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Abstract. In this paper some results are obtained regarding the
existence and reachability of minimal fixed points for multiple-valued
functions on a multilattice. The concept of inf-preserving multi-valued
function is introduced, and shown to be a sufficient condition for the
existence of minimal fixed point; then, we identify a sufficient condition
granting that the immediate consequence operator for multilattice-based
fuzzy logic programs is sup-preserving and, hence, computes minimal
models in at most ω iterations.

1 Introduction

Multilattice-based logic programs have been recently introduced as an extended
paradigm for fuzzy logic programming in which the underlying set of truth-values
for the propositional variable is considered to have a more relaxed structure than
that of a complete lattice.

This line of research follows the trend of generalising the structure of the un-
derlying set of truth-values for fuzzy logic programming, which has attracted the
attention of a number of researchers in the recent years. For instance, there are
approaches to fuzzy logic programming which are based either on the structure
of lattice (residuated lattice [1, 2] or multi-adjoint lattice [3]), or on more re-
strictive structures, such as bilattices [4,5], specially suited for the treatment of
non-isotonicity, or even trilattices [6], in which points can be ordered according
to truth, information, or precision. More general structures such as algebraic
domains [7] have been used as well.

The first definition of multilattices seems to have been introduced in [8], al-
though, much later, other authors proposed slightly different approaches [9,10],
the later being more appealing to computation.

The crucial point in which a complete multilattice differs from a complete
lattice is that a given subset does not necessarily has a least upper bound
(resp. greatest lower bound) but some minimal (resp. maximal) ones. As far
as we know, the first paper which used multilattices in the context of extended
fuzzy logic programming was [11], which was later generalized in [13]. In these
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papers, the meaning of programs was defined by means of a fixed point seman-
tics. In particular, the non-existence of suprema in general, but a set of minimal
upper bounds, suggested the possibility of developing a non-deterministic fixed
point theory in the form of a multi-valued immediate consequences operator.
Essentially, the results presented were the existence of minimal models below
any model of a program, and that any minimal model can be attained by the
iteration of a suitable version of the immediate consequence operator, existence
of minimal models was proved independently of the fixed-point semantics used
to reach them; but some other problems remained open, such as the constructive
nature of minimal models or the reachability of minimal models after at most
countably many iterations.

The first contribution of this paper is a theoretical one, related to the existence
of minimal fixed points: obviously, the main theoretical problem can be stated
simply in terms of a suitable version of fixed point theorem for multi-valued
functions on a multilattice. Here, we provide an existence result for minimal
fixed-points in such a general context.

The second contribution relates to the reachability of minimal models; specifi-
cally, we introduce conditions guaranteeing that minimal models can be reached
by a suitable iteration of the immediate consequences operator, the underlying
idea is to give a general version of a related result presented in [13] but for
single-valued functions.

The structure of the paper is as follows: in Section 2, the definition and some
preliminary results about multilattices are presented; later, in Section 3, we move
to the context of multi-valued functions and orbits on a multilattice, in order
to set the basic results about the existence of fixed-point for such functions;
then, in Section 4, we concentrate on the case of fuzzy logic programs evaluated
on a multilattice, the main result being the introduction of sufficient conditions
granting computability for its fixed-point semantics; finally, Section 5 concludes.

2 Preliminaries

We provide in this section the basic notions of the theory of multilattices, to-
gether with some preliminary results which will be used later in this paper.

Definition 1. A complete multilattice is a partially ordered set, 〈M, �〉, such
that for every subset X ⊆ M , the set of upper (resp. lower) bounds of X has
minimal (resp. maximal) elements, which are called multi-suprema (resp. multi-
infima).

The sets of multi-suprema and multi-infima of a set X are denoted by multisup(X)
and multinf (X). It is straightforward to note that these sets consist of pairwise
incomparable elements (also called antichains).

Example 1. The simplest example of proper multilattice (i.e. one which is not a
lattice) is called M6 and is shown in Fig. 1.
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Fig. 1. The multilattice M6

An arbitrary complete multilatice needs not have nice computational proper-
ties. As an example of counter-intuitive behaviour, simply note that an upper
bound of a set X needs not be greater than any minimal upper bound (multi-
supremum); such a condition (and its dual, concerning lower bounds and multi-
infima) has to be explicitly required.

The fulfilment of this condition is called coherence, and is formally introduced
in the following definition, where we use the Egli-Milner pre-ordering relation,
i.e., X �EM Y if and only if for every y ∈ Y there exists x ∈ X such that x � y
and for every x ∈ X there exists y ∈ Y such that x � y.

Definition 2. A complete multilattice M is said to be coherent if the following
pair of inequations hold for all X ⊆ M :

LB(X) �EM multinf(X); multisup(X) �EM UB(X)

Coherence together with the non-existence of infinite antichains (so that the sets
multisup(X) and multinf(X) are always finite) have been shown to be useful con-
ditions when working with multilattices. Under these hypotheses, the following
important result was obtained in [11]:

Lemma 1. Let M be a coherent complete multilattice without infinite antichains,
then any chain in M has a supremum and an infimum.

Now that we have given the basic results for a multilattice, we turn our attention
to preliminary results for functions defined on a multilattice.

The definitions of isotone and inflationary function are the standard ones also
in the framework of multilattices. We recall these definitions below:

Definition 3. Let f : M −→ M be a function on a multilattice, then:

• f is isotone if and only if for every x, y ∈ M such that x � y we have that
f(x) � f(y).

• f is inflationary if and only if x � f(x) for every x ∈ M

For isotone and inflationary functions on a multilattice we have the following
result concerning fixed points, introduced in [13]:
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Theorem 1. Let M be a coherent complete multilattice without antichains, let
f : M −→ M be an isotone and inflationary mapping on a multilattice, then its
set of fixed points is non-empty and has a minimum element.

As stated in the introduction, the main theoretical problem in this paper is to
extend the previous theorem to the framework of multiple-valued functions.

3 Multi-valued Functions and Orbits on Multilattices

In this section we will recall some important results included in [12] about how
to reach minimal fixed points of multi-valued functions. But another important
point is the existence of this minimal fixed points. Therefore, we will search
sufficient conditions to ensure the existence of these points.

Firstly we need recall some preliminary definitions.

Definition 4. Given a multilattice (M, ≤), by a multi-valued function we mean
a function f : M −→ 2M (we do not require that f(x) 
= ∅ for every x ∈ M).

We say that x ∈ M is a fixed point of f if and only if x ∈ f(x).

Although there exist different definitions of orders in 2M , we will consider in this
paper just the Smyth pre-ordering among sets, and we will write X �S Y if and
only if for every y ∈ Y there exists x ∈ X such that x ≤ y. This pre-order is
used to define the isotonicity and inflation for multi-valued functions.

Definition 5. Given a multilattice (M, ≤), a multi-valued function f : M → 2M

it is called:

• Isotone if and only if x ≤ y implies f(x) �S f(y), for all x, y ∈ M .
• Inflationary if and only if {x} �S f(x) for every x ∈ M .

The concept of orbit has proven to be an important tool for studying reachability
of minimal fixed points, see [18].

Definition 6. Let f : M −→ 2M be a multi-valued function, an orbit of f is a
transfinite sequence (xi)i∈I of elements xi ∈ M where the cardinality of M is
less than the cardinality of I (|M | < |I|) and:

x0 = ⊥
xi+1 ∈ f(xi)

xα ∈ multisup{xi | i < α}, for limit ordinals α

As f(xi) is a set we have many possible choices for xi+1 so we have many possible
orbits. Note the following straightforward consequences of the definition:

1. In an orbit, we have f(xi) 
= ∅ for every i ∈ I.
2. If (xi)i∈I is an orbit of f and there exists k ∈ I such that xk = xk+1, then

xk is a fixed point of f .
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3. Any increasing orbit eventually reaches a fixed point (this follows from the
inequality |M | < |I|).

From the third point above, if we can show the existence of such orbits, then we
ensure the existence of fixed points.

To begin with, if f is inflationary, any orbit (xi)i∈I is increasing, for successor
ordinals the inequality {xi} �S f(xi) follows by inflation, hence xi � xi+1. The
definition for limit ordinals, directly implies that it is greater than any of its
predecessors.

Furthermore, any orbit converges to a fixed point of f . This follows directly,
since every transfinite increasing sequence is eventually stationary, and an ordi-
nal α such that xα = xα+1 ∈ f(xα) is a fixed point.

Propositions 1 and 2 below were introduced in [12] and show conditions under
which any minimal fixed point is attained by means of an orbit:

Proposition 1. For an inflationary and isotone multi-valued function f we
have that: for any minimal fixed point there is an orbit converging to it.

Proposition 2. If a multi-valued function f is inflationary, isotone and sup-
preserving, then at most countably many steps are necessary to reach a minimal
fixed point (provided that some exists).

In order to find conditions to the existence of minimal fixed points of multi-valued
functions we will follow the usual practice of considering the sets of pre-fixed
points and post-fixed points:

Φ(f) = {x ∈ M | f(x) �S {x}}
Ψ(f) = {x ∈ M | {x} �S f(x)}

Note that, Ψ(f) is always nonempty, since ⊥ ∈ Ψ(f). However, this does not
hold for Φ(f), since it is not always the case that � ∈ Φ(f). Actually, it is easy
to see that � ∈ Φ(f) if and only if f(�) 
= ∅ (but recall that f(�) can be
empty). For a general element x, the previous equivalence does not hold, but
only one implication: if f(x) = ∅ then x /∈ Φ(f) so if x ∈ Φ(f) then f(x) 
= ∅.

The following general result gives us a characterisation of the fixed point of a
multi-valued function in terms of Φ(f):

Proposition 3. Let M be a multilattice and f : M −→ 2M an inflationary
multi-valued function. Then x ∈ Φ(f) if and only if x is a fixed point of f .

Proof. Let x ∈ Φ(f) then, as f is inflationary, we have that {x} �S f(x) �S {x}.
Hence for x ∈ {x} we have that there exists y ∈ f(x) such that x � y � x, so
x = y ∈ f(x). The other implication holds trivially. �

It is not difficult to find examples which show that the inflationary requirement
is essential.

Note that by the proposition above the existence of minimal fixed points of
an inflationary multi-valued function is equivalent to the existence of minimal
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elements of Φ(f), therefore we will look for conditions to ensure the existence of
minimal fixed points of Φ(f).

The previous proposition also holds when f is isotone, as a result under either
isotone or inflationary f all the minimal elements of Φ(f) are minimal fixed
points. This is established in the following theorem.

Theorem 2. Let f : M −→ 2M be a isotone or inflationary multi-valued func-
tion. If Φ(f) has minimal elements then these minimal elements are minimal
fixed points of f .

Proof. Let f be isotone, and y a minimal element of Φ(f), so ∅ 
= f(y) �S {y}
and there exists y′ ∈ f(y) such that y′ � y.

As f is isotone we have that f(y′) �S f(y), hence, since y′ ∈ f(y) there exists
y′′ ∈ f(y′) with y′′ � y′. Therefore, f(y′) �S {y′} and y′ ∈ Φ(f) and y′ � y but
y is minimal in Φ(f), so y = y′ ∈ f(y) and y is a fixed point of f .

Let us see now that y is a minimal fixed point. Assume that x is a fixed point
of f with x � y. As, x is a fixed point we have that x ∈ Φ(f) but then, by the
minimality of y in Φ(f), we would have x = y and y is a minimal fixed point as
well.

The case of f inflationary follows easily from Proposition 3. �

In order to give some conditions to ensure the existence of minimal elements of
Φ(f), for multi-valued function on a multilattice, we will consider some kind of
‘continuity’ in our multi-valued functions. This continuity is understood in the
sense of preservation of suprema and infima; but, obviously, we have to state
formally what this preservation is meant since in complete multilattices we only
have for granted the existence of sets of multi-infima and sets of multi-suprema.

In this context, it is convenient again to rely on coherent complete multilat-
tices M without infinite antichains so that, at least, we have the existence of
suprema and infima of chains.

Definition 7. A multi-valued function f : M −→ 2M is said to be sup-preserving
if and only if for every chain1 X = (xi)i∈I we have that:

f(sup{xi | i ∈ I}) = {y | there are yi ∈ f(xi) s.t. y ∈ multisup{yi | i ∈ I}}

A multi-valued function f : M −→ 2M is inf-preserving if and only if for every
chain X = (xi)i∈I we have that:

f(inf{xi | i ∈ I}) = {y | there are yi ∈ f(xi) s.t. y ∈ multinf{yi | i ∈ I}}

The following theorem states that the property of being inf-preserving is a suffi-
cient condition to ensure the existence of minimal fixed points of a multi-valued
function.

Theorem 3. Let f : M −→ 2M be an inf-preserving multi-valued function with
Φ(f) 
= ∅, then Φ(f) has minimal elements.
1 A chain X is a totally ordered subset and, for convenience, will be denoted as an

indexed set (xi)i∈I .
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Proof. We will apply Zorn’s lemma, and prove that every chain of elements of
Φ(f) has infimum in Φ(f).

By hypothesis Φ(f) 
= ∅. Let (xi)i∈I be a chain of elements of Φ(f) and
consider x = inf{xi | i ∈ I} (which exists by Lemma 1).

In order to prove that x ∈ Φ(f), we will prove the existence of a particular
element of f(x) which is smaller that x.

Firstly, as xi ∈ Φ(f) we have that for all i ∈ I there exists yi ∈ f(xi) such that
yi � xi. Now, consider an element y ∈ multinf{yi | i ∈ I}. It is straightforward
to note that the inequality y � inf{xi | i ∈ I} = x holds. Now, as f is inf-
preserving, we know that

f(x) = {z | there are yi ∈ f(xi) s.t. z ∈ multinf{yi | i ∈ I}}

hence, we have y ∈ f(x) and, consequently f(x) �S {x}. We have proved that
Φ(f) is closed for the infima of chains and, in particular, by Zorn’s lemma, Φ(f)
has minimal elements. �

Note that it is easy to check that an inf-preserving function is isotone, thus by
a combination of Theorems 2 and 3 we obtain the existence of minimal fixed
points of f .

It is worth to note that this result does not apply directly to the context of
fuzzy logic programs on a multilattice, since minimal fixed-points are known to
exist under the only assumptions of coherence and absence of infinite antichains
of the underlying multilattice.

However, the obtained result follows the line of several versions of fixed point
theorems for multi-valued functions on a lattice already present in the litera-
ture [14,15,16,17,18]. It is remarkable that most of these results were developed
to be used in the context of the study of Nash equilibria of supermodular games,
but extending the study in this direction is out of the scope of this paper.

4 On Fuzzy Logic Programs on a Multilattice

The previous results will be applied to the particular case of the immediate
consequences operator for logic programs on a multilattice, as defined in [13].

To begin with we will recall the definition of the fuzzy logic programs based
on a multilattice:

Definition 8. A logic program based on a multilattice (M, �) is a set P of rules
of the form A ← B such that:

• A is a propositional symbol, and
• B is a formula built from propositional symbols and elements of M by using

isotone operators.

In general, non-atomic formulae will be represented by B = @(B1, . . . , Bn) where
@ denotes the composition of the isotone operators involved in the construction
of B, and Bi are either propositional symbols or elementos of M .
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The definition of interpretation and model of a program is given as follows:

Definition 9

• An interpretation is a mapping I from the set of propositional symbols to M .
• We say that I satisfies a rule A ← B if and only if Î(B) � I(A), where Î is

the homomorphic extension2 of I to the set of all formulae.
• An interpretation I is said to be a model of a program P iff all rules in P

are satisfied by I.

A fixed point semantics was given by means of the following consequences oper-
ator.

Definition 10. Consider a fuzzy logic program P based on a multilattice, an
interpretation I, and a propositional symbol A; the immediate consequences op-
erator is defined as follows:

TP(I)(A) = multisup
(
{I(A)} ∪ {Î(B) | A ← B ∈ P}

)

It is easy to see by the very definition that the immediate consequences operator
is an inflationary multi-valued function defined on the set of interpretation of
the program P, which is a multilattice. Moreover, models of a program P are
characterized as follows.

Proposition 4 (see [11]). An interpretation I is a model of a program if and
only if I(A) ∈ TP(I)(A) for all propositional symbol A.

The requirement that M is a coherent multilattice without infinite antichains
was imposed in [11] in order to prove the existence of minimal fixed points. Then,
a straightforward application of Proposition 2 generated the following result:

Theorem 4 (see [12]). If TP is sup-preserving, then ω steps are sufficient to
reach a minimal model.

In the rest of the section, we will concentrate on the condition of TP being sup-
preserving. To begin with, let us show that some part of the condition is always
fulfilled:

Lemma 2. Let {Ii}i∈Λ be a chain, then the following inequality holds
{

J | there are Ji ∈ TP(Ii) with J ∈ multisupi∈Λ{Ji}
}

�S TP(supi∈Λ{Ii})

Proof. Consider I = supi∈Λ{Ii} and K ∈ TP(I), we have that Ii � I for every
i ∈ Λ; as TP is isotone we have that TP(Ii) �S TP(I) then for this K there are
Ji ∈ TP(Ii) such that Ji � K for every i ∈ Λ. Therefore, K ∈ UB{Ji} hence
by coherence we have that there is L ∈ multisup{Ji} such that L � K and by
construction L ∈ {J | there are Ji ∈ TP(Ii) with J ∈ multisup{Ji}} �

2 The homomorphic extension Î of I applied to a non-atomic formula @(B1, . . . , Bn),
is defined as follows: Î(@(B1, . . . , Bn)) = @(I(B1), . . . , I(Bn)).
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If we want to get the other inequality we need to assume that TP(I)(A) is a
singleton for all I and A (which we will call that TP is a singleton) as the next
theorem shows:

Theorem 5. If TP is a singleton for every interpretation I and the operators of
the body of P are sup-preserving3, then TP is sup-preserving.

Proof. We have to prove that for every chain of interpretations {Ii}i∈Λ we have
that

TP(supi∈Λ{Ii}) = {J | there are Ji ∈ TP(Ii) with J ∈ multisupi∈Λ{Ji}} (1)

First of all, as TP is a singleton for every interpretation we have that the left
hand side of equality (1) is a singleton, so we have to see that the right part
is a singleton too. By hypothesis, we have that TP(Ii) is a singleton, so there
is only one possible choice of Ji. Moreover, TP is Smyth isotone, this, together
with that TP(Ii) are singletons lead us to {TP(Ii)}i∈Λ being a chain, so it has a
supremum, namely J , and the right part of (1) is also a singleton. Therefore we
have to prove that

TP(supi∈Λ{Ii}) = {J}

Given I = supi∈Λ{Ii}, by Lemma 2, we have that {J} ⊆ TP(I) since both are
singletons. To prove the other inequality we will prove that for every proporsi-
tional symbol, A, we have that the element in TP(I)(A) is less than or equal to
J(A), that TP(I)(A) � J(A).

By definition we have that4

TP(I)(A) = sup{I(A) ∪ {Î(B) with A ← B ∈ P}}

and we have that J(A) = sup{Ji(A)}, where

Ji(A) = TP(Ii)(A) = sup{Ii(A) ∪ {Ii(B) with A ← B ∈ P}}

so Ii(A) � J(A) for every i ∈ Λ and therefore I(A) � J(A)
Now we will see that I(B) � J(A) for every A ← B ∈ P. If B is a fact or is

a propositional symbol then the inequality is trivial. Let us suppose that B is
of the form @[B1, B2], the case of n propositional symbols is proved in a similar
way. We have that, Îi(B) � J(A) for every i ∈ Λ, so @[Ii(B1), Ii(B2)]) � J(A)
for every i ∈ Λ, therefore we have that supi∈Λ{@[Ii(B1), Ii(B2)]} � J(A). On
the other hand, we have that: Î(B) = @[I(B1), I(B2)].

As @ is sup-preserving by hypothesis we have that:

@[I(B1), I(B2)] = supj∈Λ{@[Ij(B1), supl∈Λ{Il}(B2)]}}
= supj∈Λ{supl∈Λ{@[Ij(B1), Il(B2)]}}

3 This is Definition 7 for single-valued functions. That is f(supi∈Λ{xi}) =
supi∈Λ{f(xi)} for all chain (xi)i∈Λ.

4 In the definition of TP it is multisup instead of sup but as TP is a singleton for all I
and A we will write, abusing the notation, sup.
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Now, as {Ii}i∈Λ is a chain we can suppose that Il � Ij , hence

supj∈Λ{supl∈Λ{@[Ij(B1), Il(B2)]}} � supj∈Λ{supl∈Λ{@[Ij(B1), Ij(B2)]}}
= supj∈Λ{@[Ij(B1), Ij(B2)]}

and we have that Î(B) � J(A), so we have proved that for every A:

TP(I)(A) = sup{I(A) ∪ {Î(B) with A ← B ∈ P}} � J(A) �

Remark 1. Both conditions are necessary in the Theorem, as we can see in the
following examples:

• Let us consider in M6 the program A ← B (there is no conjunctors so
they are sup-preserving), and the interpretations I1(A) = b, I1(B) = a and
I2(A) = c, I2(B) = a we have that I1 � I2 and that TP(I1)(A) = {c, d} (TP

is not a singleton) and TP(I2)(A) = {c} .
If TP is sup-preserving, then we would have that

TP(I2)(B) = TP(sup{I1, I2})(B)
= {y | there are yi ∈ TP(Ii)(B) with y ∈ multisup{y1, y2}}

but TP(I2)(B) = {c} while the right part of the equality is {c, �}.
• In the multilattice of Figure 2 let us consider the program with only one rule

A ← B ∗ C, where ∗ is commutative and defined as follows:

x ∗ x = x; ⊥ ∗ x = ⊥; � ∗ x = � if x 
= ⊥; ci ∗ cj = cmin(i,j)
c ∗ ci = ci; c ∗ d = �; d ∗ x = x if x 
= c

•
⊥

�
��

•c1

•c2

•c3

�
�
�
�
�
�
�
�

•
�

�
��

�
��

...
•c • d

Fig. 2.

where x is an element of the multilattice of Figure 2. We have that ∗ is not
sup-preserving because: sup{ci} ∗ d = c ∗ d = � 
= c = sup{ci} = sup{ci ∗ d}.
However, it is easy to see that TP is a singleton (we are in a lattice so multisup
turns out to be sup). Now, if we consider the interpretations {Ii}i∈N defined
as Ii(A) = c; Ii(B) = ci; Ii(C) = d we have that {Ii}i∈N is a chain whose
supremum is the interpretation I defined as I(A) = c; I(B) = c; I(C) = d.



On Reachability of Minimal Models 281

If TP were sup-preserving then we would have that:

TP(I)(A) = TP(sup {Ii}i∈N)(A)
= {y | there are yi ∈ TP(Ii)(A) with y ∈ multisup{yi}i∈N}

but TP(I)(A) = {�} while TP(Ii)(A) = {c} for every i ∈ N so the right part
of the equality is {c}. Thus, TP is a singleton for every interpretation but
not sup-preserving.

5 Conclusions

We have presented a prospective study of the theory of fixed points of multiple-
valued functions defined on a multilattice, continuing the study of computational
properties of multilattices initiated in [11, 13].

Some general results have been obtained regarding the existence of minimal
fixed points for multiple-valued functions as well as their reachability in at most
countably many steps by means of an iterative procedure finishing with the
presentation of some conditions which ensure the hypotheses for that reachibility
in countably many steps.

As an application of this theoretical result, we have shown that when the
immediate consequences operator of a fuzzy logic program is sup-preserving (in
the sense formally given above), then there is no need of transfinite iteration in
order to attain any minimal fixed point.

The starting point has been to consider the different versions of fixed point
theorems for multi-valued functions on a lattice already present in the litera-
ture [14,15,16,17,18]. It is remarkable that most of these results were developed
to be used in the context of the study of Nash equilibria of supermodular games.
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de Schreier, II. Théorie des multistructures. Czechoslovak Mathematical Jour-
nal 5(80), 308–344 (1955)

9. Hansen, D.: An axiomatic characterization of multilattices. Discrete Mathemat-
ics 1, 99–101 (1981)

10. Mart́ınez, J., Gutiérrez, G., de Guzmán, I., Cordero, P.: Generalizations of lattices
via non-deterministic operators. Discrete Mathematics 295, 107–141 (2005)

11. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Multi-lattices as a basis for gen-
eralized fuzzy logic programming. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B.
(eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 61–70. Springer, Heidelberg (2006)

12. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: A fixed-point theorem for multi-
valued functions with application to multilattice-based logic programming. Lect.
Notes in Computer Science, vol. 4578, pp. 37–44 (2007)

13. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Fuzzy logic programming via mul-
tilattices. Fuzzy Sets and Systems 158(6), 674–688 (2007)

14. d’Orey, V.: Fixed point theorems for correspondences with values in a partially
ordered set and extended supermodular games. Journal of Mathematical Eco-
nomics 25, 345–354 (1996)

15. Echenique, F.: A short and constructive proof of Tarski’s fixed-point theorem.
International Journal of Game Theory 33, 215–218 (2005)

16. Stouti, A.: A generalized Amman’s fixed point theorem and its application to Nash
equilibrium. Acta Mathematica Academiae Paedagogicae Nýıregyháziensis 21,
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