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Jesús Medina,1 Manuel Ojeda-Aciego,1 and Peter Vojtáš2

1 Dept. Matemática Aplicada. Universidad de Málaga.� � �

{jmedina,aciego}@ctima.uma.es
2 Dept. Mathematical Informatics. P.J. Šafárik University.†
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Abstract. Multi-adjoint logic programs has been recently introduced [9,
10] as a generalization of monotonic logic programs [2, 3], in that simul-
taneous use of several implications in the rules and rather general con-
nectives in the bodies are allowed.

This paper discusses abductive reasoning—that is, reasoning in which
explanatory hypotheses are formed and evaluated. To model uncertainty
in human cognition and real world applications; we use multi-adjoint
logic programming to introduce and study a model of abduction problem.

1 Introduction

Broadly speaking, abduction aims at finding explanations for, or causes of, ob-
served phenomena or facts; it is inference to the best explanation, a pattern
of reasoning that occurs in such diverse places as medical diagnosis, scientific
theory formation, accident investigation, language understanding, and jury de-
liberation. More formally, abduction is an inference mechanism where given a
knowledge base and some observations, the reasoner tries to find hypotheses
which together with the knowledge base explain the observations. Reasoning
based on such an inference mechanism is referred to as abductive reasoning.

Abductive reasoning has been recognized as an important form of reasoning
with incomplete information that is appropriate for many problems in Artificial
Intelligence. These problems include updates in databases, belief revision, plan-
ning, diagnosis, natural language understanding, default reasoning, user model-
ling and, in general, problems requiring reasoning with incomplete information.

The purpose of this work is to provide a theoretical framework for abduction
in multi-adjoint logic programming [9]. The special feature of multi-adjoint logic
programs is that it is possible to use a number of different implications in the
rules of our programs. Specifically, the language and semantics of monotonic
logic programs are generalized in order to encompass more complex rules. For
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simplicity in the presentation, only the propositional (ground) case will be con-
sidered. A whole class of abduction problems with uncertainty expressed within
the language of multiadjoint programs can be solved by our method.

A general theory of logic programming which allows the simultaneous use of
different implications in the rules and rather general connectives in the bodies is
presented in [9], where models of these programs are proved to be post-fixpoints
of the immediate consequences operator, which turns out to be monotonic un-
der very general hypotheses. In addition, the continuity of the immediate con-
sequences operator is studied, and some sufficient conditions for its continuity
are obtained. A procedural semantics, under these conditions, for multi-adjoint
logic programs, together its completeness result was given in [10].

The structure of the paper is as follows: In Section 2, the preliminary defini-
tions are introduced; later, in Section 3, the syntax and semantics of multi-adjoint
logic programs are given, and the results about the continuity of the immediate
consequences operator are presented. In Section 4, the procedural semantics of
multi-adjoint logic programs is defined and the completeness results are stated.
Section 5 is the main part of this paper. We give definitions of the abduction
problem and of correct and computed explanations. We prove soundness and
completeness of our abduction semantics. The computation of the cheapest ex-
planation wrt a price function can be implemented, in determined lattices, by a
logic programming computation followed by a linear programming optimization.
The paper finishes with some conclusions and pointers to future work.

2 Preliminary definitions

In order to make this paper as self-contained as possible, the preliminary defin-
itions required to formally define multi-adjoint logic programs are given in this
section, which contains the approach given in [1, 3, 9].

We assume the reader is familiar to constructions and terminology of univer-
sal algebra such as graded set, Ω-algebra and subalgebra of an Ω-algebra, which
are used to define formally the syntax and the semantics of the languages we
will deal with.

The main concept we use in this section is that of adjoint pair, firstly intro-
duced in a logical context by Pavelka [12], who interpreted the poset structure
of the set of truth-values as a category, and the relation between the connectives
of implication and conjunction as functors in this category. The result turned
out to be another example of the well-known concept of adjunction, introduced
by Kan in the general setting of category theory in 1950 (see also the notion
of a relative pseudo-complement in lattice theory e.g. in Rasiowa and Sikorski’s
’Mathematics of metamathematics’ (1968)).

Definition 1 (Adjoint pair). Let 〈P,�〉 be a partially ordered set and (←, &)
a pair of binary operations in P such that:

(a1) Operation & is increasing in both arguments, i.e. if x1, x2, y ∈ P such that
x1 � x2 then (x1 & y) � (x2 & y) and (y & x1) � (y & x2);



(a2) Operation ← is increasing in the first argument (the consequent) and de-
creasing in the second argument (the antecedent), i.e. if x1, x2, y ∈ P such
that x1 � x2 then (x1 ← y) � (x2 ← y) and (y ← x2) � (y ← x1);

(a3) For any x, y, z ∈ P , we have that x � (y ← z) holds if and only if (x& z) � y
holds.

Then we say that (←, &) forms an adjoint pair in 〈P,�〉.
The property (a3) corresponds to the categorical adjointness; and can be

adequately interpreted in terms of multiple-valued inference as both the assertion
that the truth-value of y ← z is the maximal x satisfying x& z �P y, and the
validity of a generalized modus ponens rule [5].

Extending the results in [1, 3, 13, 14] to a more general setting, in which differ-
ent implications (�Lukasiewicz, Gödel, product) and thus, several modus ponens-
like inference rules are used, naturally leads to considering several adjoint pairs
in the lattice. More formally,

Definition 2 (Multi-Adjoint Lattice). Let 〈L,�〉 be a complete lattice. A
multi-adjoint lattice L is a tuple (L,�,←1, &1, . . . ,←n, &n) satisfying the fol-
lowing items:

(l1) 〈L,�〉 is bounded, i.e. it has bottom (⊥) and top (�) elements;
(l2) (←i, &i) is an adjoint pair in 〈L,�〉 for i = 1, . . . , n;
(l3) �&i ϑ = ϑ &i � = ϑ for all ϑ ∈ L for i = 1, . . . , n.

Remark 1. Note that residuated lattices are a special case of multi-adjoint lat-
tice, in which the underlying poset has a complete lattice structure, has monoidal
structure wrt ⊗ and �, and only one adjoint pair is present.

From the point of view of expressiveness, it is interesting to allow extra
operators to be involved with the operators in the multi-adjoint lattice. The
structure which captures this possibility is that of a multi-adjoint algebra.

Definition 3 (Multi-Adjoint Ω-Algebra). Let Ω be a graded set containing
operators ←i and &i for i = 1, . . . , n and possibly some extra operators, and let
L = (L, I) be an Ω-algebra whose carrier set L is a complete lattice under �.

We say that L is a multi-adjoint Ω-algebra with respect to the pairs (←i, &i)
for i = 1, . . . , n if L = (L,�, I(←1), I(&1), . . . , I(←n), I(&n)) is a multi-adjoint
lattice.

In practice,the extra operators will be assumed to be either conjunctors or
disjunctors or aggregators.

Example 1. Consider Ω = {←P , &P ,←G, &G,∧L, @}, the real unit interval U =
[0, 1] with its lattice structure, and the interpretation function I defined as:

I(←P )(x, y) = min(1, x/y) I(&P )(x, y) = x · y

I(←G)(x, y) =
{ 1 if y ≤ x

x otherwise
I(&G)(x, y) = min(x, y)

I(@)(x, y, z) = 1
6 (x + 2y + 3z) I(∧L)(x, y) = max(0, x + y − 1)



that is, connectives are interpreted as product and Gödel connectives, a weighted
sum and �Lukasiewicz conjunction; then 〈U, I〉 is a multi-adjoint Ω-algebra with
one aggregator and one additional conjunctor (denoted ∧L to make explicit that
its adjoint implicator is not in the language). �


The syntax of the propositional languages we will work with will be defined
by using the concept of Ω-algebra. To begin with, the concept of alphabet of the
language is introduced below.

Definition 4 (Alphabet). Let Ω be a graded set, and Π a countably infinite
set. The alphabet AΩ,Π associated to Ω and Π is defined to be the disjoint union
Ω ∪ Π ∪ S, where S is the set of auxiliary symbols “(”, “)” and “,”.

In the following, we will use only AΩ to designate an alphabet, for deleting the
reference to Π cannot lead to confusion.

Definition 5 (Expressions). Given a graded set Ω and alphabet AΩ. The Ω-
algebra E = 〈AΩ

∗, I〉 of expressions is defined as follows:

1. The carrier AΩ
∗ is the set of strings over AΩ.

2. The interpretation function I satisfies the following conditions for strings
a1, . . . , an in AΩ

∗:
– cE = c, where c is a constant operation (c ∈ Ω0 ).
– ωE(a1) = ω a1, where ω is an unary operation (ω ∈ Ω1).
– ωE(a1, a2) = (a1ω a2), where ω is a binary operation (ω ∈ Ω2).
– ωE(a1, . . . , an) = ω(a1, . . . , an), where ω is a n-ary operation (ω ∈ Ωn)

and n > 2.

Note that a expression is only a string of letters of the alphabet, that is,
it needn’t be a well-formed formula. Actually, the well-formed formulas is the
subset of the set of expressions defined as follows:

Definition 6 (Well-formed formulas). Let Ω be a graded set, Π a countable
set of propositional symbols and E the algebra of expressions corresponding to
the alphabet AΩ,Π . The well-formed formulas (in short, formulas) generated by
Ω over Π is the least subalgebra F of the algebra of expressions E containing Π.

The set of formulas, that is the carrier of F, will be denoted FΩ . It is well-
known that least subalgebras can be defined as an inductive closure, and it is
not difficult to check that it is freely generated, therefore it satisfies the unique
homomorphic extension theorem.

3 Syntax and Semantics of Multi-Adjoint Logic Programs

Multi-adjoint logic programs are constructed from the abstract syntax induced
by a multi-adjoint algebra on a set of propositional symbols. Specifically, we
will consider a multi-adjoint Ω-algebra L whose extra operators are either con-
junctors, denoted ∧1, . . . ,∧k, or disjunctors, denoted ∨1, . . . ,∨l, or aggregators,



denoted @1, . . . ,@m. (This algebra will host the manipulation the truth-values
of the formulas in our programs.)

In addition, let Π be a set of propositional symbols and the corresponding
algebra of formulas F freely generated from Π by the operators in Ω. (This
algebra will be used to define the syntax of a propositional language.)

Remark 2. As we are working with two Ω-algebras, and to discharge the nota-
tion, we introduce a special notation to clarify which algebra an operator belongs
to, instead of continuously using either ωL or ωF. Let ω be an operator symbol
in Ω, its interpretation under L is denoted

.
ω (a dot on the operator), whereas

ω itself will denote ωF when there is no risk of confusion.

The definition of multi-adjoint logic program is given, as usual, as a set of
rules and facts. The particular syntax of these rules and facts is given below:

Definition 7 (Multi-Adjoint Logic Programs). A multi-adjoint logic pro-
gram is a set P of rules of the form 〈(A ←i B), ϑ〉 such that:

1. The rule (A ←i B) is a formula of F;
2. The confidence factor ϑ is an element (a truth-value) of L;
3. The head of the rule A is a propositional symbol of Π.
4. The body formula B is a formula of F built from propositional symbols

B1, . . . , Bn (n ≥ 0) by the use of conjunctors &1, . . . ,&n and ∧1, . . . ,∧k,
disjunctors ∨1, . . . ,∨l and aggregators @1, . . . ,@m .

5. Facts are rules with body �.
6. A query (or goal) is a propositional symbol intended as a question ?A promp-

ting the system.

Note that an arbitrary composition of conjunctors, disjunctors and aggregators
is also an aggregator.

Sometimes, we will represent the above pair as A
ϑ←i @[B1, . . . , Bn], where1

B1, . . . , Bn are the propositional variables occurring in the body and @ is the
aggregator obtained as a composition.

Example 2. The following program P, where the subscripts G, L, P on the con-
nectives mean Gödel, �Lukasiewicz and product connectives, is an example of a
[0,1]-valued multi-adjoint logic program consisting of five rules and three facts.

high fuel consumption
0.8←G rich mixture ∧L low oil (1)

overheating
0.5←P low oil (2)

noisy behaviour
0.8←P rich mixture (3)

overheating
0.9←L low water (4)

noisy behaviour
1←P low oil (5)

low oil
0.2←P (6)

1 Note the use of square brackets.



low water
0.2←P (7)

rich mixture
0.5←P (8)

This program is intended to represent some general knowledge about the beha-
viour of a car.

Definition 8 (Interpretation). An interpretation is a mapping I: Π → L.
The set of all interpretations of the formulas defined by the Ω-algebra F in the
Ω-algebra L is denoted IL.

Note that by the unique homomorphic extension theorem, each of these inter-
pretations can be uniquely extended to the whole set of formulas FΩ .

The ordering � of the truth-values L can be easily extended to the set of
interpretations as usual:

Definition 9 (Lattice of interpretations). Consider two interpretations I1, I2 ∈
IL. Then, 〈IL,�〉 is a complete lattice where I1 � I2 iff I1(p) � I2(p) for all
p ∈ Π. The least interpretation � maps every propositional symbol to the least
element ⊥ of L.

A rule of a multi-adjoint logic program is satisfied whenever the truth-value
of the rule is greater or equal than the confidence factor associated with the rule.
Formally:

Definition 10 (Satisfaction, Model). Given an interpretation I ∈ IL, a
weighted rule 〈A ←i B, ϑ〉 is satisfied by I iff ϑ � Î (A ←i B). An interpret-
ation I ∈ IL is a model of a multi-adjoint logic program P iff all weighted rules
in P are satisfied by I.

Note the following equalities

Î(A ←i B) = Î(A) .←i Î(B) = I(A) .←i Î(B)

and the evaluation of Î(B) proceeds inductively as usual, till all propositional
symbols in B are reached and evaluated under I. For the particular case of a
fact (a rule with � in the body) satisfaction of 〈A ←i �, ϑ〉 means

ϑ � Î(A ←i �) = I(A) .←i �

by property (a3) of adjoint pairs this is equivalent to ϑ
.

&i � � I(A) and this by
assumption (l3) of multi-adjoint lattices gives ϑ � I(A).

Definition 11. An element λ ∈ L is a correct answer for a program P and a
query ?A if for an arbitrary interpretation I: Π → L which is a model of P we
have λ � I(A).



Example 3. The interpretation I defined by

I(low oil) = 0.25
I(low water) = 0.35

I(overheating) = 0.45
I(rich mixture) = 0.90

I(noisy behaviour) = 0.75
I(high fuel consumption) = 0.55

is a model of the program given in Example 2.
If we add the query ?overheating to the program, then 0.1 is a correct

answer. Actually, it is the greatest correct answer for the query.

The immediate consequences operator, given by van Emden and Kowalski
in [15], can be generalised to the framework of multi-adjoint logic programs as
follows:

Definition 12. Let P be a multi-adjoint logic program. The immediate con-
sequences operator TL

P
: IL → IL, mapping interpretations to interpretations, is

defined by considering

TL
P

(I)(A) = sup
{

ϑ
.

&i Î(B) | A
ϑ←i B ∈ P

}

Note that all the suprema involved in the definition do exist because L is assumed
to be a complete lattice.

As it is usual in the logic programming framework, the semantics of a multi-
adjoint logic program is characterized by the post-fixpoints of TL

P
.

Theorem 1 ([9]). An interpretation I of IL is a model of a multi-adjoint logic
program P iff TL

P
(I) � I.

Note that the fixpoint theorem works even without any further assumptions
on conjunctors (definitely they need not be commutative and associative).

The monotonicity of the operator TL
P

, for the case of only one adjoint pair,
has been shown in [1]. The proof for the general case is similar.

Theorem 2 ([9]). The operator TL
P

is monotonic.

Due to the monotonicity of the immediate consequences operator, the se-
mantics of P is given by its least model which, as shown by Knaster-Tarski’s
theorem, is exactly the least fixpoint of TL

P
, which can be obtained by transfin-

itely iterating TL
P

from the least interpretation �.
It is worth to investigate conditions which make the TL

P
operator to be con-

tinuous, in [9] it was proved that whenever every operator in Ω turns out to
be continuous in the lattice, then TP is also continuous and, consequently, its
least fixpoint can be obtained by a countably infinite iteration from the least
interpretation. Formally,

Theorem 3 ([9]). If all the operators occurring in the bodies of the rules of a
program P are continuous, and the adjoint conjunctions are continuous in their
second argument, then TL

P
is continuous.



4 Procedural semantics of multi-adjoint logic programs

Once shown that the TL
P

operator can be continuous under very general hypo-
theses, then the least model can be reached in at most countably many iterations.
Therefore, it is worth to define a procedural semantics which allow us to actually
construct the answer to a query against a given program.

In the following, we work in a hybrid Ω-algebra made up from the elements
of the lattice, and the same alphabet of the language but the adjoint implicators.

For the formal description of the computational model, we will consider an
extended the language F′ defined on the same graded set, but whose carrier is
the disjoint union Π∪L; this way we can work simultaneously with propositional
symbols and with the truth-values they represent.

Definition 13. Let P be a multi-adjoint logic program on a multi-adjoint Ω-
algebra L with carrier L and V the set of truth values of the rules in P. The
extended language F′ is the corresponding Ω-algebra of formulas freely generated
from the disjoint union of Π and V .

The formulas in the language F′ will be referred as extended formulas. An oper-
ator symbol ω interpreted under F′ will be denoted as ω̄.

Our computational model will take a query (an atom), and will provide a
lower bound of the value of A under any model of the program. Intuitively,
the computation proceeds by, somehow, substituting propositional symbols by
lower bounds of their truth-value until, eventually, an extended formula with no
propositional symbol is obtained, which will be interpreted in the multi-adjoint
lattice to get the computed answer.

Given a program P, we define the following admissible rules for transforming
any extended formula.

Definition 14. Admissible rules are defined as follows:

1. Substitute an atom A in an extended formula by (ϑ&̄iB) whenever there
exists a rule 〈A←iB, ϑ〉 in P.

2. Substitute an atom A in an extended formula by ⊥.
3. Substitute an atom A in an extended formula by ϑ whenever there exists a

fact 〈A←i�, ϑ〉 in P.

Note that if an extended formula turns out to have no propositional symbols,
then it can be directly interpreted in the multi-adjoint Ω-algebra L. This justifies
the following definition of computed answer.

Definition 15. Let P be a program in a multi-adjoint language interpreted on
a multi-adjoint lattice L and let ?A be a goal. An element @̇[r1, . . . , rm], with
ri ∈ L, for all i ∈ {1, . . . , m} is said to be a computed answer if there is a
sequence G0, . . . , Gn+1 such that

1. G0 = A and Gn+1 = @̄[r1, . . . , rm] where ri ∈ L for all i = 1, . . . n.
2. Every Gi, for i = 1, . . . , n, is a formula in F′.



3. Every Gi+1 is inferred from Gi by one of the admissible rules.

The idea of the computation is to consecutively apply admissible rules until
an extended formula with no propositional symbols @̄[r1, . . . , rm] is obtained,
which can be interpreted as the element

.
@[r1, . . . , rm] in the lattice L.

An alternative formalism of Generalized Annotated Logic Programs (GALP)
was introduced in [7]. The procedural semantics of GALP uses a CLP-like pro-
cedure to solve a set of lattice inequalities to find a computed answer. Our pro-
cedural semantics replaces constraints in the form of inequalities by equalities
building a final formula for

.
@ which is the best answer.

It might be the case that for some lattices it is not possible to get the correct
answer, simply consider L to be the powerset of a two-element set {a, b} ordered
by inclusion. The requirement of the reductant property stated below will allow
us to avoid these cases, see [7, 11] for details.

Definition 16 (Reductant, reductant property). Let P be a program on a
multi-adjoint Ω-algebra F with values in a multi-adjoint lattice L; assume that
all the rules in P with head A are A

ϑi←i Bi for i = 1, . . . , k. A reductant for A

is a rule A
ϑ← @(B1, . . . ,Bn) such that for any b1, . . . , bk we have

sup{ϑi

.
&i bi | i = 1, . . . , n} = ϑ

.
&

.
@(b1, . . . , bk)

A program P is said to have the reductant property if there exist reductants for
any atom A occurring in the head of some rule.

Note that ϑ and @ should depend only on the (multi-)set of &i.
Certainly, it will be interesting to consider only programs which contain all

its reductants, but this might be a too heavy condition on our programs; the
following proposition shows that we can assume that our programs contain all
the reductants, because the set of models is preserved.

Proposition 1 ([10]). Any reductant A
ϑ← B of P is satisfied by any model

of P. In short, P |= A
ϑ← B.

As a consequence of the proposition above, we can assume that a program
contains all its reductants, since its set of models is not modified.

Definition 17. Given a program P with the reductant property and a query
?A, the greatest computed answer is a computed answer in which calculation
admissible rules 1 and 3 are applied only with rules (and facts) reductants in P,
and the admissible rule 2 is applied if and only if no rule/fact exists for a given
atom in the extended formula.

Theorem 4. Given a program P, a query ?A and a computed answer λ′. If λ
is the greatest computed answer, then λ′ ≤ λ.



The theorem above shows that computed answers as in the previous definition
are actually the greatest.

Theorem 5. Given a program P with the reductant property, for all atom A let
λA be the greatest computed answer for P and query ?A, then λA � Tω

P
(�)(A).

It was proved in [10] that, given a program P, then Tn
P

(�)(A) is a computed
answer for all n and for all query ?A. Now, in conjunction with the result above
we straightforwardly obtain the to following corollaries which will be used later.

Corollary 1. λ ∈ L is the greatest computed answer for program P and query
?A if and only if λ = Tω

P
(�)(A).

To finish the section, simply recall the following result from [10].

Corollary 2. λ ∈ L is a correct answer for program P and query ?A if and only
if λ � Tω

P
(�)(A).

5 Abduction in multi-adjoint logic programs

To state the intuition behind an abduction problem, if will use the program
in Example 2, but without the three facts; that is, we have no information
about variables rich mixture, low oil, low water, which will turn out to be
hypotheses to explain the behaviour of our car.

If we notice it is noisy, overheated and has a high fuel consumption, we would
like to know why it is so. Let us call these assertions observation variables and
let us denote it by

OV = {noisy behaviour, overheated, high fuel consumption}.

As noisiness can be subjective and the height of fuel consumption and temperat-
ure of the engine can take different (high) values, our observations are estimated
(by an expert) by confidence factors. So the second parameter of our abduction
problem are observations (sometimes called manifestations, symptoms, effects)
represented by a theory, i.e. a partial mapping OBS: OV → L consisting of
facts, which can be thought of as observation variables equipped with confid-
ence factors

high fuel consumption
0.25←P , overheating

0.25←P , noisy behaviour
0.5←P

Note that it is not necessary to assume a specific type of implication for obser-
vations - any will do. The full strength of multi-adjointness is needed for the
logic programming part where specific implication describes a specific action of
the truth value of the rule.

We would like to find explanations (causes) for given observations (symp-
toms) by means of semantical consequence. Namely, explanations are assertions
which together with domain knowledge forces every model of them to be also a
model of observations. That is, whenever in a real world situation represented



by an interpretation I, both domain knowledge and explanations are true, then
all observations are true in I.

Possible explanations will be L-fuzzy subsets of the set of hypotheses

H = {rich mixture, low oil, low water}

This makes sense, because in the realm of a theory and of observations suffering
from uncertainty, we can expect that certain level of confidence of hypotheses
can be (under the presence of the theory) an explanation of these (uncertain)
observations. The formal definitions of abduction problem, explanation, etc. are
given below.

Definition 18. An abduction problem consists of a tuple A = 〈P, OBS, H〉,
where

1. P is a multi-adjoint logic program.
2. H ⊆ Π is the set of hypotheses.
3. OBS: OV → L is the L-fuzzy theory of observations (where OV is a set of

observation variables such that OV ∩ H = ∅)

The intended meaning of OV ∩ H = ∅ is that observation variables should not
be explained by themselves.

A theory is a mapping assigning formulas a truth value. For two theories T
and S, let T ∪ S denote the union of them as a theory defined by

(T ∪ S)(A) = max{T (A), S(A)}

Definition 19. An L-fuzzy theory E: H → L is a correct explanation to an
abduction problem A = 〈P, OBS, H〉 if

1. P ∪ E is satisfiable.
2. P∪E semantically implies OBS, that is every model of P∪E is also a model

of OBS.

It will be useful to represent explanations as a subset of Ln, especially when
L = [0, 1]. If H = {h1, . . . , hn} is the set of hypotheses and E: H → L is an
explanation, it is uniquely determined by its values

(E(h1), . . . , E(hn)) ∈ Ln

so, an element ε = (ε1, . . . , εn) ∈ Ln represents the mapping Eε(hi) = εi.
The set of correct explanations for A will be denoted by SOLd(A), where

the subscript d resembles the declarative character of the explanations.
Using our motivating example we are illustrating a possible solution of a

whole class of problems which are formulated within our formalism.

Example 4. Having our motor vehicle example and our multi-adjoint program P

and the query ?high fuel consumption by multi-adjoint logic program compu-
tation, using the first program rule we get

min(0.8, max(0, rich mixture + low oil− 1))



Now similarly as in the two valued logic abductive logic programming [6], our
procedure instead of failing in a proof when a selected subgoal fails to unify with
the head of any rule, the subgoal is viewed as a hypothesis, that is, if we know
confidence factor for rich mixture and low oil (from an explanation) we have the
computed answer for high fuel consumption. To fulfil

OBS(high fuel consumption) ≥ 0.25

it should be

min(0.8, max(0, rich mixture + low oil− 1)) ≥ 0.25

hence
rich mixture + low oil ≥ 1.25

Note that if OBS(high fuel consumption) would be greater than 0.8, there is
no explanation for this. To overcome this we could think of the possibility of
calculating the truth value of the metamathematical assertion “E is an explan-
ation for A”. Here we consider the case, when this truth value is 1, that is, E
is an explanation with full confidence. This is why we are calculating the truth
value of the following implication: Whenever I is a model of P ∪ E then I is a
model of OBS. In particular the truth value of the implication

“If I(rich mixture) + I(low oil) > 1.25

then I(high fuel consumption) ≥ 0.25”

And again, the truth value of x ≤ y can be calculated as .←(y, x).

So our multi-adjoint logic programming abduction should run as a usual logic
program with two exceptions

– it successfully ends without resolving variables which are in the set of hypo-
theses

– it is prompted by a query with threshold, which can serve as a cut (as we
will see later).

Definition 20 (Procedural semantics for abduction). Let us have an ab-
duction problem A = 〈P, OBS, H〉 and consider m ∈ OV . A successful abduc-
tion for A and m is a sequence G = (G0, G1, . . . , Gl) of extended formulas in the
language of multi-adjoint logic program computations such that:

1. G0 = m,
2. Gl contains only variables from H, and
3. (a) For all i < l, Gi+1 is inferred from Gi by one of admissible rules, and

(b) For the constant interpretation I�: Π → {�} the inequality I1(Gi+1) ≥
OBS(m) holds.



The last condition is to be understood as a cut, because it allows to estimate
the best possible computation of remaining propositional variables.

This definition allows the explanation of a single observation variable. Mer-
ging of several observation variables is in the Definition 21 bellow. Solutions
are obtained as a combination (intersection) of the above set through all m’s in
observation variables. Moreover, the set of all solutions is the union through all
possible combinations of all possible computational branches for all observation
variables.

For H = {h1, . . . hn}, the expression Gl can be understood as a function of
n variables from Ln to L and that is why can denote it by Gl = Gm(h1, . . . , hn).

Theorem 6 (Existence of solutions). Let A = 〈P, OBS, H〉 be an abduction
problem and assume that for each m ∈ OV there is a successful abduction for A
and m. Then SOLd(A) �= ∅.

Our definition of abduction gives us the possibility to define computed ex-
planations for abduction problems A.

Definition 21. A tuple ε = (ε1, . . . , εn) is a computed explanation for an ab-
duction problem A = 〈P, OBS, H〉 if for every m ∈ OV there is an abduction
Gm for A and m such that

Gm(ε1, . . . , εn) ≥ OBS(m)

The set of all computed explanations will be denoted by SOLp(A), where the
subscript p resembles the procedural character of this definition.

Example 5. In our motor vehicle example we calculated that first rule of P gives
rich mixture + low oil ≥ 1.25, similarly second rule gives low oil ≥ 0.5 and
the third gives rich mixture ≥ 0.625, hence the set (coordinates are ordered as
(rich mixture, low oil, low water) )

{(ε1, ε2, ε3) ∈ [0, 1]3 : ε1 + ε2 ≥ 1.25 and ε1 ≥ 0.625 and ε2 ≥ 0.5}
is a subset of SOLp(A).

This example shows also that the area got as an intersection of some compu-
tational branches for m’s has the shape of a convex body. Moreover, the set of all
solutions is the union of such areas. It seems reasonable that, to get the cheapest
answer, we have just to run a linear programming optimization separately on
each of these areas.

Theorem 7 (Soundness). Assume A is a definite abduction problem, then
SOLp(A) ⊆ SOLd(A) (that is, every computed explanation for A is also a
correct explanation).

In the completeness theorem below we need the assumption that our logical
program has a finite computational tree, according to abductions. This is very
often the case in practical applications of abduction, because e.g. observations
should not be explained by themselves, and most of logic programs for abduction
are layered. Moreover if the conjunctors are archimedean (also very often) then
the abduction ends below the observation value threshold, and hence is cut.



Theorem 8 (Completeness). Assume A is an abduction problem and the
logical program has a finite computational tree according to abductions, then
SOLd(A) ⊆ SOLp(A) (that is, every correct explanation for A is also a com-
puted explanation).

From now on we do not have to distinguish between two sets of solutions and
we simply denote it SOL(A).

We comment here very briefly the possibility of using linear programming in
some cases to obtain the cheapest explanation to an abduction problem wrt a
given cost function.

Example 6. Continuing the example of motor vehicles assume that checking
(ε1, ε2, ε3) ∈ SOL(A) costs 2ε1 + ε2 + 0.1ε3. The space of solutions SOL(A)
is bounded by linear surfaces in [0, 1]3 and is the union of four convex bodies,
obtained from the combinations of rules in the program for each observation
variable.

Using the first three rules of the program P we get one of these four convex
bodies, namely the set

S1 = {(ε1, ε2, ε3) ∈ [0, 1]3 | ε1 + ε2 ≥ 1.25 and ε1 ≥ 0.625 and ε2 ≥ 0.5}

Applying a linear programming method for S1 wrt our cost function we get in
this convex body a minimal solution (0.625, 0.625, 0) at cost of 1.875.

Actually, the cheapest solution of our running abduction problem A is εmin =
(0.25, 1, 0.35) at cost of 1.535, obtained from the convex body of all solutions to
the first, fourth and fifth program rule.

Eiter and Gottlob showed in [4] that deciding SOLd(A) �= ∅ for two valued
logic is complete for complexity classes at the second level of polynomial hier-
archy, while the use of priorisation raises the complexity to the third level in
certain cases (for arbitrary propositional theories).

One can ask how difficult is to decide, in our framework, whether ε ∈ SOL(A)
or not. Now we see that it substantially depends on the complexity of logic
programming computation and the complexity of functions evaluating the truth
values for connectives; thus, from a computational point of view, it makes sense
to use simple connectives (e.g. linear in each coordinate, as product is, or even
partly constant). So assuming connectives are easy this problem is in NP.

Regarding the linear programming approach to the cheapest explanations, as
linear programming is polynomial and prolog is in NP, to find minimal solutions
for an abduction problem (assuming connectives are coordinatewise linear) does
not increase the complexity and remains in NP.

6 Conclusions and future work

In this work a theoretical framework for abduction in multi-adjoint logic pro-
gramming is introduced; a sound and complete procedural semantics has been



defined, and the possibility of obtaining the cheapest possible explanation to
an abduction problem wrt a cost function by means of a logic programming
computation followed by a linear programming optimization has been shown.

Future work on this area will be concerned with showing the embedding
of different approaches to abduction in our framework, as well as the study of
complexity issues in lattices more general than the unit interval.
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