
1

On the Measure of Instability in
Normal Residuated Logic Programs

Nicolás Madrid Manuel Ojeda-Aciego

Abstract— Inconsistency in the framework of general residu-
ated logic programs can be, somehow, decomposed in two notions:
incoherence and instability. In this work, we focus on the measure
of instability of normal residuated programs. Some measures
were already provided and initial results obtained in terms of
the amount of information that have to be discarded in order to
recover stability; in this paper, our interest is focused precisely on
the case in which stability can be recovered by adding information
to our program.

I. INTRODUCTION

In many fields of automated information processing it
becomes crucial to consider together imprecise, uncertain
or inconsistent information. Although inconsistency is an
undesirable property, it arises naturally in many real-world
problems (for instance, consider the integration of information
coming from different sources). Anyway, the analysis of
inconsistent knowledge-bases can lead us to obtain useful
information: for instance, a big number of contradictions in the
statements of a suspect of a crime with respect to the forensic
evidences may lead us to increase our confidence on his/her
being the culprit; a sensor which send data which contradict
other sensors may indicate a possible malfunction. In both
cases, a good estimation of the degree of inconsistency of the
data can help us to estimate the truth-degree up to which this
new information can be safely considered.

There are several papers dealing with inconsistency in a
classical logic programming framework. For instance, [1] uses
consistency restoring rules as a means to recover whenever
possible the consistency of a normal logic program; this
approach has been used in [2] to formalize negotiations dealing
with incomplete information, preferences, and changing goals.
The Answer Set Programming (ASP) framework has been used
to detect inconsistencies in large biological networks [3]. Ar-
gumentation theory is a suitable framework for inconsistency
to arise. There are several non-classical approaches to ASP
argumentation, some based on possibility theory, some other
based on, for instance, fuzzy set theory [4], [5].

The problem of measuring the degree of inconsistency
contained in a knowledgebase has been already considered in
the literature [6], [7], [8]. This approach shows that measuring
the inconsistency of a knowledgebase is useful to allow for the
comparison of the inconsistency of various knowledgebases.
On the other hand, Lozinskii provided a method [9] for

N. Madrid is with the Dept. Matemática Aplicada, Univ. de Málaga, Spain.
(email: nmadrid@ctima.uma.es).

M. Ojeda-Aciego is with the Dept. Matemática Aplicada, Univ. de Málaga,
Spain. (email: aciego@ctima.uma.es).

defining the quantity of information of a knowledgebase in
propositional logic. However, that method is not suitable when
the knowledgebase is inconsistent. Furthermore, it is certainly
false that all inconsistent knowledgebases contain the same
(null) amount of information, this is especially relevant when
considering fuzzy extensions of the theory.

This work is based on the Fuzzy Answer Set Programming
for residuated logic programs defined in [10], [11], in which
we consider a fuzzy answer set attending to two dimensions:
coherence and stability, the former is related to strong nega-
tion, whereas the latter is related to default negation and the
GL-reduct [12]. An inconsistent fuzzy program is a program
without fuzzy answer sets, and this can be due to the lack of
stable models (instability) or, perhaps, to the inconsistency of
every stable model (incoherence). This is why we talk about
the two dimensions of inconsistency. In [13] some measures
of inconsistency were defined in terms of incoherence; in this
work, we aim at paving the way towards the measuring the
degree of instability in normal residuated logic programs.

The structure of the paper is described as follows. In
Section II we recall the definition of stable model. Section III
describes the possible causes of the instability of a residuated
logic program and defines the notion of information measure,
which assigns a degree of information to any value in the
truth space. In Section IV we define the measure of instability
which establishes how many information has to be added on
a set of rules in order to recovering the stability in the normal
residuated logic program.

II. PRELIMINARIES

Let us start this section recalling the definition of residuated
lattice, which fixes the set of truth values and the relationship
between the conjunction and the implication (the adjoint
condition) occurring in our logic programs.

Definition 1: A residuated lattice is a tuple (L,≤, ∗,←)
such that:

1) (L,≤) is a complete bounded lattice, with top and
bottom elements 1 and 0.

2) (L, ∗, 1) is a commutative monoid with unit element 1.
3) (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y∗z ≤

x ∀x, y, z ∈ L.

In the rest of the paper we will consider a residuated lattice
enriched with a negation operator, (L, ∗,←,¬). The negation
¬ will model the notion of default negation often used in
logic programming. As usual, a negation operator, over L,

is any decreasing mapping n : L→ L satisfying n(0) = 1 and
n(1) = 0. In the examples, we will use the following familiy
of negation operators:

nα(x) =

{
1 if x ≤ α
0 if x > α

n(x) = 1− x

Definition 2: Given a residuated lattice with negation (L,≤
, ∗,←,¬), a normal residuated logic program P is a set of
weighted rules of the form

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

where ϑ is an element of L and p, p1, . . . , pn are propositional
symbols.

It is usual to denote the rules as 〈p ← B;ϑ〉. The formula
B is usually called the body of the rule whereas p is called
its head. Sometimes, the body of a rule will be represented as
consisting of two parts B+ and B−, where the former stands
for p1 ∗ · · · ∗ pm and the latter for ¬pm+1 ∗ · · · ∗ ¬pn.

A fact is a rule with empty body, i.e facts are rules with this
form 〈p← ;ϑ〉. The set of propositional symbols appearing
in P is denoted by ΠP.

Definition 3: A fuzzy L-interpretation is a mapping
I : ΠP → L; note that the domain of the interpretation can
be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈` ← B; ϑ〉 if and only if
I(B) ∗ ϑ ≤ I(`) or, equivalently, ϑ ≤ I(`← B). Finally, I is
a model of P if it satisfies all rules (and facts) in P.

Note that the order relation in the residuated lattice (L,≤)
can be extended over the set of all L-interpretations as follows:
Let I and J be two L-interpretations, then I ≤ J if and only
if I(p) ≤ J(p) for all literal p ∈ ΠP.

A. Stable Models

Our aim in this section is to adapt the approach given in
[12] to the normal residuated logic programs just defined in
the section above.

Let us consider a normal residuated logic program P to-
gether with a fuzzy L-interpretation I . To begin with, we will
construct a new normal program PI by substituting each rule
in P such as

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule1

〈p← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉

Notice that the new program PI is positive , that is, does
not contain any negation; in fact, the construction closely
resembles that of a reduct in the classical case, this is why
we introduce the following:

1Note the overloaded use of the negation symbol, as a syntactic function
in the formulas and as the algebraic negation in the truth-values.

Definition 4: The program PI is called the reduct of P wrt
the interpretation I .

As a result of the definition, note that given two fuzzy L-
interpretations I and J , then the reducts PI and PJ have the
same rules, and might only differ in the values of the weights.
By the monotonicity properties of ∗ and ¬, we have that if
I ≤ J then the weight of a rule in PI is greater or equal than
its weight in PJ .

It is not difficult to prove that every model M of the program
P is a model of the reduct PM .

Recall that a fuzzy interpretation can be interpreted as a L-
fuzzy subset. Now, as usual, the notion of reduct allows for
defining a stable set for a program.

Definition 5: Let P be a normal residuated logic program
and let I be a fuzzy L-interpretation; I is said to be a stable
set of P iff I is a minimal model of PI .

Theorem 1: Any stable set of P is a minimal model of P.
Thanks to Theorem 1 we know that every stable set is

a model, therefore we will be able to use the term stable
model to refer to a stable set. Obviously, this approach is a
conservative extension of the classical approach.

In the following example we use a simple normal logic
program with just one rule in order to clarify the definition of
stable set (stable model).

Example 1: Consider the program 〈p← ¬q ;ϑ〉. Given a
fuzzy L-interpretation I : Π → L, the reduct PI is the rule
(actually, the fact) 〈p ;ϑ ∗ ¬I(q)〉 for which the least model
is M(p) = ϑ∗¬I(q), and M(q) = 0. As a result, I is a stable
model of P if and only if I(p) = ϑ ∗ ¬I(0) = ϑ ∗ 1 = ϑ and
I(q) = 0. �

The following example shows that stable models for a
normal residuated logic program need not exist.

Example 2: Consider the the following normal residuated
logic program

〈p← nα(p) ; 1〉

defined over the residuated lattice ([0, 1],≤, ∗P ,←P , nα) (for
any α ∈ [0, 1)). This normal residuated logic program does
not have stable models. Let I be an interpretation. The reduct
w.r.t. I is either the fact 〈p ← ; 1〉 if I(p) ≤ α or the fact
〈p ← ; 0〉 if I(p) > α. In any case, if I is a stable model
then I(p) is equal either 1 or 0. However, both interpretations
are not stable models of this normal residuated logic program.

�

The aim of this work is to study normal residuated logic
programs without any stable model by means of measures
which determine how much information one has to add or
delete in order to recover at least one stable model. We start
by proposing the following definition:

Definition 6: A normal residuated logic program P is stable
if and only if there is an L-interpretation such that I =
lfp(PI); i.e I is a stable model of P. Otherwise, P is called
unstable.

2

III. CAUSES OF INSTABILITY: MEASURES OF INFORMATION

Instability is an undesirable feature of a logic program.
When representing knowledge as a (residuated) logic program
it is usual to implement rules according to a set of external
data (obtained either from sensors or from suggestion of an
expert); this data is subject to mistake and/or imprecisions,
and may lead to the following shortcomings:

• Not to include relevant information. (Missing informa-
tion)

• Include information which is either false or leading to
contradiction. (Excess of information)

Any of the situations above might lead to instability. Let us
further discuss this by means of an example: the following
program tries to simulate a procedure to deduce which sports
are practised by a person given some data.

r1 : 〈Football← n0.4(Basketball)∗G
∗GLivesInSuburb ∗G AthleticBody ; 0.6〉

r2 : 〈Basketball← n0.4(Cycling)∗G
∗GTall ∗G AthleticBody ; 0.6〉

r3 : 〈Cycling ← n0.4(Football)∗G
∗GSlim ∗G AthleticBody ; 0.6〉

The first rule determines that if a person with an athletic body,
which lives in a suburb and we do not know whether he
practices regularly basketball, the this person practices football
frequently (the interpretation of the other two rules is similar).
These three rules do not imply any contradiction, in fact, the
program consisting of the three rules has just one stable model
I⊥. However, if we add the following facts

r4 : 〈AthleticBody ← ; 0.8〉
r5 : 〈LivesInSuburb← ; 1〉

r6 : 〈Tall← ; 0.7〉
r7 : 〈Slim← ; 0.8〉

the program turns out to be unstable. What are the reasons for
this behaviour?

As we said above, it may be because of excess or lack of
information. For the former, excess of information can reside
in any subset of rules (either singleton or not), it might be that
too much information is obtained by default from r1, r2 and
r3. Notice that if the weights are changed to 0.39, therefore
reducing the amount of information provided by those rules,
the program would remain stable.

The approach above has already been considered in [14];
however, lack of information is more difficult to handle, since
we do not know which rules are missing. In principle, there are
three possibilities on which to recover the missing information:

• Adding facts. That is, include positive information about
propositional symbols which can be inferred from real-
world observation. For example, if we include the fact
〈Football← ; 0.5〉, the program gets stable again.

• Adding proper rules. In this case, the new rules permit to
draw consequences which allow for recovering stability.
For example, if we include the rule

〈Basketball← AthleticBody ∗G Slim ∗G Tall; 0.5〉

then, the program gets stable again.
• Adding hypotheses to the body of some rules. This case

may occur when the program has been built from observ-
able data in a fixed context, and some information was not
considered relevant in a first approach. Continuing with
the previous example, it is possible that the data used in
obtaining rules r1, r2 and r3 were obtained in an upper-
middle class neighbourhood in which an athletic body can
be due to the practice of sports; however, rules r4, . . . , r7

were based on lower-middle class neighbourhoods, in
which an athletic body might be consequence from hard
work, and not from the practice of sports. As a result, the
missing information in the previous example might be due
to not considering a new propositional symbol indicating
the amount of physical work required by the job of the
person we are talking about. Notice that by adding the
literal n0.4(PhysicalWork) in the bodies of rules r1, r2

and r3, and the fact 〈PhysicalWork ← ; 0.6〉, the
program gets stable again.

Our approach to this problem can be divided into two
frameworks, based on measuring the instability of a program
by means of the minimum amount of information which we
have either to remove or to add in order to obtain a stable
program. Removing or adding information in a residuated
program can be done essentially by modifying the weights
of the rules and facts, since the lesser (resp. bigger) they are
the less (resp. more) information is produced. The key point
is how to measure the amount of information which has to be
removed or added.

We propose to fix an operator m : L→ R+ such that:

• m(x) = 0 if and only if x = ⊥
• m is monotonic

such an operator will be called an information measure.

It is not difficult to define this kind of operators in a lattice:

Example 3: Any norm || · || on the lattice ([0, 1],≤) is an
information measure, since ||x|| = 0 if and only if x = 0; and
if x ≤ y then

||x|| = ||x
y
· y|| = |x

y
| · ||y|| ≤ ||y||

�

Example 4: Let (L,≤) be a finite lattice. An information
measure can be defined as follows:

m(x) = max{n : ⊥ < x1 < · · · < xn = x}

In fact, it is an information measure: if x 6= ⊥, then ⊥ < x,
and this implies m(x) ≥ 1. On the other hand, if x < y, then
for all chain ⊥ < x1 < · · · < xn = x we have the chain

3

⊥ < x1 < · · · < xn = x < xn+1 = y which has a greater
length, and this implies m(x) < m(y). �

Information measures will be used to determine the amount
of information inherently contained in any element of the
lattice. From now on, we will consider that any lattice has
an associated information measure.

IV. MEASURING INSTABILITY OF NORMAL RESIDUATED

LOGIC PROGRAMS BY ADDING INFORMATION

In this section we define an instability measure based on
the amount of information that has to be added to an unstable
program so that it gets stable. Contrariwise to the classical
case, in which the only form to add information is by including
new rules, in our framework we can as well increase their
weights by some amount. A specific operator will be defined
for this task. The approach used here can be seen as a
dualization of that given in [14].

We start by fixing a t-conorm s to handle the values of
L (recall that a t-conorm is a commutative and monotonic
map L × L → L satisfying s(>, x) = > and s(⊥, x) = x).
Fixed such a t-conorm, we can define the following operator
to modify the weights of rules.

Given a normal residuated logic program P, a set {〈ri;ϑi〉}i
of rules in P and a set of values {ϕi}i we define a new normal
residuated logic program OP({〈ri;ϑi〉}i, {ϕ}i) as follows:

OP({〈ri;ϑi〉}i, {ϕ}i) = (P r {〈ri;ϑi〉}i) ∪ {〈ri; s(ϑi, ϕi)〉}i
In other words, the operator OP changes the weights of
〈rj ;ϑj〉 ∈ {〈ri;ϑi〉}i by the new value s(ϑj , ϕj).

Notice that the operator OP really increases the weights of
the rules {〈ri;ϑi〉}i in the program P. Specifically, the higher
the values ϕi, the higher the new weights of the rules.

The example below clarifies the behaviour of this operator.

Example 5: On the residuated lattice with negation
([0, 1],≤, ∗P ,←P , n), consider the following program:

r1 : 〈p←P q ∗P t ∗P n(t) ; 0.7〉

r2 : 〈p←P t ∗P n(s) ; 0.8〉

r3 : 〈q ←P n(v) ; 0.2〉

r4 : 〈t←P s ∗P u ∗P n(v) ; 0.9〉

Consider the t-conorm associated to the operator OP to
be s(x, y) = min{x + y, 1}. Then, the modified program
OP({r1, r3}, {0.4, 0.7}) is the following:

r1 : 〈p←P q ∗P t ∗P N (t) ; 1〉

r2 : 〈p←P t ∗P N (s) ; 0.8〉

r3 : 〈q ←P N (v) ; 0.9〉

r4 : 〈t←P s ∗P u ∗P N (v) ; 0.9〉

The application of the operator OP results as changing the
weight of r1 by min{0.7 + 0.4, 1} = 1 and that of r3 by
min{0.2 + 0.7, 1} = 0.9. �

However, it is important to note that increasing the weight
of rules in an unstable program might not be enough to
recover stability. We already stated in the previous section
that instability might be due to missing facts or rules. The
following pathological example exhibits this behaviour.

Example 6: Consider the underlying residuated lattice with
negation ([0, 1],≤, ∗G,←G, n0.5) and the program with just
one rule

P ≡ 〈p← n0.5(p) ; 0.7〉

Then, it is not possible to recover stability by simply increasing
the weight of its only rule. �

Measuring the minimal amount of information needed to
recover stability we need to consider the inclusion of new
facts, rules or new literals in the bodies of existing rules.
However, considering all possible combinations is certainly
impractical from a computational standpoint. In the following,
we will see how this process can be simplified, as it is
only necessary for our purposes to take into account just the
inclusion of new facts and, thus, the inclusion of new literals
in the bodies or new rules can be completely avoided.

Firstly, let us assume that when introducing occurrences of
a new propositional symbol q, either positively or negatively,
in the bodies of some rules {〈pi ← Bi;ϑi〉}i ⊆ P the resulting
program is stable. That is, the program P∗ obtained from P by
substituting the rules 〈pi ← Bi;ϑi〉 by either 〈pi ← Bi ∗q;ϑi〉
or 〈pi ← Bi ∗ ¬q;ϑi〉 is stable. In any case, if M were a
model of P∗, then M would be as well a model of the program
obtained from P by substituting rules 〈pi ← Bi;ϑi〉 by either
〈pi ← Bi;ϑi ∗M(q)〉 or 〈pi ← Bi∗;ϑi ∗n(M(q))〉 (depending
on whether q is introduced positively or negatively in the rule.
Note that, in the latter case, we have really decreased the
weights of the rules, independently from q and, in this case
we have just removed information from the program since
ϑi ≥ ϑi ∗ M(q) and ϑi ≥ ϑi ∗ n(M(q)). This is the case
already studied in [14], and it needs not be considered here.

Secondly, assume now that when introducing a number of
new rules {〈pi ← Bi;ϑi〉}i in P the resulting program turns
out to be stable. Assume that M is a stable model of P ∪
{〈pi ← Bi;ϑi〉}i. Again, we could obtain a stable program by
simply including a number of new facts in P, namely {〈pi ←
;M(Bi) ∗ ϑi〉}i. Note that, in the latter case, we need the
same number facts than rules introduced and, moreover, the
required weights for the facts are less than those of the rules. In
conclusion, in the latter case we have to add less information
the program in order to recover stability.

Since our aim here, is to measure the minimum amount of
information required to recover stability, we will just need to
take into account the possible addition of new facts not already
included in the program.

Remark 1: It is convenient to recall that the semantics pro-
vided by P∪{〈pi ← ;M(Bi)∗ϑi〉}i and P∪{〈pi ← Bi;ϑi〉}i
can be different. However, although this is an important feature
that has to be considered, it is not within the scope of this

4

work. The inclusion of new rules (or facts) has the only aim
of stabilizing the program, and not detecting the really missing
information.

For technical reasons, in order to define more easily the
measure of required information to recover stability, given a
residuated logic program P, we will consider its completion P,
defined as

P = P ∪ {〈`i ← ;⊥〉 : `i ∈ ΠP and 〈`i ← ;ϑ〉 /∈ P}

This results in explicitly including facts for all the symbols
occurring in the program and, this way, we will be able to
add information to any of them by means of the operator OP
defined above.

The more information needed to recover stability, the more
unstable the program is. The amount of information included
by OP({〈ri, ϑi〉}i, {ϕi}i) is obtained by means of an infor-
mation measure m and the formula∑

i∈I
m(ϕi)

Given a normal residuated logic program P, we define the
measure of instability of a set of rules {〈ri, ϑi〉}i ⊆ P (w.r.t. P)
as follows:

INSTABaddP ({〈ri, ϑi〉}i}) =

= inf{
∑
i∈I

m(ϕi) : OP({〈ri, ϑi〉}i, {ϕi}i) is stable}

Note that the definition provides a measure of the minimum
amount of information required to stabilize the program with
regard to a given set of rules of the completion of the program.

It is important to note that the measure can be undefined for
a given set of rules, and this would mean that stability cannot
be reached by modifying just that set of rules. Example 6
shows this situation, since INSTABaddP ({r1}) is undefined.

Example 7: On the residuated lattice with negation
([0, 1],≤,∧P ,←P , n0.4), let us consider the following unsta-
ble logic program:2

r1 : 〈p← s ∗ ¬q ; 0.8〉
r2 : 〈q ← ¬r ∗ ¬u ; 0.8〉
r3 : 〈r ← ¬p ; 0.5〉
r4 : 〈s← ; 0.8〉
r5 : 〈t← ¬p ∗ ¬s ; 0.5〉
r6 : 〈v ← u ∗ ¬r ; 0.7〉

It is not difficult to check that this program does not have stable
models. We will use the t-conorm s(x, y) = min{x + y, 1}
and the Euclidean norm in the formulas above to measure
the instability of the rules of the program. The first step to
measuring instability is to consider the following facts:

r7 : 〈p← ; 0〉 r8 : 〈q ← ; 0〉
r9 : 〈r ← ; 0〉 r10 : 〈t← ; 0〉
r11 : 〈u← ; 0〉 r12 : 〈v ← ; 0〉

2To increase readability, the subscripts P have been removed.

Note that it is not possible to restore stability of P by adding
information to rules r1, r2, r3, r4, r5, r6, r10 and r12 since if
we changed their weights by 1, the program keeps being
unstable. For the case of r7, one can see that if its weight
would be a value α > 0.4, then the program would have a
stable model; specifically,

M ≡ {(p, α); (q, 0.8); (r, 0); (s, 0.8); (t, 0); (v, 0)}

However, if the weight of r7 would be a value α ≤ 0.4, the
program keeps unstable. Therefore

INSTABaddP ({r7}) = inf{||x|| : x > 0.4} = 0.4

The measure of instability for rules r8, r9 and r11 can be
computed similarly to the previous case of r7, the results are
shown below:

x r8 r9 r11

INSTABaddP ({x}) 0.4 0.4 0.4

Notice that the positive values of INSTABaddP obtained for rules
r7, r8, r9 and r11 indicate the possible existence of at least one
missing rule which head is either p or q or r or u. �

Some results about INSTABaddP are given below:

Proposition 1: Let P be a normal residuated logic program.

• If P is stable then INSTABaddP ({〈ri, ϑi〉}i}) = 0 for all
set of rules {〈ri, ϑi〉}i} ⊆ P.

• If INSTABaddP (P) = 0 then for all ε > 0 there exists a set
{ϕi} of values in L such that OP({〈ri, ϑi〉}i, {ϕi}i) is
stable and

∑
i∈Im(ϕi) < ε

The proposition above states that, although stability is not
equivalent to having null instability measure, the former im-
plies the latter and, whenever the program has null instability
measure it is possible to recover stability by adding an amount
of information below any prescribed bound.

An interested case occurs when the underlying lattice of
truth-values is finite, since in this case stability and null
instability measure coincide.

Corollary 1: Let L ≡ (L,≤,←,∧,¬) be a residuated
lattice such that L is finite. Then:

P is stable if and only if INSTABaddP (P) = 0

Finally, the following result establishes that INSTABaddP is
antitonic with respect to the order between residuated logic
programs.

Proposition 2: Let P be a normal residuated logic program
and let {〈ri;ϑi〉} ⊆ {〈ri;ϑi〉} be two sets of rules of P such
that INSTABaddP is defined for both. Then:

INSTABaddP ({〈ri;ϑi〉}) ≥ INSTABaddP ({〈ri;ϑi〉})
For the case of finite programs the instability measure of

the full program is always defined.
Proposition 3: Let P be a finite normal residuated logic

program. Then INSTABaddP (P) is defined.
In the next section, we show an approach to measuring

instability in terms of the computation of stable models of
a modified version of the original program.

5

V. COMPUTING THE MEASURES OF INSTABILITY

The aim of this section is to show that computing the
value of INSTABaddP ({〈ri;ϑi〉}) is equivalent to computing the
set of stable modelS of a specific logic program. For ease,
we suppose [0, 1] is set of truth values and the set of rules
{〈ri;ϑi〉} is a singleton.

To compute the measure of instability INSTABaddP we have
to obtain what values λ ∈ [0, 1] satisfy that OP(〈ri;ϑi〉, λ) is
stable; we recall that OP(〈ri;ϑi〉, λ) coincides with P except
in the rule 〈ri;ϑi〉, which is changed by 〈ri; s(ϑi, λ)〉. How
can we introduce the parameter λ in P through propositional
symbols? Let α and β be two propositional symbols not
occurring in P. Consider the following set of rules:

〈α← n(β) ; 1〉 (1)

〈β ← n(α) ; 1〉 (2)

where n(x) = 1− x. The set of stable models of this pair of
rules is the set {Mλ ≡ (α, λ); (β, λ)}λ∈[0,1]. Notice that for
any λ ∈ [0, 1] there is a stable model Mλ such that Mλ(α) =
λ. Given P, consider a new residuated logic program P? by
considering Pr {ri}, together with rules (1) and (2), and the
rules:

r?i : 〈pi ← B ∗ n(γ) ; 1〉

r??i : 〈γ ← ts(n(ϑ), n(α)) ; 1〉

where γ is a propositional symbol which not occurring in P
and ts is the t-norm ts(x, y) = n(s(n(x), n(y))). Then the
following results hold:

Lemma 1: Let P be a normal residuated logic program. Let
M be an interpretation M : ΠP ∪{α, β, γ} → [0, 1] such that:

M(β) = 1−M(α) M(γ) = ts(1− ϑ, 1−M(α))

Then, we have that

1) If N is a model of P?M , then it is also a model of
OP(〈ri;ϑi〉,M(α))M .

2) Reciprocally, any model N of OP(〈ri;ϑi〉,M(α))M can
be extended to a model of P?M .

Proof: Assume that N is a model of (P?)M . For each rule
rj of OP(〈ri;ϑi〉,M(α))M different from 〈ri; s(ϑi,M(α))〉M
the proof is trivial since rj belongs to (P?)M as well; thus, we
only need to consider the case of the rule 〈ri; s(ϑi,M(α))〉M .
As N satisfies rule (r?i)M :

N(pi) ≥ N(B+) ∗M(B−) ∗ n(M(γ))

Therefore,

N(pi) ≥ N(B+) ∗M(B−) ∗ n(ts(1− ϑ, 1−M(α))))

= N(B+) ∗M(B−) ∗ s(ϑ,M(α))

Reciprocally, assume now that N is a model of
OP(〈ri;ϑi〉,M(α))M . Then, for each rule rj of (P?)M
different of (1)M , (2)M , (r?i)M and (r??i)M the proof is
trivial since rj belongs to OP(〈ri;ϑi〉,M(α))M |ΠP

as well.
For rules (1)M , (2)M , (r?i)M and (r??i)M the interpretation

N has to be extended, and the values of N(β) and N(γ) can
be defined by using M(α) as follows:

N(β) = 1−M(α) N(γ) = ts(1− ϑ, 1−M(α))

Thus the fulfillment of (1)M , (2)M and (r??i)M is trivial. For
the rule (r?i)M , as N satisfies the rule 〈ri; s(ϑi, λ)〉M , the
following inequality holds:

N(pi) ≥ N(B+) ∗M(B−) ∗ s(ϑi, λ)

Therefore, using that s(x, y) = n(ts(1− x, 1− y)):

M(pi) ≥ N(B+) ∗M(B−) ∗ s(ϑi, λ)

= N(B+) ∗M(B−) ∗ n(ts(1− ϑ, 1−M(α))

= N(B+) ∗M(B−) ∗ n(M(γ))

Thus, (r?i)M is satisfied by N .

Proposition 4: Let P be a normal residuated logic program.

1) If M is a stable model of P?, then it is also a stable
model of OP(〈ri;ϑi〉,M(α)).

2) Reciprocally, any stable model M of OP(〈ri;ϑi〉,M(α))

can be extended to a stable model of P?.

Proof: Let M be a stable model of P?. Then, M is the
least model of (P?)M . Then, as the only rule whose head is
β in (P?)M is:

〈β ← ;n(α)〉

The value M(β) has to be necessarily 1 −M(α). Similarly,
we can infer that M(γ) = ts(1 − ϑ, 1 −M(α)). Hence, the
hypothesis of Lemma 1 hold. Therefore, M is a model of
OP(〈ri;ϑi〉,M(α))M as well. In fact, M |ΠP is a stable model
of OP(〈ri;ϑi〉,M(α)) since if there were a model N ⊂M |ΠP

of OP(〈ri;ϑi〉,M(α))M |ΠP
then, by Lemma 1, N can be

extended a model of (P?)M satisfying N ⊂ M ; which is
a contradiction with M being a stable model of P?.

Let M be a stable model of OP(〈ri;ϑi〉,M(α)). Then, M is
the least model of OP(〈ri;ϑi〉,M(α))M . Then, if we extend
M to β and γ as M(β) = 1 −M(α) and M(γ) = ts(1 −
ϑ, 1−M(α)) respectively, we can apply Lemma 1, thus M is
also a model of (P?)M . Should M not be the least model of
(P?)M then, there would be a model N of (P?)M such that
N ⊂ M . Note that necessarily in this case M(β) = N(β)
and M(γ) = N(γ) by using the same argument as above,
therefore there exists a propositional symbol q in ΠP such that
N(q) < M(q). Using again Lemma 1, N ⊂M is a model of
OP(〈ri;ϑi〉,M(α))M ; contradicting that M is a stable model
of OP(〈ri;ϑi〉,M(α))

Proposition 4 shows that there is an univocal correspon-
dence among the stable model of P? and the parameters λi
such that OP(〈ri;ϑi〉, λi) is stable. Therefore we can compute
INSTABaddP ({〈ri;ϑi〉}) by using the stable models of P?:

6

Corollary 2: Let P be a normal residuated logic program.
Then:

INSTABaddP (〈ri;ϑi〉) =

inf{m(M(α)) |M is a stable model of P?}

Note that by using monotonicity of m, we do not need to
compute all stable model of P?, but only the stable model
which assigns to the propositional symbol α the least truth
value.

Example 8: The aim of this example is to show how
applying the procedure above to a normal residuated logic
program. Consider the negation operator:

n(x) =

{
1 if x ≤ 0.5

1− x if x > 0.5

And the normal residuated logic program P defined over the
residuated lattice ([0, 1],≤, ∗P ,←P , n):

r1 : 〈p← s ∗ ¬q ; 1.0〉
r2 : 〈q ← ¬r ; 0.9〉
r3 : 〈r ← ¬p ; 0.9〉

r4 : 〈s← ¬t ∗ ¬u ; 1.0〉

The reader can easily check that P is unstable. To apply
INSTABaddP we will consider the information measure given
by m(x) = x2, the t-conorm s(x, y) = max{x, y} and the
completion P by adding the rules:

r5 : 〈p← ; 0〉 r6 : 〈q ← ; 0〉
r7 : 〈r ← ; 0〉 r8 : 〈s← ; 0〉
r9 : 〈t← ; 0〉 r10 : 〈u← ; 0〉

We start by computing the value of INSTABaddP (r9). Thus, rule
r9 is removed from P and is substituted by the following four
rules:

rαt : 〈αt ← n(βt) ; 1〉
rαt

: 〈βt ← n(αt) ; 1〉
r?9 : 〈t← n(γt) ; 1〉

r??9 : 〈γt ← n(αt) ; 1〉

where n(x) = 1− x. The reader can check that the family of
stable models of this new normal residuated logic program is:

ST = {{(p, 1− λ); (q, 0); (r, 0.9); (t, λ); (u, 0);

; (s, 1−λ); (αt, λ)} : λ > 0.5}

Therefore:

INSTABaddP (r9) = inf{m(M(αt)) |M ∈ ST} =

= inf{λ2 | λ > 0.5} = 0.25

�

VI. CONCLUSIONS

We have continued our study of fuzzy answer set semantics
for residuated logic programs by focusing on the measure
of instability of normal residuated programs. Some measures
have been provided and initial results have been obtained, in
terms of the amount of information that have to be added in
order to recover stability.

As future work, we will study the dual situation in which
stability can be recovered by adding information (as in the
framework of consistency restoring rules). In addition, we will
extend this methodology to provide explanations for inconsis-
tencies in the data by determining minimal representations of
conflicts. In practice, this can be used to identify unreliable
data or to indicate missing reactions.

REFERENCES

[1] M. Balduccini and M. Gelfond, “Logic programs with consistency-
restoring rules,” in Intl Symp on Logical Formalization of Commonsense
Reasoning, AAAI 2003, 2003, pp. 9–18.

[2] T. C. Son and C. Sakama, “Negotiation using logic programming with
consistency restoring rules,” in IJCAI’09: Proc 21st Intl Joint Conf on
Artificial intelligence. Morgan Kaufmann Publishers Inc., 2009, pp.
930–935.

[3] M. Gebser, T. Schaub, S. Thiele, B. Usadel, and P. Veber, “Detecting
inconsistencies in large biological networks with answer set program-
ming,” in ICLP, ser. Lecture Notes in Computer Science, vol. 5366,
2008, pp. 130–144.

[4] J. C. Nieves, U. Cortés, and M. Osorio, “Possibilistic-based argumen-
tation: An answer set programming approach,” Mexican International
Conference on Computer Science, pp. 249–260, 2008.

[5] J. Janssen, M. De Cock, and D. Vermeir, “Fuzzy argumentation frame-
works,” in Proc. of IPMU’08, 2008, pp. 513–520.

[6] A. Hunter and S. Konieczny, “Approaches to measuring inconsistent
information,” in Inconsistency Tolerance, ser. Lecture Notes in Computer
Science, vol. 3300, 2005, pp. 191–236.

[7] J. Grant and A. Hunter, “Measuring inconsistency in knowledgebases,”
J. Intell. Inf. Syst., vol. 27, no. 2, pp. 159–184, 2006.

[8] A. Hunter and S. Konieczny, “Measuring inconsistency through minimal
inconsistent sets,” in Proc of Principles of Knowledge Representation
and Reasoning (KR’08). AAAI Press, 2008, pp. 358–366.

[9] E. Lozinskii, “Information and evidence in logic systems,” Journal of
Experimental and Theoretical Artificial Intelligence, vol. 6, pp. 163—
193, 1994.

[10] N. Madrid and M. Ojeda-Aciego, “On coherence and consistence in
fuzzy answer set semantics for residuated logic programs,” Lect. Notes
in Computer Science, vol. 5571, pp. 60–67, 2009.

[11] ——, “Towards a fuzzy answer set semantics for residuated logic
programs,” in Proc of WI-IAT’08. Workshop on Fuzzy Logic in the
Web, 2008, pp. 260–264.

[12] M. Gelfond and V. Lifschitz, “The stable model semantics for logic
programming,” in Proc. of ICLP-88, 1988, pp. 1070–1080.

[13] N. Madrid and M. Ojeda-Aciego, “On the measure of incoherence
in extended residuated logic programs,” in IEEE Intl Conf on Fuzzy
Systems (FUZZ-IEEE’09), 2009, pp. 598–603.

[14] ——, “Measuring instability in normal residuated logic programs,”
2010. Submitted.

7

