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Abstract

Fuzzy directed graphs are often chosen as the data structure to model and implement

solutions to several problems in the applied sciences. Galois connections have also

shown to be useful both in theoretical and in practical problems.

In this paper, the notion of relational Galois connection is extended to be applied

between transitive fuzzy directed graphs. In this framework, the components of the

connection are crisp relations satisfying certain reasonable properties given in terms

of the so-called full powering.
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1 INTRODUCTION

The notion of Galois connection has shown its applicability since its introduction seventy-�ve years ago [20]. Recent papers
can still be found showing the use of Galois connections (together with their siblings, the adjunctions), both in theoretical and
in practical problems. For instance, Kycia [17] demonstrates how to construct a Galois connection between two systems with
entropy, where the connection transfers changes in one system to the other one, preserving the ordering structure induced by
entropy, thus opening a new area of abstract modeling of systems in presence of entropy; Brattka [4] considers the characterization
of limit computable functions either by Turing jumps on the input side or by limits on the output side; this pair of adjoint
operations leads to a formal Galois connection in a certain lattice of representation spaces. Faul [11] uses adjunctions to provide
a balanced study of two apparently di�erent approaches to broadcast domination of product graphs. Moraschini [18] introduces
a logical and algebraic description of right adjoint functors between generalized quasi-varieties, developing a correspondence
between the concept of adjunction and a new notion of translation between relative equational consequences. Gibbons et al. [15]

use adjunctions to elegantly explain the relational algebra constructs (selections, projections, join, grouping and joins) on bulk
types such as sets, bags, and lists.
In this paper, we continue our research line on the construction of Galois connections between sets with unbalanced structures

initiated in [13], where we attempted to characterize the existence of the right part of a Galois connection of a given mapping
between sets with a di�erent structure (it is precisely this condition of di�erent structure that makes this problem to be outside
the scope of Freyd's adjoint functor theorem). Since then, we have obtained results in several frameworks: for instance, in [14],
given a mapping from a (pre-)ordered set .A;fA/ into an unstructured set B, we solved the problem of completing the structure
ofB, namely, de�ning a suitable (pre-)ordering relationfB onB, such that there exists a mapping such that the pair of mappings
forms an isotone Galois connection (or adjunction) between the (pre-)ordered sets .A;fA/ and .B;fB/. Later, in

[6] we moved
to the fuzzy framework by considering the corresponding problem between a fuzzy preposet .A; �A/ and an unstructured B;
this work was recently extended in [7], by considering that equality is expressed by a fuzzy equivalence relation, so that the
problem considers a mapping between a fuzzy preordered structure .A;ùA; �A/ and a fuzzy structure .B;ùB/. These two papers
satisfactorily extend the problem to the fuzzy case in both the domain and range of the Galois connection but, in both cases, the
components of the Galois connection are (crisp) functions. A �rst attempt aiming at obtaining a notion of Galois connection
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whose components are, in fact, fuzzy functions was given in [8]; there, we shifted our attention by considering that the domain
and range are just sets endowed with arbitrary relations and considering connections whose components are (proper) relations,
obtaining what we called relational Galois connections.
We attempt here a �rst generalization of the notion of relational Galois connection to the fuzzy case. The focus is put on

transitive fuzzy directed graphs, fuzzy T-digraphs for short, because of their interest for applications. One can �nd interesting
theoretical applications of digraphs, for instance, Ceballos et al. [10] use the link between digraphs and Leibniz algebras in order to
obtain the complete classi�cation of 2- and 3-dimensional Leibniz non-Lie algebras. Moreover, Akram et al. [1] use bipolar fuzzy
digraphs for designing and implementing algorithms of decision support systems for practical problems such as vulnerability
assessment of gas pipeline networks. Akram et al [2] introduce the notion of fuzzy rough digraph and consider its application
in decision making. In [3], Baykasoglu applies a fuzzy digraph model to quantify manufacturing �exibility. In [16], Koulouriotis
and Ketipi develop a fuzzy digraph method for robot evaluation and selection, according to a given industrial application. The
preceding examples just show the interest for the structure of fuzzy digraphs, but the interest of including, at least, transitivity
is undeniable. There are studies about the theoretical analysis of the transitivity editing problem on digraphs [21], and also about
�nding a sensible and useful de�nition of transitive closure of a bipolar weighted digraph [19], since it has been noted in the
literature that a transitive closure of a bipolar weighted digraph contains useful new information for the fuzzy cognitive map it
models.
In this work, we focus speci�cally on providing an adequate notion of relational Galois connection between fuzzy T-digraphs

which inherits most of the interesting equivalent characterizations of the notion of crisp Galois connection.
The structure of this paper is the following: in Section 2, the preliminary notions on relational Galois connections between

T-digraphs are introduced; then, in Section 3, the required notions about fuzzy T-digraphs are given, together with the notion of
relational Galois connection between fuzzy T-digraphs and its characterization in terms of a suitable Galois condition. Finally,
in Section 4, some conclusions are drawn and prospects for future work are given.

2 PRELIMINARY NOTIONS ON RELATIONAL GALOIS CONNECTIONS

We consider the usual framework of (crisp) relations. Namely, a binary relation R between two sets A and B is a subset of the
Cartesian product A � B and it can also be seen as a function R from the set A to the powerset 2B . For an element .a; b/ Ë R,
it is said that a is related to b and denoted as aRb.
Given a binary relation R Ó A � B, the afterset aR of an element a Ë A is de�ned as ^b Ë B Ý aRb`. The domain of R is

the set dom.R/ = ^a Ë A Ý aR � É`. A binary relationR is said to be total if dom.R/ = A.
Given an arbitrary set A and a preorder relation f de�ned on A, it is possible to lift f to the powerset 2A by de�ning

X ~ Y ×Ù Åx Ë X Çy Ë Y such that x f y

X � Y ×Ù Åy Ë Y Çx Ë X such that x f y

X × Y ×Ù Åx Ë X Åy Ë Y x f y

We will use the term powering to refer to the lifting of a preorder to the powerset; thus, ~, � and × above are powerings
of f. Note that the �rst two relations are actually preorder relations, speci�cally those used in the construction of the Hoare
and Smyth powerdomains, respectively; the third one neither needs to be re�exive nor transitive, and was introduced in [8] as a
convenient tool to develop relational Galois connections. Furthermore, it is worth noting that the powerings can be de�ned for
any relation not necessarily being a preorder.
Naturally, each of the extensions above induces a particular notion of isotony, in�ation, etc. For instance, given two preordered

sets .A;f/ and .B;f/,1 a binary relationR Ó A � B is said to be:

• � -isotone if a
1
f a

2
implies aR

1
� aR

2
, for all a

1
; a

2
Ë dom.R/;

• � -antitone if a
1
f a

2
implies aR

2
� aR

1
, for all a

1
; a

2
Ë dom.R/.

A binary relationR Ó A � A is said to be:

• � -in�ationary if ^a` � aR, for all a Ë dom.R/;

1Note that, as usual, we use the same symbol to denote both binary relations which need not be equal.
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• � -idempotent if aRýR
� aR and aR � aRýR, for all a Ë dom.R/.

We use the pre�x to distinguish the powering used in the di�erent de�nitions. Note that the previous notions are de�ned for
elements in the domain of the relation; hence, for simplicity and without loss of generality, we will assume that all our relations
are total.

Traditionally, a Galois connection is understood as a pair of antitone mappings whose compositions are both in�ationary,
and has a number of di�erent alternative characterizations. In our generalized relational setting, we will work with the usual
notion of relational composition. LetR be a binary relation between A and B and S be a binary relation between B and C . The
composition ofR and S is de�ned as follows

RýS = ^.x; z/ Ë A � C Ý Çb Ë B with xRb and bSz`

Observe that for an element a Ë A, the afterset aRýS can be written as
Í

bËaR

bS .

A well-known characterization of a Galois connection .f; g/ between two posets is the so-called Galois condition

a f g.b/ ×Ù b f f .a/:

As stated above, in our general framework there are several possible choices, which we will distinguish by using the
corresponding pre�x. For instance, given two relationsR and S , the~-Galois condition is given by

^a`~ bS ×Ù ^b`~ aR:

In [5], we studied the properties of the di�erent extensions obtained in terms of the powerings~ and� used in the correspond-
ing Galois condition. The resulting notion was investigated within the framework of preordered structures in [9]; later, in [8], we
focused our attention on another desirable characterization, the de�nition of a Galois connection in terms of closures.
Given a transitive directed graph A = .A; �/, T-digraph for short, a powering < of �, and C Ó A � A, we say that C is a

<-closure relation, if C is <-isotone, <-in�ationary and <-idempotent.
Given two T-digraphs A and B, in [8] we de�ned the notion of relational Galois connection between A and B as a pair of

relations .R;S/ whereR Ó A � B and S Ó B � A such that the following properties hold:

i. R and S are � -antitone.

ii. RýS and SýR are � -in�ationary.

We can see below an example in which bothR and S are proper (non-functional) relations.

Example 1. Consider A = .A; �/ where A = ^1; 2; 3` and � is the transitive relation ^.1; 2/; .1; 3/; .2; 2/; .2; 3/; .3; 2/; .3; 3/`.
The pair of relations .R;S/ given by the tables below constitutes a relational Galois connection between A and A.

A
2

## ''
3

{{
gg

1

^^ @@
x xR

1 ^2; 3`

2 ^2`

3 ^3`

x xS

1 ^2; 3`

2 ^2`

3 ^2; 3`

The interesting point is that the �-powering guarantees that both compositions in a relational Galois connection lead to a
�-closure relation. Formally, we have the following result.

Theorem 1 ( [8]). Given a relational Galois connection .R;S/ between two T-digraphs A and B, we have that RýS and SýR
are �-closure relations.

Our characterization of relational Galois connections is based on the fact that the direct images of singletons should be cliques
for both components of the relational Galois connection (given a T-digraph A andX Ó A it is said thatX is a clique ifX × X).
The formal result is as follows.

Theorem 2 ( [8]). Given two T-digraphs .A; �/ and .B; �/, the following statements are equivalent:
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1. .R;S/ is a relational Galois connection.

2. The two conditions below hold:

(i) ^a` � bS i� ^b` � aR for all a Ë A and b Ë B.

(ii) aR and bS are cliques for all a Ë A and b Ë B.

3. The two conditions below hold:

(i) R and S are ×-antitone.

(ii) RýS and SýR are ×-in�ationary.

3 RELATIONAL GALOIS CONNECTIONS BETWEEN FUZZY T-DIGRAPHS

Our framework in this work is relational at the level of Galois connections and fuzzy at the level of their domain and codomain;
hence, the necessary de�nitions in the fuzzy case are introduced below.
Given a complete residuated lattice L = .L;f; ò; ñ;ä;�/, an L-fuzzy set is a mapping from the universe to the membership

values structure X : U � L where X.u/ expresses the degree to which u belongs to X.
An L-fuzzy binary relation on U is an L-fuzzy subset of U � U , that is �: U � U � L, and it is said to be:

• Re�exive if �.a; a/ = ñ for all a Ë U .

• ä-Transitive if �.a; b/ä �.b; c/ f �.a; c/ for all a; b; c Ë U .

De�nition 1. Given A = .A; �/ we introduce the following notions:

• A is said to be a fuzzy T-digraph if � is aä-transitive fuzzy relation on A.

• A is said to be a fuzzy preposet if � is a re�exive andä-transitive fuzzy relation on A.

The adaptation of the di�erent powerings to the fuzzy framework is the following.

De�nition 2. Let .A; �/ be a fuzzy T-digraph and X; Y Ó A, we de�ne the Hoare, Smyth and full fuzzy powerings as follows:

i. �H .X; Y / =
Ê

xËX

Ë

yËY

�.x; y/

ii. �S.X; Y / =
Ê

yËY

Ë

xËX

�.x; y/

iii. �
×
.X; Y / =

Ê

xËX

Ê

yËY

�.x; y/

Remark 1. Wewill often need to use the powerings above with one of the arguments being a singleton; we will omit the braces in
the singleton to simplify the notation. Moreover, if the singleton appears on the left-hand side, it holds that �S.a;X/ = �

×
.a;X/,

whereas if the singleton appears on the right-hand side, it holds that �H .X; a/ = �
×
.X; a/.

The notion of clique was crucial for the characterisation of relational Galois connection in the crisp case, the fuzzy adaptation
is given below.

De�nition 3. Let .A; �/ be a fuzzy T-digraph and X Ó A. We say that a nonempty set X is a clique if for all x; y Ë X it holds
�.x; y/ = ñ or, equivalently, �

×
.X;X/ = ñ.

The following technical result will be used later.

Lemma 1. Let .A; �/ be a fuzzy T-digraph, X Ó A and a Ë A. If X is a clique, then �S.a;X/ = �
×
.a;X/ = �H .a;X/.
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Proof. As X is nonempty, it is straightforward that �S.a;X/ f �H .a;X/.
By X being a clique, for all x; y Ë X we have �.x; y/ = ñ; moreover, by transitivity of � we have that

�.a; x/ = �.a; x/ä �.x; y/ f �.a; y/:

As a result, we obtain

�H .a;X/ =
Ë

xËA

�.a; x/ f
Ê

yËA

�.a; y/ = �S.a;X/:

In order to adapt the de�nition of relational Galois connection to our fuzzy framework, we need the notions of antitone relation
and in�ationary relation between fuzzy T-digraphs. The following de�nition states these notions in terms of the powering ×.

De�nition 4. Let .A; �/ and .B; �/ be fuzzy T-digraphs.

i. A relation R Ó A � B is antitone if �.a
1
; a

2
/ f �.b

2
; b

1
/ for all b

1
Ë aR

1
and b

2
Ë aR

2
, or equivalently, �.a

1
; a

2
/ f

�
×
.aR

2
; aR

1
/.

ii. A relationR Ó A � A is in�ationary if �.a
1
; a

2
/ = ñ for all a

2
Ë aR

1
or, equivalently, �

×
.a; aR/ = ñ.

The corresponding de�nition of relational Galois connection in our fuzzy framework is given below.

De�nition 5. Let .A; �/ and .B; �/ be fuzzy T-digraphs. Given R Ó A � B and S Ó B � A, we say that .R;S/ is a relational
Galois connection ifR and S are antitone andRýS and SýR are in�ationary.

Given the previous notion of relational Galois connection between fuzzy T-digraphs, it is worth considering the existence of
a possible characterization in terms of a suitable generalization of the Galois condition.
A �rst result that can be obtained is the following.

Proposition 1. Let .A; �/ and .B; �/ be fuzzy T-digraphs andR Ó A � B and S Ó B � A be relations. If .R;S/ is a relational
Galois connection, then the following holds for all a Ë A and b Ë B:

�H .a; b
S / f �S.b; a

R/ and �H .b; a
R/ f �S.a; b

S / : (1)

Proof. Assume that .R;S/ is a relational Galois connection, let us prove the �rst inequality.
Given a

1
; a

2
Ë A, b

1
; b

2
Ë B such that b

1
Ë aR

1
and a

2
Ë bS

2
, as S is total, there exists b

3
Ë aR

2
. This implies, using the fact

that SýR is in�ationary, that �.b
2
; b

3
/ = ñ. Consequently, using the fact thatR is antitone and � is transitive, we get

�.a
1
; a

2
/ = �.a

1
; a

2
/ä �.b

2
; b

3
/ f �.b

2
; b

3
/ä �.b

3
; b

1
/ f �.b

2
; b

1
/ :

By taking supremum in the left-hand side and in�mum in the right-hand side, we obtain that �H .a; b
S / f �S.b; a

R/. The second
inequality can be proved similarly.

Condition (1) turns out to be equivalent to .R;S/ being a relational Galois connection between fuzzy preposets.

Proposition 2. Let .A; �/ and .B; �/ be fuzzy preposets and R Ó A � B and S Ó B � A be relations. If condition (1) holds,
then .R;S/ is a relational Galois connection.

Proof. For all a Ë A and b Ë aR, as � is re�exive, one has �.b; b/ = ñ. Now, by using condition (1), we obtain

ñ = �.b; b/ f �H .b; a
R/ f �S.a; b

S / = �
×
.a; bS /

and this proves that �
×
.a; aRýS / = ñ, that is,RýS is in�ationary. The proof for SýR is similar.

Let us prove now thatR is antitone. Consider a
1
; a

2
Ë A, b

1
Ë aR

1
and b

2
Ë aR

2
. For x Ë bS

2
, asRýS is in�ationary, we have

that �.a
2
; x/ = ñ. By transitivity of �, we have �.a

1
; a

2
/ä �.a

2
; x/ f �.a

1
; x/, which implies �.a

1
; a

2
/ f �.a

1
; x/. Now, by (1),

one has �.a
1
; a

2
/ f �.a

1
; x/ f �.b

2
; b

1
/, proving thatR is antitone. The proof that S is antitone is similar.
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The following example shows that condition (1) is not enough to have a relational Galois connection for general fuzzy T-
digraphs.

Example 2. Consider the following fuzzy T-digraphs A = .^a
1
; a

2
; a

3
`; �A/ and B = .^b

1
; b

2
; ab

3
`; �B/, and the relations

R Ó A � B and S Ó B � A de�ned below:

�A a
1
a
2
a
3

a
1

1 1 1_2

a
2

0 0 0

a
3

0 1_2 1

�B b
1
b
2
b
3

b
1

1 0 0

b
2

1 0 0

b
3

1_2 0 1

x xR

a
1
^b

1
`

a
2
^b

2
`

a
3
^b

3
`

x xS

b
1

^a
1
`

b
2
^a

1
; a

2
`

b
3

^a
3
`

It is routine to check that .R;S/ veri�es condition (1), but it is not a relational Galois connection, because ^a
1
` Ë aRýS

2
, while

�.a
2
; a

1
/ = 0 and �S.a2; a

RýS

2
/ = �S.a1; ^a1; a2`/ = 0, which contradicts the fact thatRýS is in�ationary.

Another important condition in the crisp case was the fact that the aftersets of the components of a relational Galois connection
are cliques. In this framework, we obtain the following result.

Proposition 3. Let .A; �/ and .B; �/ be fuzzy T-digraphs. Given R Ó A � B and S Ó B � A, if .R;S/ is a relational Galois
connection, then aR and bS are cliques for all a Ë A, b Ë B.

Proof. As RýS is in�ationary, it holds �A.a;x/ = ñ for all x Ë aRýS , that is, for all b Ë aR and for all x Ë bS one has
�A.a;x/ = ñ. This implies, by Proposition 1 already proved, that �B.b; y/ = ñ, for all y Ë aR, proving that aR is a clique. The
fact that bS is a clique can be proved similarly.

As a consequence of this proposition, taking into account Lemma 1, we have that �S.a;X/ = �
×
.a;X/ = �H .a;X/ if X is

a clique. As a result, the inequalities in Proposition 1 collapse into equalities and, hence we are entitled to de�ne the relational
Galois condition (RG) as follows.

De�nition 6. Let .A; �/ and .B; �/ be fuzzy T-digraphs andR Ó A�B and S Ó B�A be relations. We say that the pair .R;S/
veri�es the relational Galois condition (RG) if the following holds, for all a Ë A and b Ë B:

�
×
.a; bS / = �

×
.b; aR/: (RG)

The theorem below shows that condition (RG) complemented with the fact that all the aftersets are cliques characterizes
relational Galois connections between fuzzy T-digraphs.

Theorem 3. Let .A; �/ and .B; �/ be fuzzy T-digraphs. Given R Ó A � B and S Ó B � A then, .R;S/ is a relational Galois
connection between .A; �/ and .B; �/ if and only if the following conditions hold:

(i) .R;S/ satis�es condition (RG).

(ii) aR and bS are cliques for all a Ë A and b Ë B.

Proof. The direct implication is just a consequence of Propositions 1 and 3 and Lemma 1.
Conversely, if items (i) and (ii) hold, let us prove �rstly thatRýS is in�ationary. Given x Ë aRýS , there exists b Ë aR such that

x Ë bS . By (ii) it holds �B.b; y/ = ñ, for all y Ë aR, which implies, by (i), that �A.a; x/ = ñ, proving thatRýS is in�ationary. The
proof of SýR being in�ationary is similar. Let us prove now thatR is antitone. Consider a

1
; a

2
Ë A, b

1
Ë aR

1
and b

2
Ë aR

2
. For

x Ë bS
2
, asRýS is in�ationary, we have that �A.a2; x/ = ñ. By transitivity of �A, we have that �A.a1; a2/ä�A.a2; x/ f �A.a1; x/,

which implies �A.a1; a2/ f �A.a1; x/. Now, by (i), we have that �A.a1; a2/ f �A.a1; x/ f �B.b2; b1/, proving that R is antitone.
The proof that S is antitone is similar.

It is worth noting that conditions (i) and (ii) in the theorem above are, indeed, independent. Example 2 can be used to show
that condition (RG) holds but bS

2
is not a clique. Furthermore, the corresponding version of condition (RG) with the~-powering

does not imply the clique condition either, since it holds as well in that example. Last but not least, there is no need to consider
the �-powering in this context since it coincides with the condition (RG) because the left argument is a singleton.
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4 CONCLUSIONS AND FUTUREWORK

A suitable notion of relational Galois connection between T-digraphs has been introduced. The de�nition follows the recently
introduced one in [8], in that the connection is speci�ed in terms of the antitonicity of its components and the in�ationarity of
both compositions. Once again, the clique condition turns out to be fundamental for the characterization as an indispensable
complement to the ful�lment of the corresponding Galois condition (either in terms of the � powering or the most convenient,
due to its better computational complexity, the × powering).
Some applications of the notion of Galois connection have been published, such as the abstract modelling of systems in

presence of entropy, the characterization of limit computable functions, and the study of broadcast domination of product graphs,
among others. We believe that our generalization will allow to broaden the scope of these applications taking into account the
suitability of fuzzy directed graphs to, inter alia, decision support systems for practical problems, quanti�cation of manufacturing
�exibility, and robot evaluation and selection.
This approach opens the way for a �completely fuzzy� notion of relational Galois connection in which the components of the

connection are not just (crisp) relations but fuzzy relations. In that general context, it will be worth studying the minimal proper-
ties needed to de�ne such a notion in its full generality, while maintaining (some of) the most useful equivalent characterisations
of the notion of Galois connection [12].
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