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Abstract. A prospective study of the use of ordered multi-lattices as
underlying sets of truth-values for a generalised framework of logic pro-
gramming is presented. Specifically, we investigate the possibility of using
multi-lattice-valued interpretations of logic programs and the theoretical
problems that this generates with regard to its fixed point semantics.

1 Introduction

Weakening the structure of the underlying set of truth-values for logic program-
ming has been studied extensively in the recent years. There are approaches
which are based either on the structure of lattice (residuated lattice [4, 13] or
multi-adjoint lattice [9]), or more restrictive structures, such as bilattices or tri-
lattices [7], or even more general structures such as algebraic domains [11]. One
can also find some attempts aiming at weakening the restrictions imposed on
a (complete) lattice, namely, the “existence of least upper bounds and great-
est lower bounds” is relaxed to the “existence of minimal upper bounds and
maximal lower bounds”. In this direction, Benado [1] and Hansen [5] proposed
definitions of a structure so-called multi-lattice.

Recently an alternative notion of multi-lattice was introduced [2, 8] as a theo-
retical tool to deal with some problems in the theory of mechanised deduction in
temporal logics. This kind of structure also arises in the research area concern-
ing fuzzy extensions of logic programming: for instance, one of the hypotheses
of the main termination result for sorted multi-adjoint logic programs [3] can
be weakened only when the underlying set of truth-values is a multi-lattice (the
question of providing a counter-example on a lattice remains open).

As far as we know, there have been no attempts to use multi-lattices in the
context of extended fuzzy logic programming; our aim in this work is precisely
to study the computational capabilities of this new structure in that framework
and, specifically, in relation to its fixed point semantics.

The structure of the paper is as follows: In Section 2 the definition and pre-
liminary theoretical results about multi-lattices are introduced; later, the syntax
and semantics of our extended logic programs are presented in Section 3; then,
an initial proposal for fixed point semantics for these extended logic programs is
given in Section 4. Finally, in the last section we present some conclusions and
prospects for future work.
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2 Preliminary Results

Recall that a lattice is a poset such that the set of upper (lower) bounds has a
unique minimal (maximal) element, that is, a minimum (maximum). In a multi-
lattice, this property is relaxed in the sense that minimal elements for the set of
upper bounds should exist, but the uniqueness condition is dropped.

Definition 1. A complete multi-lattice is a partially ordered set, 〈M,≤〉, such
that for every subset X ⊆M , the set of upper (lower) bounds of X has minimal
(maximal) elements, which are called multi-suprema (multi-infima).

Note that, by definition, it follows that the sets multinf(X) and multisup(X)
are antichains (non-empty sets consisting of pair-wise incomparable elements).

It is remarkable that, under suitable conditions, the set of fixed points of a
mapping from M to M does have a minimum and a maximum.

Definition 2. A mapping f :P −→ Q between two posets is said to be isotone
if x ≤ y implies f(x) ≤ f(y); a mapping g:P −→ P is inflationary if x ≤ g(x)
for all x ∈ P .

Theorem 1. Let f :M −→ M be an isotone and inflationary mapping on a
multi-lattice, then its set of fixed points is non-empty and has a minimum ele-
ment.

Proof. Let us write X = {x | f(x) = x}, this set is nonempty since inflation
forces > to be a fixed point; now, consider a ∈ multinf(X) a maximal lower
bound of X, and let us prove that a is a fixed point of f .

As a is a lower bound for all x ∈ X, we have a ≤ x and, by isotonicity,
f(a) ≤ f(x) = x for all x ∈ X (the equality follows by definition of X); thus,
f(a) is also a lower bound of X. Moreover, a is maximal and, by inflation, we
have a ≤ f(a); thus, we also have f(a) ≤ a and a should be a fixed point, that
is a ∈ X.

Consider a, b ∈ multinf(X), and recall that we have just proved that a, b ∈ X.
As both are lower bounds of X, then a ≤ b and b ≤ a. Thus, multinf(X) is a
singleton consisting of the minimum element of X, that is, the minimum fixed
point. ut

As by assumption, our sets will not necessarily have a supremum but a set
of multi-suprema, we will need to work with some ordering between subsets of
posets. Three different (pre-)orderings are usually considered in the literature,
the Hoare ordering, the Smyth ordering and the Egli-Milner ordering:

Definition 3. Consider X, Y ⊆ 2M :

– X vH Y iff for all x ∈ X exists y ∈ Y such that x ≤ y.
– X vS Y iff for all y ∈ Y exists x ∈ X such that x ≤ y.
– X vEM Y iff X vH Y and X vS Y



Regarding computational properties of multi-lattices, it is interesting to im-
pose certain conditions on the sets of upper (lower) bounds of a given set X.
Specifically, we would like to ensure that any upper (lower) bound is greater
(less) than a minimal (maximal); this condition enables to work on the set of
multi-suprema (multi-infima) as a set of “generators” of the bounds of X. The
formalisation of these concepts is given as follows, where UB(X) (resp. LB(X))
denotes the set of upper (lower) bounds of X:

Definition 4. A multi-lattice is said to be consistent if the following set of
inequalities hold for all X ⊆M :

LB(X) vEM multinf(X) multisup(X) vEM UB(X)

Note that in the two items above, one part of the Egli-Milner ordering is trivial,
since any multi-infimum is a lower bound and any multi-supremum is an upper
bound. It is not difficult to provide examples of non-consistent multi-lattices:

Example 1. A non-consistent multi-lattice is showed on the left of Fig. 1, where

UB({a, b}) = {>, d} ∪ {cn | n ∈ N}

in which element d is minimal in UB({a, b}); however, the elements cn fail to be
greater than one minimal upper bound.
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Fig. 1.

Another reasonable condition to require on a multi-lattice is that it should
not contain infinite sets of mutually incomparable elements (antichains) since,
semantically, it makes little sense to consider infinitely many incomparable truth-
values. Consistent multi-lattices without infinite antichains have interesting com-
putational properties: to begin with, recall that the sets of multi-suprema or
multi-infima for totally ordered subsets (also called chains) always have a supre-
mum and an infimum.



Lemma 1. Let M be a consistent multi-lattice without infinite antichains, then
any chain in M has a supremum and an infimum.

Proof. Let {xi}i∈I ⊂M be a chain and, assume that a, b ∈ multisup({xi}). We
will show that there is an element c ∈ multinf({a, b}) which is an upper bound
of the chain.

As there are no infinite antichains in M , the set multinf({a, b}) is finite, and
we can write

multinf({a, b}) = {c1, . . . , cn}

If n = 1, as any xi is a lower bound of {a, b}, by the hypothesis of consistency
we would have xi ≤ c1 for all i ∈ I.

If n > 1, by contradiction, assume that no cj , with j = 1, . . . , n, is an upper
bound of the chain; then, for all j we choose an element xj which is not upper
bounded by cj . Now, as {xi} is a chain, let us consider the greatest of x1, . . . , xn,
say xj0 . By consistency, there is ck which is greater than xj0 , but then

xk ≤ xj0 ≤ ck

which would contradict the choice of xk.
Summarising, we have proved the existence of c ∈ multinf({a, b}) which,

moreover, is an upper bound of the chain. Now, c ∈ multinf({a, b}) implies the
inequalities c ≤ a and c ≤ b; on the other hand, as c is also an upper bound of
{xi} and a and b are multi-suprema of {xi}, then a ≤ c and b ≤ c, resulting that
a = b = c, which proves that multisup({xi}) is a singleton, hence the supremum
of the chain.

The proof for the infimum is similar. ut

All the hypotheses are necessary for the existence of supremum and infimum
of chains; in particular, the condition on infinite antichains cannot be dropped.

Example 2. The poset on the right of Fig. 1 is a consistent multi-lattice; how-
ever, the set of upper bounds of the increasing sequence {xn} does not have a
minimum, but two minimals, namely, a and b.

We will assume in the rest of the paper that our underlying multi-lattices
are complete, consistent and without infinite antichains.

3 Extended logic programs

In this section we provide a first approximation of the definition of an extended
logic programming paradigm in which the underlying set of truth-values is as-
sumed to have structure of multi-lattice. The proposed schema is an extension
of the monotonic logic programs of [4]. The definition of logic program is given,
as usual, as a set of rules and facts.

Definition 5. An extended logic program is a set P of rules of the form A← B
such that:



1. A is a propositional symbol of Π, and
2. B is a formula of F built from propositional symbols and elements of M by

using isotone operators.

An interpretation is an assignment of truth-values to every propositional
symbol in the language.

Definition 6. An interpretation is a mapping I:Π →M . The set of all inter-
pretations is denoted I.

Note that by the unique homomorphic extension theorem, any interpretation I
can be uniquely extended to the whole set of formulas (the extension will be
denoted as Î). The ordering ≤ of the truth-values M can be extended point-wise
to the set of interpretations as usual.

A rule of an extended logic program is satisfied whenever the truth-value of
the head of the rule is greater or equal than the truth-value of its body. Formally:

Definition 7. Given an interpretation I, a rule A ← B is satisfied by I iff
Î(B) ≤ I(A). An interpretation I is said to be a model of an extended logic
program P iff all rules in P are satisfied by I, then we write I |= P.

Example 3. Let us consider the following program on the multi-lattice in Fig. 2:

!
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Fig. 2.

E ← A

E ← B

A← a

B ← b

It is easy to check that the interpretation
defined as I(E) = >, I(A) = a, I(B) = b is a
model of the program.

Every extended program P has the top interpretation O as a model; regarding
minimal models, it is possible to prove the following technical lemma.

Lemma 2. A chain of models {Ik}k∈K of P has an infimum in I which is a
model of P.

Proof. Given a propositional symbol A, the existence of infk{Ik(A)} is guaran-
teed by Lemma 1, thus we can safely define an interpretation Iω as follows:

Iω(A) = inf
k∈K
{Ik(A)}

Now, let us show that Iω is a model of P:
Given a rule A ← @[B1, . . . , Bn] in P, where @ denotes the composition of

the operators occurring in the body of the rule, and the Bi’s are the variables



occurring in it; by isotonicity of @ we obtain the following chain of inequalities
for all i ∈ K:

Îi(B) = @[Ii(B1), ..., Ii(Bn)] ≥ @
[

inf
k∈K
{Ik(B1)}, ..., inf

k∈K
{Ik(Bn)}

]
= Îω(B)

As Ii is a model for all i we obtain:

Ii(A) ≥ Îi(B) ≥ Îω(B)

thus, by definition of infimum, we have

Iω(A) = inf
k∈K
{Ik(A)} ≥ Îω(B)

so Iω is a model of P. ut

Theorem 2. There exist minimal models for any extended logic program P.

Proof. LetM be the set of models of P. By Zorn’s lemma, we only have to prove
that any chain inM is lower bounded, but this follows from the previous lemma
since the infimum of a chain of models is also a model. ut

Example 4. Continuing with the program in the previous example, it is easy to
check that the program does not have a minimum model but two minimal ones:

I1(E) = c I2(E) = d
I1(A) = a I2(A) = a
I1(B) = b I2(B) = b

4 Fix-point semantics

An interesting technical problem arises when trying to extend the definition of
the immediate consequences operators to the framework of multi-lattice-based
logic programs. One of the several possible approaches to provide a fixed point
semantics for the extended logic programs is presented and analysed.

The main theoretical tool for the study of the fixed point semantics of pro-
gramming languages is Knaster-Tarski theorem in some of its constructive ver-
sions, although some other fixed point theorems are also of use, see [6].

Given a logic program P valued on a lattice, the operator TP: I → I, maps
interpretations to interpretations, and can be defined by considering

TP(I)(A) = sup{Î(B) | A← B ∈ P}

Note that all the suprema involved in the definition do exist provided that we
are assuming a complete lattice structure on the underlying set of truth-values;
however, this needs not hold for a multi-lattice.

In order to work this problem out, we consider the following definition



Definition 8. Given an extended logic program P, an interpretation I and a
propositional symbol A; we can define TP(I)(A) as

multisup
(
{I(A)} ∪ {Î(B) | A← B ∈ P}

)
Some properties of this definition of the TP operator are stated below, wherevS

denotes the Smyth-ordering between subsets of a poset:

Lemma 3. If I v J , then TP(I)(A) vS TP(J)(A) for all propositional symbol A.

Proof. Let us write XI to denote the set {I(A)} ∪ {Î(B) | A ← B ∈ P}, then
the hypothesis states that X↑

J ⊆ X↑
I , where the ↑ denotes the upwards-closure

of a set. Now, consider b ∈ TP(J)(A), then b is an element of X↑
J ⊆ X↑

I ; thus, by
consistency, considering any minimal a of X↑

I below b leads to the existence of
an element a ∈ TP(I)(A). ut

The definition of TP proposed above generates some coherence problems, in
that the resulting ‘value’ is not an element, but a subset of the multi-lattice.
A possible solution to this problem would be to consider a choice function ()∗

which, given an interpretation, for any propositional symbol A selects an element
in TP(I)(A); this way, TP(I)∗ represents actually an interpretation.

Regarding particular properties of the composition of the TP operator with
suitable choice functions, the first property one can obtain, directly from the
definition, is that the composition leads to an inflationary operator.

Lemma 4. Given an interpretation I and a choice function ()∗, then I(A) ≤
TP(I)∗(A) for all propositional symbol A.

Note that, for some choice functions, the resulting operator TP
∗ might not be

monotone in the set of interpretations, since it can lead to incomparable interpre-
tations; the multi-lattice of Fig. 2 can be used to construct a counter-example.

Example 5. Consider the following program with just two facts {A← a,A← b}
and interpretations I(A) = ⊥ and J(A) = c; obviously I v J . Now, we have
that TP(I)(A) = {c, d} and TP(J)(A) = {c}. Thus, the choice function ()∗ which
selects d in TP(I)(A) generates incomparable interpretations TP(I)∗ and TP(J)∗.

We are interested in computing models of our extended programs by suc-
cessive iteration of TP

∗. Therefore, we should characterise the models of P in
terms TP. The following result, which characterises the models of our extended
programs in terms of properties of TP, can be proved:

Proposition 1. The four statements below are equivalent:

1. I is a model of P.
2. TP(I)(A) = {I(A)} for all A ∈ Π.
3. TP(I)∗ = I for all choice function.
4. I ∈ TP(I),1 (i.e. I is a fixed point of TP as a non-deterministic operator).
1 Abusing notation this means that I(A) ∈ TP(I)(A) for all A ∈ Π.



Proof.
(1⇒ 2). Let us assume that I is a model of P; then, we have that I(A) ≥ Î(B)
for all rule A← B ∈ P. This implies that I(A) is the maximum of the set

{I(A)} ∪ {Î(B) | A← B ∈ P}

hence, the only multi-supremum.

(2⇒ 1). The hypothesis implies that I(A) is an upper bound of

{Î(B) | A← B ∈ P}

as a result, I(A) ≥ Î(B) for all rule A← B ∈ P and I |= P.

(2⇔ 3⇔ 4). Trivial. ut

Regarding the iterated application of the TP operator, the use of choice func-
tions is essential. Let us consider a model I, that is, a fixed point of TP, then for
all propositional variable A, we have that TP(I)(A) = {I(A)}. Lemma 3 guides
us in the choice after each application of TP as follows:

– For the base case, we have2 M v I, then TP(M)(A) vS TP(I)(A) = {I(A)}.
This means that there exists an element m1(A) ∈ TP(M)(A) such that

m1(A) ≤ I(A)

This way we obtain an interpretation m1 satisfying m1 v I such that for
any propositional variable A, m1(A) is an element of TP(M)(A).

– This argument applies also to any successor ordinal: given mk v I, there
exists an element mk+1(A) ∈ TP(mk)(A) such that

mk(A) ≤ mk+1(A) ≤ I(A)

where the first inequality holds by the definition of TP and the second in-
equality follows from Lemma 3.

– For a limit ordinal α, Lemma 1 states that for all A the increasing sequence
{mn(A)} has a supremum, which is considered, by definition, to be mα(A).

As a result of the discussion above we obtain that we can choose suitable elements
in the sets generated by the application of TP in such a way that we can construct
a transfinite sequence of interpretations mk satisfying

m1 v m2 v · · · v mk v · · · v I

Note that the sequence of interpretations above, can be interpreted as the Kleene
sequence which allows to reach the least fixed point of TP in the classical case.

Interestingly enough, if I is a minimal model of P, the previous sequence of
interpretations can be proved to converge to I.

2 Here, as usual, M denotes the minimum interpretation.



Theorem 3. Let I be a minimal model of P, then the previous construction
leads to a Kleene sequence {mλ} which converges to I.

Proof. A cardinality-based argument suffices to show that {mλ} is eventually
constant and equal to I:

Let β be the least ordinal greater than the cardinal of the set of interpreta-
tions, for all λ < β we can consider the interpretation mλ and, thus, define the
following map

h:β −→ I
λ 7→ mλ

If the transfinite sequence were strictly increasing, then h would be injective,
obtaining a contradiction with the choice of β. As a result, we have proved the
existence of an ordinal α such that mα = mα+1.

Recall that, by definition, we have mα v I and mα+1 ∈ TP(mα), therefore
mα ∈ TP(mα) and, by Proposition 1, mα is a model of P. By minimality of I we
have that mα = I. ut

Example 6. Continuing with the previous example, let us consider the minimal
model I1, and let us construct a sequence of approximating interpretations as
stated in the theorem above.

M TP(M) m1 TP(m1) m2

A ⊥ {a} a {a} a

B ⊥ {b} b {b} b

E ⊥ {⊥} ⊥ {c, d} c

5 Conclusions and future work

A fixed point semantics has been presented for multi-lattice-based logic pro-
gramming, together with some initial and encouraging results: in particular, we
have proved the existence of minimal models for any extended program and that
any minimal model can be attained by some Kleene-like sequence.

However, a number of theoretical problems have to be investigated in the
future: such as the constructive nature of minimal models (is it possible to con-
struct suitable choice functions which generate convergent sequence of interpre-
tations with limit a minimal model?). Possible answers should on a general theory
of fixed points, relying on some of the ideas related to fixed points in partially
ordered sets [10] or, perhaps, in fuzzy extensions of Tarski’s theorem [12].
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