
Non-Commutativity and
Expressive Deductive Logic Databases

S. Krajči,1, R. Lencses,1, J. Medina,2

M. Ojeda-Aciego,2�, A. Valverde,2, and P. Vojtáš3

1 Institute of Informatics. P.J. Šafárik University. Slovakia
2 Dept. Matemática Aplicada. Universidad de Málaga. Spain
3 Inst. Computer Science, Acad. Sci. of the Czech Republic

Abstract. The procedural semantics of multi-adjoint logic program-
ming is used for providing a model-theoretic semantics for a data model.
A translation method for deductive logic databases is presented for ob-
taining a relational algebra with classical projection and enriched para-
metric join operator with aggregations. The use of non-commutative
conjunctors allows for a model of different degrees of granulation and
precision, whereas expressiveness is achieved by using multiple-valued
connectives.

Keywords. deductive databases, datalog, multiple-valued logic, expres-
iveness, non-commutative connectives.

1 Introduction

The handling of imprecision in databases is a topic which is getting growing
attention, for knowledge-base systems must typically deal with the intrinsic im-
precision of the data, vagueness and imperfection in knowledge, in particular, in
the form of incompleteness, inconsistency, and uncertainty.

Several frameworks for manipulating data and knowledge have been pro-
posed. Our approach here is a lattice-valued logic programming and/or Datalog
paradigm, which permits the articulation of vague concepts and, moreover, has
the property that the truth of an argument can diminish as the number of in-
ferences in it increases.

Multi-adjoint logic programming was introduced in [8] as a refinement of
both initial work in [13] and residuated logic programming [2]. It allows for very
general connectives in the body of the rules, and sufficient conditions for the
continuity of its semantics are known.

Such an approach is interesting for applications: for instance, in [10] a sys-
tem is presented where connectives are learnt from different users’ examples
and, thus, one can imagine a scenario in which knowledge is described by a
many-valued logic program where connectives have many-valued truth functions
representing conjunctions, disjunctors or, more generally, aggregation operat-
ors (arithmetic mean, weighted sum, . . . ) where different implications could be
� Corresponding author. aciego@uma.es



needed for different purposes, and different aggregators are defined for different
users, depending on their preferences.

It is important to recall that many different “and” and “or” operations have
been proposed for use in fuzzy logic. It is therefore important to select the
operations which are the best for each particular application.

Several papers discuss the optimal choice of “and” and “or” operations for
fuzzy control, when the main criterion is to get the stablest control. In reasoning
application, however, it is more appropriate to select operations which are the
best in reflecting human reasoning, i.e., operations which are “the most logical”.

2 Motivating examples

In fuzzy logic there is a well developed theory of t-norms, t-co-norms and re-
sidual implications. The objective of this section is to show some interesting
non-standard connectives to motivate the consideration of a more general class
of connectives in fuzzy logic. The motivation is the following:

When evaluating the relevance of answers to a given query it is common to
use some subjective interpretation of human preferences in a granulated way.
This is, fuzzy truth-values usually describe steps in the degree of perception
(numerous advocations of this phenomenon have been pointed out by Zadeh).
This is connected to the well-known fact that people can only distinguish finitely
many degrees of quality (closeness, cheapness, . . . ) or quantity in control. Thus,
in practice, although we use the product t-norm &p(x, y) = x ·y, we are actually
working with a piece-wise constant approximation of it. In this generality, it
is possible to work with approximations of t-norms and/or conjunctions learnt
from data by a neural net like, for instance, those in [10].

We are looking for a hotel which is close to downtown, with reasonable price
and being a new building. Classical fuzzy approaches would assign a user “his”
interpretation of “close”, “reasonable” and “new”. In practice, we recognize fi-
nitely many degrees of being close, reasonable, new, so the fuzzy sets have a
stepwise shape. Actually, we are working on intervals of granulation and/or in-
distinguishability. It is just a matter of representation that the outcome is done
by means of intervals.

Namely, the set of truth-values will be considered to be a lattice. This mo-
tivates our lattice-valued approach. It is easy to obtain examples in which the
lattice can be:

– Generated by a partition of the real unit interval [0, 1].
– All subintervals of [0, 1].
– All the probability distributions on [0, 1].

Regarding the use of non-standard connectives, just consider that a variable
represented by x can be observed with m different values, then surely we should
be working with a regular partition of [0, 1] of m pieces. This means that a given
value x should be fitted to this ‘observation’ scale as the least upper bound with
the form k/m (analytically, this corresponds to

(
�m · x�

)
/m where � � is the

2



ceiling function). A similar consideration can be applied to both, variable y and
the resulting conjunction; furthermore, it might be possible that each variable
has different granularity.

Formally, assume in x-axis we have a partition into n pieces, in y-axis into
m pieces and in z-axis into k pieces. Then the approximation of the product
conjunction looks like

Definition 1. Denote (z)p = �p · z�
p and define, for naturals n, m, k > 0

Ck
n,m(x, y) =

(
(x)n · (y)m

)
k

Example 1. Connectives Ck
n,m(x, y) need be neither associative nor commutat-

ive:

1. For instance C10
10,10, denoted simply as C, is not associative

C(0.7, C(0.7, 0.3)) = C(0.7, (0.21)10) = C(0.7, 0.3) = (0.21)10 = 0.3
C(C(0.7, 0.7), 0.3) = C((0.49)10, 0.3) = C(0.5, 0.3) = (0.15)10 = 0.2

2. C4
10,5(x, y) is not commutative.

C4
10,5(0.82, 0.79) = ((0.82)10 · (0.79)5)4 = (0.9 · 0.8)4 = (0.72)4 = 0.75

C4
10,5(0.79, 0.82) = ((0.79)10 · (0.82)5)4 = (0.8 · 1)4 = 1

As previously stated, to model precision and granularity, it is reasonable to
work with partitions of [0, 1]. In fact, in this case, the set of truth values is a
finite linearly ordered set. In practical applications it happens that we change
the pespective and work with finer and/or coarser partition. This is a special case
studied in domain theory [1], in which one of the most fundamental questions is
about the representation of a real number: a common approach to this problem
is to identify each real number r with a collection of intervals whose intersection
is {r}. In such a representation a smaller interval gives more information about
a number than a bigger interval. So an interval I carries more information than
an interval J , which we represent by writing J ≤ I, provided that I ⊆ J .

Consider now the following interval extension of the connectives Ck
n,m.

Definition 2. For naturals n, m, k > 0 and a ≤ n, b ≤ m we define

Kk
n,m

(〈
a − 1

n
,
a

n

〉
,

〈
b − 1
m

,
b

m

〉)
=

〈
(a · b)k − 1

k
, (a · b)k

〉

Several authors propose to model precision, uncertainty of our knowledge
with the set of truth values being all closed subintervals of the real interval
[0, 1]. In some papers the set of truth values is the set of pairs of closed intervals:
the first one modeling our belief, confidence, or probability estimation, and the
second modeling our doubts or disbelief on the content of information.

3



Our intuitive model will consider the lattice L of all closed subintervals of
the interval [0, 1], the ordering being the “truth” ordering, see [2–4, 7]

〈a, b〉 ≤ 〈c, d〉 iff a ≤ c and b ≤ d

This is a complete lattice with ⊥ = 〈0, 0〉 and � = 〈1, 1〉 and

〈a, b〉 ∧ 〈c, d〉 = 〈min(a, c),min(b, d)〉
〈a, b〉 ∨ 〈c, d〉 = 〈max(a, c),max(b, d)〉

the references cited above generally use t-norms as operations acting on end-
points of intervals. We would like to extend the set of connectives to arbitrary
approximations of t-norms. The computations in the probabilistic and lattice
valued fuzzy logic are the same, the only difference is handling and/or ignorance
of probabilistic constraints.

Example 2. Another example justifying the use of (lattices of) intervals as truth-
values, together with possibly some source of inconsistency problems comes, for
instance, when considering the results of polls.

Some days before the polling day for the recent elections in Hungary, the
following vote expectancy data was published:

– Between 35–45% of voters will favor party 1.
– Between 45–55% of voters will favor party 2.
– Between 5–10% of voters will favor party 3.
– Between 5–10% of voters will favor party 4.

Problems with probabilistic restrictions should be seen as a sign of possible
inconsistencies, just note that if the predictions were correct for all parties with
values are taken at the right end of the interval of probability, then we would
have a total 120% of votes!

In our approach, the computation will be processed by lattice valued truth-
functions. Instead of working with probabilistic constraints as cuts we could add
a new degree with a measure of violation of probabilistic constraints. In this
example, the degree of inconsistency could be for instance 2

π arctan(0.2) because
of the sum of upper bounds of estimations was 120%.

Furthermore, these measurements usually generates inconsistencies, because
the questioned group could not be representing the whole population and/or
people do not answer their real interests. The outcome of the election was the
following:

P1: 42% P2: 41% P3: 6% P4: 4%

in which the results for two parties were outside the predicted interval.

3 Biresiduated multi-adjoint logic programming

We would like to build our semantics of deductive logic databases on a lattice
valued logic with non-commutative conjunctions and based on residuation. There

4



exists already the algebraic notion of biresiduated lattices [12], which seems to
be a natural candidate for our model.

The preliminary concepts required to formally define the syntax of biresid-
uated multi-adjoint logic programs are built on those of the ‘monoresiduated’
multi-adjoint case [9]; to make this paper as self-contained as possible, the ne-
cessary definitions are included below.

Definition 3. Let 〈L,�〉 be a complete lattice. A biresiduated multi-adjoint
lattice L is a tuple (L,�,↙1,↖1,&1, . . . ,↙n,↖n,&n) satisfying the following
items:

1. 〈L,�〉 is bounded, i.e. it has bottom and top elements;
2. � &i ϑ = ϑ &i � = ϑ for all ϑ ∈ L for i = 1, . . . , n;
3. (↙i,↖i,&i) satisfies the following properties, for all i = 1, . . . , n; i.e.

(a) Operation &i is increasing in both arguments,
(b) Operations ↙i,↖i are increasing in the first argument and decreasing

in the second argument,
(c) For any x, y, z ∈ P , we have that

x � y ↙i z if and only if x &i z � y

x � y ↖i z if and only if z &i x � y

The existence of multiple pairs satisfying property 3 in the previous definition
justifies the term multi-adjoint. The biresiduated structure comes from the fact
that, for each &i (called adjoint conjunctor) there exist two ‘sided’ adjoint im-
plications denoted as ↙i and ↖i, satisfying the following properties:1

x � y ↙i z if and only if x &i z � y

x � y ↖i z if and only if z &i x � y

We will be working with two languages: the first one, F, to define the syntax
of our programs, and the second one, L, to host the manipulation of the truth-
values of the formulas in the programs. To avoid possible name-clashes, we will
denote the interpretation of an operator symbol ω under L as

.
ω (a dot on the

operator), whereas ω itself will denote its interpretation under F.
In the sequel, we will omit the adjectives biresiduated and multi-adjoint if no

confusion could arise. Furthermore, we will use the symbol ←i to denote either
↙i or ↖i, whenever the ‘side’ of the implication is not relevant to the case.

In the next definition we will consider a language F which may contain some
additional connectives, especially several aggregations, disjunctors and some ad-
ditional conjunctors.

Definition 4. A biresiduated multi-adjoint logic program (in short a program)
on a language F with values in a lattice L is a set P of rules of the form 〈A↙iB, ϑ〉
or 〈A ↖i B, ϑ〉 such that:
1 Note that if the connective &i turns out to be commutative, then ↙i and ↖i must

coincide.

5



1. The head of the rule, A, is a propositional symbol;
2. The body formula, B, is a formula of F built from propositional symbols

B1, . . . , Bn (n ≥ 0) and monotone operators (and no implications);
3. The confidence factor ϑ is an element (a truth-value) of L.

As usual, facts are rules with body �, and a query (or goal) is a propositional
symbol intended as a question ?A prompting the system.

As usual, an interpretation is a mapping I:Π → L. Note that each of these
interpretations can be uniquely extended to the whole set of formulas, Î:F → L.
The set of all interpretations of the formulas defined by F in is denoted IL.

The ordering � of the truth-values L can be easily extended to IL, which
also inherits the structure of complete lattice. The minimum element of the
lattice IL, which assigns ⊥ to any propositional symbol, will be denoted �.

A weighted rule of a biresiduated multi-adjoint logic program is satisfied
whenever its truth-value is greater or equal than the confidence factor:

Definition 5.

1. An interpretation I ∈ IL satisfies 〈A↙iB, ϑ〉 if and only if ϑ&i Î (B) � Î (A).
2. An interpretation I ∈ IL satisfies 〈A↖iB, ϑ〉 if and only if Î (B)&iϑ � Î (A).
3. An interpretation I ∈ IL is a model of a program P iff all weighted rules

in P are satisfied by I.
4. An element λ ∈ L is a correct answer for a query ?A and a program P if for

any interpretation I ∈ IL which is a model of P we have λ � I(A).

The immediate consequences operator, given by van Emden and Kowalski, can be
easily generalised to the framework of biresiduated multi-adjoint logic programs.
This operator will serve as our database query evaluation operator.

Definition 6. Let P be a program, the immediate consequences operator TP

maps interpretations to interpretations, and for an interpretation I and propos-
itional variable A is defined by

TP(I)(A) = sup
{
{ϑ

.
&i Î(B) | 〈A ↙i B, ϑ〉 ∈ P} ∪ {Î(B)

.
&i ϑ | 〈A ↖i B, ϑ〉 ∈ P}

}

The semantics of a biresiduated multi-adjoint logic program is characterised
by the post-fixpoints of TP; that is, an interpretation I of IL is a model of a
program P iff TP(I) � I.

Our operator is a generalisation of that in [7] (although they work with pairs
of intervals). Their operator is continuous because they consider only connect-
ives generated by �Lukasiewicz, product and Gödel connectives acting on the
endpoint of intervals. In general, when working with aggregations and constant
approximations this is not always the case. We will justify this claim by using
the example below, modified from [5]. A detailed description of this is out of
the scope of this paper. More details on relations between annotated and fuzzy
programs are in [6].

6



Example 3. In the language of lattice valued generalized annotated programs
with restricted semantics consider the following program:

p: 〈0, 0〉 ← p:
〈

0,
1 + 2y

4

〉
← p: 〈0, y〉 q:

〈
0,

1
2

〉
← p:

〈
0,

1
2

〉

The TP operator iterates as follows:

TP
1(p) =

〈
0,

1
4

〉
, TP

2(p) =
〈

0,
3
8

〉
, . . . , TP

n(p) =
〈

0,
2n−1 − 1

2n

〉
, . . .

. . . , TP
ω(p) =

〈
0,

1
2

〉
, TP

ω+1(p) =
〈

0,
1
2

〉

TP
1(q) = 〈0, 0〉 = TP

2(q) = TP
3(q) = · · · = TP

ω(q), TP
ω+1(q) =

〈
0,

1
2

〉

so the operator is not continuous. Indeed, there is an upward directed set of
interpretations of L for which TP(

∨
X) �

∨
{TP(I) | I ∈ X}. Namely, take

X = {In | n ∈ ω} where In: {p, q} → L is defined as

In(p) =
〈

0,
2n−1 − 1

2n

〉
In(q) = 〈0, 0〉

then we have
∨

X(p) =
〈

0,
1
2

〉
TP(

∨
X)(p) =

〈
0,

1
2

〉
=

∨
{TP(In)(p) | n ∈ ω} =

〈
0,

1
2

〉

∨
X(q) = 〈0, 0〉 TP(

∨
X)(q) =

〈
0,

1
2

〉
�

∨
{TP(In)(q) | n ∈ ω} = 〈0, 0〉

The program of this example can be translated to

(p ← @1(p),�) (q ← @2(p),�)

where the truth-function
.
@i:L → L are defined as

.
@1(〈x, y〉) =

〈
0,

1 + 2y

4

〉
.
@2(〈x, y〉) =




〈
0, 1

2

〉
if 〈x, y〉 ≥

〈
0, 1

2

〉

〈0, 0〉 if 〈x, y〉 �
〈
0, 1

2

〉

The jump operator
.
@2 is not lattice continuous: simply consider the following

upward directed set

A ⊂ L A =
{〈

0,
2n−1 − 1

2n

〉
| n ∈ ω

}

Note that
∨

A =
〈
0, 1

2

〉
, therefore

.
@2(

∨
A) =

〈
0, 1

2

〉
. Now, for every element

of A,
.
@2(

〈
0, 2n−1−1

2n

〉
) = 〈0, 0〉, therefore

.
@2

(∨
A

)
=

〈
0,

1
2

〉
�

∨ {
.
@2

(〈
0,

2n−1 − 1
2n

〉)
| n ∈ ω

}
=

∨
{⊥} = ⊥

7



A possible solution to this, as proposed in [6], can be obtained by replacing
constant annotations by annotation terms as functions, in order to work with
lattice continuous connectives in the body.

3.1 Procedural semantics

It can be shown that the TP operator is continuous under very general hypotheses
(the proof in [8] can be easily generalised to this framework), therefore the least
model can be reached in at most countably many iterations. Now, it is worth to
define a procedural semantics which allows us to actually construct the answer
to a query against a given program.

Our computational model will work in an extended language in which we
allow to use jointly propositional symbols and elements of the lattice as ba-
sic formulas (these ‘mixed’ formulas will be called extended formulas). Given a
query, and by using the rules below, will provide a lower bound of the value
of A under any model of the program. Intuitively, the computation proceeds
by, somehow, substituting propositional symbols by lower bounds of their truth-
value until, eventually, an extended formula with no propositional symbol is
obtained, which will be interpreted in the lattice to get the computed answer.

Given a program P, we define the following admissible rules for transforming
any extended formula.

Definition 7. Admissible rules are defined as follows:

R1a Substitute an atom A in an extended formula by (ϑ &i B) whenever there
exists a rule 〈A ↙i B, ϑ〉 in P.

R1b Substitute an atom A in an extended formula by (B&i ϑ) whenever there
exists a rule 〈A ↖i B, ϑ〉 in P.

R2 Substitute an atom A in an extended formula by ⊥.
R3 Substitute an atom A in an extended formula by ϑ whenever there exists a

fact 〈A↙i�, ϑ〉 or 〈A↖i�, ϑ〉 in P.

Note that if an extended formula turns out to have no propositional symbols,
then it can be directly interpreted in the computation as an element in L, rather
than like a formula. This justifies the following definition of computed answer.

Definition 8. Let P be a program in a language interpreted on a lattice L and
let ?A be a goal. An element λ ∈ L is said to be a computed answer if there is
a sequence G0, . . . , Gn+1 such that

1. G0 = A and Gn+1 = @(r1, . . . , rm) where2 ri ∈ L for all i = 1, . . . m, and
λ =

.
@(r1, . . . , rm).

2. Every Gi, for i = 1, . . . , n, is an extended formula.
3. Every Gi+1 is inferred from Gi by exactly one of the admissible rules.
2 Here the ri represent all the variables occurring in the Gn+1. Therefore we are

abusing the notation, for @ represents the composition, as functions in the lattice,
of all the operators inserted by rules R1a and R1b.

8



Note that our procedural semantics, instead of being refutation-based (this
is not possible, since negation is not allowed in our approach), is oriented to
obtaining a bound of the optimal correct answer of the query.

3.2 Greatest Answers and Reductants

The definition of correct answer is not entirely satisfactory in that ⊥ is always
a correct answer. Actually, we should be interested in the greatest confidence
factor we can assume on the query, consistently with the information in the
program, instead of in the set of its lower bounds.

By proving that models are post-fixpoint of TP together with the Knaster-
Tarski theorem, it is possible to obtain, the following result:

Theorem 1. Given a complete lattice L, a program P and a propositional sym-
bol A, we have that Tω

P
(�)(A) is the greatest correct answer.

Regarding the computation of the greatest correct answer, it might well be
the case that for some lattices, our procedural semantics cannot compute the
greatest correct answer. We can cope with this problem by generalising the
concept of reductant [5]; any rule 〈A←jiDi, ϑi〉 contributes with a value such as

either ϑi

.
&i bi or bi

.
&i ϑi in the calculation of the lower bound for the truth-value

of A, thus we would like to have the possibility of reaching the supremum of all
the contributions, in the computational model, in a single step.

Definition 9. Let P be a program; assume that the set of rules in P with head A
can be written as 〈A ↙ij Bj , ϑj〉 for j = 1, . . . , n, and 〈A ↖kl

Cl, θl〉 for l =
1, . . . , m, and contains at least a proper rule; a reductant for A is any rule

〈A ↙ @(B1, . . . ,Bn, C1, . . . , Cm),�〉

where ↙ is any implication symbol and the operator @ is defined as
.
@(b1, . . . , bn, c1, . . . , cm) = sup{ϑ1&i1 b1, . . . , ϑn&in

bn, c1&k1 θ1, . . . , cm&km
θm}

If there were just facts with head A, but no proper rule, then the expression above
does not give a well-formed formula. In this case, the reductant is defined to be
a fact which aggregates all the knowledge about A, that is,

〈A ↙ �, sup{ϑ1, . . . , ϑn}〉

As a consequence of the definition, and the boundary conditions in the definition
of biresiduated multi-adjoint lattice, the choice of the implication to represent the
corresponding reductant is irrelevant for the computational model. Therefore, in
the following, we will assume that our language has a distinguished implication
to be selected in the construction of reductants, leading to the so-called canonical
reductants.

It will be interesting to consider only programs which contain all its reduct-
ants; since its set of models is not modified, we can assume that a program
contains all its reductants.

9



3.3 Completeness results

The two quasi-completeness theorems given in [9], can be extended to this more
general framework as follows:

Theorem 2. For every correct answer λ ∈ L for a program P and a query ?A,
there exists a chain of elements λn such that λ � supλn, such that for arbit-
rary n0 there exists a computed answer δ such that λn0 � δ.

A more standard statement of the quasi-completeness result can be obtained
under the assumption of the following property:

Definition 10. A lattice L is said to satisfy the supremum property if for all
directed set X ⊂ L and for all ε we have that if ε < supX then there exists
δ ∈ X such that ε < δ ≤ supX.

Theorem 3 below states that any correct answer can be approximated up to
any lower bound.

Theorem 3. Assume L has the supremum property, then for every correct an-
swer λ ∈ L for a program P and a query ?A, and arbitrary ε ≺ λ there exists a
computed answer δ such that ε ≺ δ.

4 A Non-Commutative Expressive Deductive Data Model

In this section a relational algebra is defined for the semantics above. More
expressiveness is obtained because it is built on a richer set of connectives. Fur-
thermore, as its fixpoint semantics is built on a continuous operator, the com-
puted answer to queries is reached in at most countably many steps and, thus,
no transfinite computation phenomena appears here. Moreover, our semantics is
replacing the constraint resolution semantics of [5] by a more effective one cal-
culating the best possible answer. The underlying idea is to generalize the fuzzy
relational algebra from [11] to the lattice-case and give a simplified presentation.
The definitions of operations do not change substantially; what changes is the
continuity problem for lattices.

The semantics of rules (without negation) is given by expressing them in a
positive fuzzy relational algebra (as an extension of the classical positive rela-
tional algebra) which consists of selection, natural join, classical projection and
union. The new lattice-valued relations are described as classical relations with
one additional attribute, TV , for the truth value. The following notation will be
used: R will denote the set of records, R will denote relations, and r will denote
predicates.

Selection Expressions in selections are allowed to use TV . The result of such
a selection, e.g. σTV ≥t(r), consists of those tuples from R which have the value
of the truth value attribute at least t. This is the only extension of classical
selection.

10



Join The operation of a natural join is in our relational algebra defined wrt
to crisp equality and an aggregation operator which tells us how to calcu-
late the truth value degree of a tuple in the join. Assume we have relations
R1, ..., Rn which evaluate predicates r1, ..., rn. Moreover, assume that the first
k-attributes in each Ri are the same and (b1, . . . , bk, bi

k+1, . . . , b
i
mi

, βi) ∈ Ri

then (b1, . . . , bk, b1
k+1, . . . , b

1
m1

, . . . , bn
k+1, . . . , b

n
mn

,
.
@(β1, . . . , βn)) is in the rela-

tion ��@ (R1, ..., Rn), that is the truth value attributes in our join do not behave
as in classical join, they disappear, forwarding the respective truth values to the
new aggregated truth value. This way it is possible to obtain the following

Theorem 4. The operation ��@ (R1, ..., Rn) is a sound and complete (wrt the
satisfaction of fuzzy logic) evaluation of @(r1, ..., rn) provided R1, ..., Rn are eval-
uations of r1, ..., rn.

Projection In [6] we have presented several transformations of generalised an-
notated programs and fuzzy logic programs (see also Example 3). Motivated by
this, observe that a multi-adjoint rule

〈H ←i @(B1, . . . ,Bn), ϑ〉

is semanticaly equivalent to

〈H ← ϑ &i @(B1, . . . ,Bn),�〉

where &i is the residuated conjunctor of the implication ←i, and ← is a fixed
implication, having residuated conjunctor & satisfying �& b = b .

Note that
y &i

.
@(x1, . . . , xn) =

.
@′(y, x1, . . . , xn)

is also an aggregation in our lattice.
So all Datalog programs can be translated to programs with all rules having

truth value � and using only one fixed implication with above property. All the
richness of our multiadjoint biresidual programs with truth vlaues of rules is now
hidden in a richer set of aggregations used to evaluate bodies of rules.

This enables us to work with the classical projection
Having the evaluation R of the whole body of the rectified rule we use the

classical projection to get the evaluation of the (IDB) predicate H(X1, ..., Xh),
So for (b1, ..., bm, β) ∈ R the projection consists of tuples

(b1, ..., bh, β) ∈ ΠX1,...,Xh
(R)

assuming the variables selected where at the beginning of the enumeration of
the tuple.

Here is a substantial difference with some models of probabilistic databases
which calculate the truth value of projection as a measure of a union of events
(events being all records in R which equal on attributes X1, ..., Xh).

11



Union For the case there are more rules with the same predicate in the head
we have to guarantee that different witnesses to the same conclusion are not
lost. In the case of different rules it means that these witnesses are aggregating
together with the lattice join operator. This is determined by our semantics
saying the graded statement is true in an interpretation if its truth value is
bigger than or equal than the grade given in the syntactical part. Hence they
unify wrt the union which calculates the truth value as a lattice join (recall the
need of reductants here). Assume R1, . . . , Rn are relations with same attributes
and (b1, . . . , bk, βi) ∈ Ri then

(b1, . . . , bk,
∨

{β1, . . . , βn)} ∈
n⋃

i=1

Ri.

Theorem 5. The operation

k⋃
j=1

ΠX1,...,Xh

(
σXh=aj

h

(
...σX1=aj

1

(
��@ (Rj

1, . . . , R
j
nj

)
)

. . .
))

is a sound and complete evaluation of the H(X1, . . . , Xh) (wrt the satisfaction
of our logic) wrt all rules with head H ranging from j = 1 to k

〈H(X1, . . . , Xh) ←− X1 = aj
1 ∧ . . . ∧ Xh = aj

h ∧ @(Bj
1, . . . , B

j
nj

),�〉

provided Rj
1, ..., R

j
nj

were evaluations of Bj
1, ..., B

j
nj

.

Now the expressive power of our lattice valued relational algebra is given by
the TP operator and its fixpoint. The iteration of TP is used to prove that the
expressive power of lattice Datalog is the same as that of the relational algebra.

So if our declarative and procedural semantics is sound and complete for
ground queries, it will be also for queries with free variables. It suffices for every
unbound variable we can extend our language by a new constant which will be
evaluated by infimum of all truth values ranging through this variable. This is
again a model of our fuzzy theory and the result holds. So our systems allows
recursion and the relational algebra calculates it correctly.

Theorem 6. Every query over the knowledge base represented by a lattice Data-
log program (possibly with recursion, without negation) can be evaluated up to any
arbitrary accuracy, by iterating described operations of lattice relational algebra.

Every correct answer to a query is obtained by finite iteration of the TP

operator with any prescribed precision. This operator evaluates relations in in-
terpretation in a same way as our relational algebra does.

5 Conclusions and future work

Our motivation comes from the usage to model some subjective interpretation
of human preferences in a granulated way, e.g. by truth value set consisting

12



of intervals. When restricting multi-valued connectives to intervals we observe
they need not be neither associative nor commutative. To cover all these phe-
nomena a general framework of multi-adjoint lattice valued logic programming
which allows rather general set of connectives in the bodies has been introduced
(including some non-commutative ones).

A procedural semantics for this framework of multi-adjoint biresiduated logic
programs has been presented and a quasi-completeness theorem proved. The
generality of the framework allows for better expresiveness, as well as a means
for handling imprecission in databases. The computational model, especially the
corresponding generalisation to our lattice-valued case of the TP operator, is used
to construct a positive relational algebra.

In the final section we prove that the expressive power of our relational
algebra is the same as that of our Datalog programs (up to some approximation
of the best answer).

References

1. K. Ciesielski, R. Flagg, and R. Kopperman. Polish spaces, computable approxim-
ations, and bitopological spaces. Topology and applications, 119(3):241–256, 2002.

2. C.V. Damásio and L. Moniz Pereira. Monotonic and residuated logic programs.
In Symbolic and Quantitative Approaches to Reasoning with Uncertainty, EC-
SQARU’01, pages 748–759. Lect. Notes in Artificial Intelligence, 2143, 2001.

3. A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic programs. J. of Logic
Programming, 43:187–250, 2000.

4. T. Eiter, T. Lukasiewicz, and M. Walter. A data model and algebra for probabilistic
complex values. Annals of Mathematics and Artificial Intelligence, 33(2–4):205–
252, 2001.

5. M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. J. of Logic Programming, 12:335–367, 1992.

6. S. Krajči, R. Lencses, and P. Vojtáš. A comparison of fuzzy and annotated logic
programming. Fuzzy Sets and Systems, 2002. Submitted.

7. L.V.S. Lakshmanan and F. Sadri. On a theory of probabilistic deductive databases.
Theory and Practice of Logic Programming, 1(1):5–42, 2001.

8. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming
with continuous semantics. In Logic Programming and Non-Monotonic Reasoning,
LPNMR’01, pages 351–364. Lect. Notes in Artificial Intelligence 2173, 2001.

9. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A procedural semantics for multi-
adjoint logic programming. In Progress in Artificial Intelligence, EPIA’01, pages
290–297. Lect. Notes in Artificial Intelligence 2258, 2001.

10. E. Naito, J. Ozawa, I. Hayashi, and N. Wakami. A proposal of a fuzzy connective
with learning function. In P. Bosc and J. Kaczprzyk, editors, Fuzziness Database
Management Systems, pages 345–364. Physica Verlag, 1995.

11. J. Pokorný and P. Vojtáš. A data model for flexible querying. In Advances in
Databases and Information Systems, ADBIS’01, pages 280–293. Lect. Notes in
Computer Science 2151, 2001.

12. C.J. van Alten. Representable biresiduated lattices. J. Algebra, 247:672–691, 2002.
13. P. Vojtáš and L. Pauĺık. Soundness and completeness of non-classical extended

SLD-resolution. In Extensions of Logic Programming, ELP’96, pages 289–301.
Lect. Notes in Comp. Sci. 1050, 1996.

13


