6. P. Hájek. Metamathematics of Fuzzy Logic. Trends in Logic. Studia Logica Library.
Kluwer Academic Publishers, 1998.

7. E. Naito, J. Ozawa, I. Hayashi, and N. Wakami. A proposal of a fuzzy connective
with learning function. In P. Bosc and J. Kaczprzyk, editors, Fuzziness Database
Management Systems, pages 345–364. Physica Verlag, 1995.

8. J. Pavelka. On fuzzy logic I, II, III. Zeitschr. f. Math. Logik und Grundl. der Math.,
25, 1979.

9. P. Vojtáš. Fuzzy logic programming. Fuzzy sets and systems, 2001. Accepted.

