Sorted multi-adjoint logic programs:
termination results and applications

C.V. Damasid, J. Medin&, and M. Ojeda-Aciegb

L Centro Inteligéncia Artificial. Universidade Nova de Lisbcd@i . f ct . unl . pt
2 Dept. Matematica Aplicada. Univ. de Malagg.nedi na, aci ego}@t i ma. uma. es

Abstract. A general framework of logic programming allowing for thentoin-
ation of several adjoint lattices of truth-values is présdnThe main contribu-
tion is a new sufficient condition which guarantees terniamadf all queries for
the fixpoint semantics for an interesting class of progré®eseral extensions of
these conditions are presented and related to some wellrkfarmalisms for
probabilistic logic programming.

1 Introduction

In the recent years there has been an increasing interesidelmof reasoning under
“imperfect” information. As a result, a number of approashave been proposed for
the so-called inexact or fuzzy or approximate reasoningluing either fuzzy or an-
notated or similarity-based or probabilistic logic prograing. Several proposals have
appeared in the literature for dealing with probabilistiformation, namely Hybrid
Probabilistic Logic Programs [6], Probabilistic Deduetidatabases [8], and Probabil-
istic Logic Programs with conditional constraints [9].

Residuated and monotonic logic programs [2] and multiiadljogic programs [10]
were introduced as general frameworks which abstract theplar details of the dif-
ferent approaches cited above and focus only on the connpriahinechanism of infer-
ence. This higher level of abstraction makes possible theldpment of general results
about the behaviour of several of the previously cited apgines.

The main aim of this paper is to focus on some termination gntigs of the fixed
point semantics of a sorted version of multi-adjoint logiogramming. In this sorted
approach each sort identifies an underlying lattice of tuattues (weights) which must
satisfy the adjoint conditions. Although we restrict to greund case, we allow infinite
programs, and thus there is not loss of generality.

The major contribution of this paper is the termination ttesos for a general class
of sorted multi-adjoint logic programs, complementingufessin the literature and en-
hancing previous results in [1]. Then, we illustrate thel@pgion of the termination
theorems to obtain known termination results for some ofpreviously stated ap-
proaches languages.

The structure of the paper is as follows. In Section 2, weothice the preliminary
concepts necessary for the definition of the syntax and stéirearf sorted multi-adjoint
logic programs, presented in Section 3. In Section 4, we #tatbasic results regarding
the termination properties of our semantics, which areiaggdhter in probabilistic
settings in Section 5. The paper finishes with some conaissimd pointers to future
work.

2 Preliminary Definitions

We will make extensive use of the constructions and termigybf universal algebra,
in order to define formally the syntax and the semantics ofadhguages we will deal
with. A minimal set of concepts from universal algebra, vhidll be used in the sequel
in the style of [3], is introduced below.

2.1 Some Definitions from Universal Algebra

The notions of signature and-algebra will allow the interpretation of the function and
constant symbols in the language, as well as for specifyiagyntax.

Definition 1. Asignaturds a pair X’ = (S, F') whereS is a set of elements, designated
sorts and F' is a collection of pairs(f,s; x --- x s — s) denoting functions, such
thats, s1, ..., si are sorts and no symbgl occurs in two different pairs. The number
k is the arity of f; if k is O thenf is a constant symbol. To simplify notation, we write
f: 7 to denote a paiK f, 7) belonging toF'.

Definition 2. Let ¥ = (S, F) be a signature, a~-algebrais a pair ({A*} o, 1)
satisfying the two following conditions:

1. EachA® is a nonempty set called the carrier of sert

2. and[is a function which assigns a mdpf) : A%t x --- x A% — A® to each
fis1x--xs, — s € F,wherek > 0, and an elemenif(c) € A° to each
constant symbal: sin F

2.2 Multi-Adjoint Lattices and Multi-Adjoint Algebras
The main concept we will need in this section is thaadjoint pair.

Definition 3. Let (P, <) be a partially ordered set and lét—, &) be a pair of binary
operations inP such that:

(al) Operationg; is increasing in both arguments

(a2) Operation« is increasing in the first argument and decreasing in the sdco
argument.

(a3) Foranyz,y,z € P, we have that < (y «— 2)iff (& 2) <y

Then(«, &) is said to form aradjoint pairin (P, <).

Extending the results in [2,3,13] to a more general setiimgyhich different im-
plications (Lukasiewicz, Godel, product) and thus, saM@odus ponens-like inference
rules are used, naturally leads to considering sewagljaint pairsin the lattice.

Definition 4. A multi-adjoint latticeL is a tuple(L, <, <1, &1, - - -, <n, &n) Satisfy-
ing the following conditions:

(11) (L, =) is a bounded lattice, i.e. it has bottap) and top(T) elements;
(12) (<, &) is an adjoint pair in{L, <) for all i;
(I3) T&; 9 =0&; T =9 forall 9 € Lforall i.

Remark 1.Note that residuated lattices are a special case of myttirddattice, in
which the underlying poset has a lattice structure, has mlahstructure wrz and T,
and only one adjoint pair is present.

From the point of view of expressiveness, it is interestmgltow extra operators to
be involved with the operators in the multi-adjoint latti@éne structure which captures
this possibility is that of a multi-adjoint algebra.

Definition 5. A Y-algebrag is amulti-adjoint X’-algebravhenever:

— The carrier L® of each sort is a lattice under a partial ordet®.
— Each sorts contains operators—; : sxs — sand&;: sxs — sfori =1,...,n°
(and possibly some extra operators) such that the tdple

(L7, =% I(=1), L&), - I(=3), 1 (&3)
is a multi-adjoint lattice.

Multi-adjoint X’-algebras can be found underlying the probabilistic dedectata-
bases framework of [8] where our sorts correspond to wayswfhining belief and
doubt probability intervals. Our framework is richer singe do not restrain ourselves
to a single and particular carrier set and allow more opesato

In practice, we will usually have to assume some propertiethe extra operators
considered. These extra operators will be assumed to ber eitfjgregators, or con-
junctors or disjunctors, all of which are monotone funcsigtine latter, in addition, are
required to generalize their Boolean counterparts).

3 Syntax and Semantics of Sorted Multi-Adjoint Logic Programs

Sorted multi-adjoint logic programs are constructed fréwa abstract syntax induced
by a multi-adjointY’-algebra. Specifically, given an infinite set of sorted pifional
symbolsII, we will consider the corresponding terii-algebra of formulds§ =
Terms(X, IT). In addition, we will consider a multi-adjoiri-algebrag, whose extra
operators can be arbitrary monotone operators, to host #repulation of the truth-
values of the formulas in our programs.

Remark 2.As we are working with two~-algebras, in order to discharge the notation,
we introduce a special notation to clarify which algebrarction symbol belongs to.
Let o be a function symbol i, its interpretation undeg is denotedr (a dot on the
operator), whereas itself will denote its interpretation undgrwhen there is no risk
of confusion.

3.1 Syntax of Sorted Multi-Adjoint Logic Programs

The definition of sorted multi-adjoint logic program is giveas usual, as a set of rules
and facts. The particular syntax of these rules and factiséndpelow:

! Shortly, this corresponds to the algebra freely generated f7 and the set of function sym-
bols in £, respecting sort assignments.

Definition 6. A sorted multi-adjointlogic prograis a setP of rules(A < B,) such
that:

1. Therule (A < B) is a formula (an algebraic term) &;

2. Theweightd is an element (a truth-value) af*;

3. Theheadof the ruleA is a propositional symbol aoff of sorts.

4. ThebodyB is a formula of§ with sorts, built from sorted propositional symbols
By,..., B, (n > 0) by the use of function symbols.in

Factsare rules with bodyT ®, the top element of lattic&€®. A query (or goal) is a
propositional symbol intended as a questighprompting the system.

Sometimes, we will represent bodies of formulagiéB, , . .., B,], wheré the B;s
are the propositional variables occurring in the body @nid the aggregator obtained
as a composition.

3.2 Semantics of Sorted Multi-Adjoint Logic Programs

Definition 7. Aninterpretationis a mapping/: II — J, L® such that for every pro-
positional symbop of sorts thenI(p) € L°. The set of all interpretations of the sorted
propositions defined by thE-algebrag in the X-algebraf is denoted’.

Note that by the unique homomorphic extension theorem, efttiese interpreta-
tions can be uniquely extended to the whole set of formgilas

The orderings<® of the truth-valued.® can be easily extended to the set of inter-
pretations as follows:

Definition 8. Considerly, I> € Z¢. Then(Z¢, C) is a lattice wherd; C I, iff I; (p) <*

I,(p) forall p € IT°. The least interpretation maps every propositional symbol of sort
s to the least element® € L5,

A rule of a sorted multi-adjoint logic program is satisfiedemever the truth-value
of the rule is greater or equal than the weight associatddté rule. Formally:

Definition 9. Given an interpretatiod € Z¢, a weighted ruléd A 3 B, ¥) is satisfied
by I iff 9 <= I (A < B). Aninterpretation/ € Z is amodelof a sorted multi-adjoint
logic programP iff all weighted rules inP are satisfied by.

Definition 10. An elemeni € £? is acorrect answefor a programP and a query’ A
of sorts if for an arbitrary interpretationI which is a model o we have\ <° I(A).

The immediate consequences operator, given by van EmdeKawalski, can be
easily generalised to the framework of sorted multi-adjmigic programs.

Definition 11. Let P be a sorted multi-adjoint logic program. Thmmediate con-
sequences operatdp maps interpretations to interpretations, and for an intetation
I and an arbitrary propositional symbol of sorts is defined by

To(I)(A) = | [{0 & 1(B) | (A3 B,v) € P}

where| |, is the least upper bound in the lattic¥.

2 Note the use of square brackets in this context.

The semantics of a sorted multi-adjoint logic program cachzgacterised, as usual,
by the post-fixpoints of/p; that is, an interpretatiof is a model of a sorted multi-
adjoint logic progran® iff Tp(I) = I. The single-sorted} operator is proved to be
monotonic and continuous under very general hypothese§1 6k and it is remarkable
that these results are true even for non-commutative aneaasociative conjunctors.
In particular, by continuity, the least model can be readhest most countably many
iterations ofTp on the least interpretation. These results immediatelgrekto the
sorted case.

4 Termination Results

In this section we focus on the termination properties offtheperator. In what follows
we assume that every function symbol is interpreted as a atabfe function. If only
monotone and continuous operators are present in the yirdesdorted multi-adjoint
XY -algebrag then the immediate consequences operator reaches thdixpasnt at
most afteww iterations. It is not difficult to show examples in which ettgeo iterations
may be necessary to reach the least fixpoint.

The termination property we investigate is stated in théo¥ahg definition, and
corresponds to the notion of fixpoint-reachability of Kiterd Subrahmanian [7]:

Definition 12. LetP be a sorted multi-adjoint logic program with respect to a tiaul
adjoint X-algebra £ and a sorted set of propositional symbdls We say thaf'p ter-
minates for every queirff for every propositional symbd there is a finiten such that
Tp" (0)(A) is identical tol fp(Tp)(A).

In [1] several results were presented in order to providicsemt conditions guaran-
teeing that every query can be answered after a finite nuniliterations. In particular,
this means that for finite programs the least fixpointtan also be reached aftefia
nite number of iterations, ensuring computability of the seritanMoreover, a general
termination theorem for a wide class of sorted multi-adjtigic programs, designated
programs with finite dependencies, was anticipated.

The notion of dependency graph for sorted multi-adjoinidqrograms captures
(recursively) the propositional symbols which are neagsgacompute the value of a
given propositional symbol. Thdependency grapbf P has a vertex for each proposi-
tional symbol inl7, and there is an arc from a propositional symAdb a propositional
symbol B iff A is the head of a rule with body containing an occurrencB of he de-
pendency graph for a propositional symbbis the subgraph of the dependency graph
containing all the nodes accessible frahand corresponding edges.

Definition 13. A sorted multi-adjoint logic progran® hasfinite dependencieif for
every propositional symbaol the number of edges in the dependency graph4fas
finite.

The fact that a propositional symbol has finite dependergiigss us some guar-
antees that we can finitely evaluate its value. However, ithisot sufficient since a
propositional symbol may depend directly or indirectly ¢self, and thelp operator
might after all produce infinite ascending chains of valumstiis symbol. The fol-
lowing definition identifies an important class of sorted tikatljoint logic programs
where we can show that these infinite ascending chains capoot, and thus ensuring
termination.

Definition 14. A multi-adjointX’-algebra is said to béocalwhen the following condi-
tions are satisfied:

— For every pair of sorts; ands, there is a unary monotone casting function symbol
Csysy: S2 — S1 1N 2.

— All other function symbols have types of the fofm s x --- x s — s, i.e. are
closed operations in each sort, satisfying the followingifaary conditions for
everyv € L°:

I(f)(v,15,...,1%) 2% v
I(f)(1%v,1%,...,1%) =% v

I(F)(15, .. 15, 0) <% v

wherel® is the top element af®. In particular, if f is a unary function symbol then

I(f)(v) =% 0.
— The following property is obeyed:

(Cssy ©Csy8p 0--.0Cs,5) (V) 7w
foreveryv € £° and finite composition of casting functions with overalitsor- s.

In local sorted multi-adjoint’-algebras the non-casting function symbols are re-
stricted to operations in a unique sort. In order to combadees from different sorts,
one is deemed to use explicitly the casting functions in gg@priate places. Further-
more, the connectives are not assumed to be continuous.iEtas case, we are able
to state a main termination result about sorted multi-adjoigic programs:

Theorem 1. LetP be a sorted multi-adjoint logic program with respect to adbmulti-
adjoint X-algebra £ and the set of sorted propositional symbaéls and having finite
dependencies.

If for every iterationn and propositional symboH of sort s the set of relevant
values forA with respect tdly’(A) is a singleton, theflp terminates for every query.

The idea underlying the proof is to use the setsdévant valuegor a propositional
symbol A to collect the maximal values contributing to the compuotabf A in an iter-
ation of theT operator, whereas the non-maximal values are irrelevadigizrmining
the new value ford by Tp. This is formalized in the following definition:

Definition 15. LetP be a multi-adjoint program, and € I7°.

— The setRL(A) of relevant valuegor A with respect to interpretatiod is the set of
maximal values of the s¢t) &¢ 1(B) | (A <3 B,9) € P}

— Theculprit setfor A with respect td is the set of rulesA —; B, ¥) of P such that
9 &;5 1(B) belongs taR%(A). Rules in a culprit set are calleculprits

— Theculprit collectionfor 7" (A)(A) is defined as the set of culprits used in the
tree of recursive calls df in the computation.

The proof of the theorem is based on the bounded growth ofulpgitcollection
for Tp" (A)(A) . By induction on, it will be proved that if we assunig) ' (a)(A) =*
TE(n)(A) for A € II, then the culprit collection fofy' ™ (A)(A) has cardinality at

leastn + 1. Since the number of rules in the dependency graphifa finite then the
T operator must terminate after a finite number of steps, byguel the rules relevant
for the computation ofd.

As we shall see, Theorem 1 can be used to obtain the Proliatilleductive Data-
bases termination theorem [8], since the connectives atidw rule bodies obey to the
boundary conditions. However, the theorem cannot be apfishow termination res-
ults of Hybrid Probabilistic Logic Programs (HPLPs) appegin [5] because operat-
ors employed to capture disjunctive probabilistic stregego not obey to the boundary
conditions. For obtaining the termination theorem for HBwW® require the notion of
range dependency graph

Definition 16. Therange dependency grapfia sorted multi-adjoint logic prograr®

has a vertex for each propositional symbollih There is an arc from a propositional
symbolA to a propositional symbaB iff A is the head of a rule with body containing
an occurrence of3 which does not appear in a sub-term with main function symbol
having finite image.

The rationale is to not include arcs of the dependency grefenring to propositional
symbols which can only contribute directly or indirectlythvfinitely many values to the
evaluation of the body. For instance, consider the fule- f(g(A, B), B)®g(f(C))®

D ® g(E), wheref is mapped to a function with infinite range apdorresponds to a
function with finite range (i.eg has finite image). According to the previous definition,
we will introduce an arc from to B and fromA to D. The propositional symbaoft
occurs in the sub-termi(A, B), with finite image, and the same happens witli(C))
andg(E), and therefore they are excluded from the range dependeagh grhe arc to
B is introduced because of the second occurrend of f(g(A, B), B). The notion
of finite dependencies immediately extends to range depeydgaphs, but one has to
explicitly enforce that for each propositional symbol #nare only finitely many rules
for it in the program.

Theorem 2. If Pis a sorted multi-adjoint logic program with acyclic rangefendency
graph having finite dependencies, tHEnterminates for every query.

Proof (Sketch)Consider an arbitrary propositional symhéland the corresponding
range dependency subgraph forWe know that it is both finite and acyclic. It is pos-
sible to show that in these conditions only a finite numberaddigs can be produced by
theTp operator, and therefore no infinite ascending chains fov#hees ofA can be
generated. This is enough to show the result (see for insfafc a

Corollary 1. If Pis a sorted multi-adjoint logic program such that all furatisymbols
in the underlyingX’-algebra have finite images, th&h terminates for every query.

The proof is immediate since in this case the range depegdgaph is empty.

Mark that the conditions of the theorem do not imply that paogP is acyclic.
Cyclic dependencies through propositions in finitely rahfienction symbols can oc-
cur, since these are discarded from the range dependergy@f. This is enough to
show the results for Hybrid Probabilistic Logic Programs.

In order to remove the acyclicity condition from Theorem @ubdary conditions
are again necessary obtaining a new result combining Theonteand 2. Specifically,

the termination result can also be obtained if the local radjoint >'-algebra also
contains function symbolg: s; x --- x s; — s, such that their interpretations are
isotonic functions with finite range. We call this kind of aliya alocal multi-adjoint
X’-algebra with finite operators.

Theorem 3. LetP be a sorted multi-adjoint logic program with respect to adbmulti-
adjoint X-algebra with finite operator€ and the set of sorted propositional symbols
11, and having finite dependencies.

If for all iteration n and propositional symbaoll of sorts the set of relevant values
for A wrt T'(2) is a singleton, theflp terminates for every query.

The intuition underlying the proof of this theorem is simpdyapply a cardinality
argument. However, the formal presentation of the prootireg introducing some
technicalities which offer enough control on the increalsihe computation tree for a
given query.

On the one hand, one needs to handle the number of applisaifamles; this is
done by using the concept otilprit collection as in Theorem 1. On the other hand,
one needs to consider the applications of the finite opesatdrich are not adequately
considered by the culprit collections. With this aim, giiepropositional symbal, let
us consider the subset of rules of the program associatézidependency graphand
denote it byP4. This set is finite, for the program has finite dependenciesyes can
write:

P4 = {(H; «— Bi,9;) |i € {1,...,s}}

In addition, let us write each body of the rules above as ¥ito
Bi = @Qi[gy(D}),. .-, 9k, (Di,), C1, - .-,]

Whereg;'- (D}) represents the subtrees corresponding to the outermastrences of
finite operators, theC;? are the propositional symbols which are not in the scope of
finite operator, andy; is the operator obtained after composing all the operatotfsa
body not in the scope of any finite operator.

Now, considelG(P4) = {g{,..., g} .---.95,---, 95}, which is a finite multiset,
and let us define the following counting sets for the contidyuof the finite operators
to the overall computation.

Definition 17. Thecounting sets fol® and A for all n € N, denoted=7, are defined
as follows:

Eit={k <n| thereisg! € G(P*) s.t.g!(Tp" (A)(D})) > gi(Te"~ (A)(DE))}
With this definition we can state the main lemma needed in thefpf Thm 3.

Lemma 1. Under the hypotheses of Theorem 3[if ' (A)(A) > Tp"(A)(A) then

either| =7, ,| > |=2| or the culprit collection forTp" ' (A)(A) is greater than that

for Tp" (A)(A).
Proof (of Theorem 3)The previous lemma is the key to the proof:

3 Mark we are using again the dependency graph, not the rampgadency graph.

— Firstly, since the program has finite dependencies theneatdre infinitely many
rules in the culprit collections faA.

— On the other hand, the sequence of cardingl$| is upper bounded (since the
range of each functiog!, is finite andG(P(A)) is also finite).

As a result we obtain th&f terminates for every query. O

In the next section we apply the above results to show thenetion theorems for
important probabilistic based logic programming framekgor

5 Termination of Probabilistic Logic Programs

The representation of probabilistic information in ruleskd systems has attracted a
large interest of the logic programming community, fostielby knowledge represent-
ation problems in advanced applications, namely for dédrictatabases. Several pro-
posals have appeared in the literature for dealing withgiaistic information, namely
Hybrid Probabilistic Logic Programs [6], Probabilistic dective Databases [8], and
Probabilistic Logic Programs with conditional constraif]. Both Hybrid Probabil-
istic Logic Programs, Probabilistic Deductive Databases] Ordinary Probabilistic
Logic Programs can be captured by Residuated MonotonicclBgigrams, as shown
in [4]. We illustrate here the application of the theoremthefprevious section to obtain
known termination results for these languages. Notice tthede results are obtained
from the abstract properties of the underlying algebrastearsformed programs. In
this way we simplify and synthesize the techniques usedda shese results, which
can be applied in other settings as well.

5.1 Termination of Ordinary Probabilistic Logic Programs

Lukasiewicz [9] introduces a new approach to probabilistic programming in which
probabilities are defined over a set of possible worlds anahich classical program
clauses are extended by a subintervgDoi] that describes a range for the conditional
probability of the head of a clause given its body. In its ngesieral form, probabilistic
logic programs of [9] are sets of conditional constraif#t | B)|c1, c2] whereH is

a conjunction of atoms ang is either a conjunction of atoms ar, andc; < ¢, are
rational numbers in the intervd, 1]. These conditional constraints express that the
conditional probability ofH given B is betweenc; andc, or that the probability of
the antecedent & A semantics and complexity of reasoning are exhaustitaljied,
and in most cases is intractable and not truth-functionaléver, for a special kind
of probabilistic logic programs the author provides relaships to “classical” logic
programming. Ordinary probabilistic logic programs arelgbilistic logic programs
where the conditional constraints have the restricted form

(A| ByA...ABy)e,1]or (A] T)e, 1] (1)

Under positively correlated probabilistic interpretatioq PCP-interpretations), reason-
ing becomes tractable and truth-functional. Ordinary dimhl constraints (1) of or-
dinary probabilistic logic programs under PCP-interpiietacan be immediately trans-
lated to a sorted multi-adjoint logic programming rule

A< min (By,...,min(B,_1, B,))

over the multi-adjoint”-algebra containing a single sarsignature with carriefo, 1],
with the usual ordering on real numbers. A constant symhavery element of0, 1]
is necessary, as well as the minimum function (denotechhy) and the product of
two reals (denoted by*), and Goguen implicatior—*. The structure< [0, 1], <

, <" x" > is a well-known adjoint lattice, where Goguen implicatisrthe residuum
of product t-norm. The function symbols-, min are interpreted by—* and min",
respectively. The previous rule can also be represented as:

A& ¢ x min (Bi,...,min(B,_1, By))

Clearly, as remarked in [9], the resulting rule is equivakena rule of van Emden’s
Quantitative Deduction [12]. It is pretty clear that in teesrcumstances all the con-
ditions of Theorem 1 are fulfilled for ground programs of tthewe form having finite
dependencies, and we can guarantee terminati@i @dr every query. This is the case
because we are using solely t-norms in the body, which by itiefirobey to the bound-
ary condition, over the unit intervdl), 1]. Since the unit interval is totally ordered and
we have a finite number of rules for every propositional sylnlve can guarantee that
the set of relevant values f@h" (A) is a singleton. Thus, we obtain a termination result
for Ordinary Probabilistic Logic Programs and Quantitativeduction, extending the
one appearing in [12].

In general, if we have combinations of t-norms in the bodiesutes, over totally
ordered domains, we can guarantee termination for progvathdinite dependencies.
This extends the previous results by Paulik [11]. The sappdies if we reverse the
ordering in the unit interval, and use t-conorms in the bedigis is necessary to un-
derstand the termination result for Probabilistic Dediecibatabases, presented in the
next section.

5.2 Termination of Probabilistic Deductive Databases

A definition of a theory of probabilistic deductive datab&sedescribed in Lakshmanan
and Sadri’'s work [8] where belief and doubt can both be exga@explicitly with equal
status. Probabilistic programs (p-programs) are finite gEtriples of the form:

(A < Bl7 e -aBnQ,Upr)

As usual,A, By, ..., B, are atoms, which may not contain complex termss a
confidence level, and, (u,) is the conjunctive (disjunctive) mode associated with the
rule. For a given ground atorh, the disjunctive mode associated with all the rules4or
must be the same. The authors present a termination resufhasy that it is used solely
positive correlation as disjunctive mode for combininges@brules in the program, and
arbitrary conjunctive modes. The truth-values of p-proggare confidence levels of
the form([a, 3], [, 6]), wherea, 3,~, ands are real numbers in the unit interal'he
valuesa andg are, respectively, the expert’s lower and upper bounds ligfbevhile

~ and¢é are the bounds for the expert’s doubt. The fixpoint semauatigsprograms

4 Even though the authors say that they usually assumexthats and~y < 4, this cannot be
enforced otherwise they cannot specify properly the natfdrilattice. So, we also not assume
these constraints.

10

relies on truth-ordering of confidence levels. Suppase ([a1, 1], [11,01]) @andes =
([az, B2], [12, 62]) are confidence levels, then we say that:

c1 <t epiff g < g, B < o andyy > 72,01 > 0o,
with corresponding least upper bound operatipm; ¢, defined as

([max{a1, as}, max{(, B2}, [min{vy1,v2}, min{dy, d2 }])

and greatest lower boung ®; ¢y as:

((min{ay, as}, min{ By, B2}], [max{y1,vy2}, max{di, d2}])

The least upper bound of truth-ordering corresponds toijerdttive mode designated
“positive correlation”, which is used to combine the comtitions from several rules for
a given propositional symbol. We restrict attention to igjunctive mode, since the
termination results presented in [8] assume all the rulegptithis mode. Conjunctive
modes are used to combine propositional symbols in the ladl, corresponds to
the positive correlationconjunctive mode. Another conjunctive modéridependence
with ¢1 Ajng co defined as

([ar x @z, Br x Bo], [1 = (L = m1) x (1 =72),1 = (1 = 61) x (1 = 62)])

The attentive reader will surely notice that all these opi@na work independently
in each component of the confidence level. Furthermorentdhependenceonjunctive
mode combines the’s andS’s with a t-norm (product), and theandJ parts are com-
bined with a t-conorm. This is a property enjoyed by all cowjive modes specified
in [8]. In order to show the termination result we require teayts, both with carrier
[0, 1], the first one denoted by. and ordered by<, while the other is denoted b/
and ordered by (this means that for this sort the bottom elementasd the top one is
0, least upper bound isiin). The program transformation translates each ground atom
P in a p-program into four propositional symbaRs*, P?, PY and P°, representing
each component of the confidence level associated Ritfihe translation generates
four rules, in the resulting sorted multi-adjoint logic gramming, from each rule in
the p-program. We illustrate this with an example, wherecirgunctive mode use is
independence (remember that the disjunctive mode is fi¥eg}program rule of the
form

(ASM By,...,B,; ind,pc)

is encoded as the following four rules:

a b

A —m By x B* AP —m BPy x BP
c d

AV M Blo.. B A <MBla..oB

The operatiomp denotes the t-conorm function defineddayw = 1—(1—v) x (1—w).
Other conjunctive modes can be encoded similarly. The teatign of these programs
is now immediate. First, the rules fer propositional symbols only involve: pro-
positional symbols in the body. The same applies to the gtherandé rules. The

11

underlying carriers are totally ordered, and the functigyrabols in the body obey to
the boundary condition since they are either t-norms {fend 5 rules) or t-conorms
(for v and ¢ rules). Thus, from the discussion on the previous sectitveofem 1 is
applicable and the result immediately follows for programith finite dependencies.
This is a result shown based solely on general propertidseafimderlying lattices, not
resorting to specific procedural concepts as in [8]. Furtioee, since the grounding of
p-programs always results in a finite program, there is nlo ¢generality by assum-
ing finite dependencies. The use of other disjunctive moakesduce operators in the
bodies which no longer obey to the boundary condition. Fisr¢hse, Lakshmanan and
Sadri do not provide any termination result, which is nadusgre since this violates the
general conditions of applicability of Theorem 1.

5.3 Termination of Hybrid Probabilistic Logic Programs

Hybrid Probabilistic Logic Programs [6] have been propdeedonstructing rule sys-
tems which allow the user to reason with and combine proiséibilnformation under
different probabilistic strategies. The conjunctive jdmstive) probabilistic strategies
are pairwise combinations of t-norms (t-conorms, respelstj over pairs of real num-
bers in the unit interval0, 1], i.e. intervals. In order to obtain a residuated lattice, th
carrierZN'T is the set of pair§z, b] wherea andb are real numbers in the unit interval

The termination results presented in [5] assume finite giquagrams. From a dif-
ficult analysis of the complex fixpoint construction one caa that only a finite number
of different intervals can be generated in the case of fimteigd programs. We show
how this result can be obtained from Theorem 2 almost diregiven the embedding
of Hybrid Probabilistic Logic Programs into Residuated ®peesented in [3]. This
embedding generates rules of the following kind

1 F 2, (F)n..ns. (F) 3.F° s, (B) s, (Bn)

[a,1] — — [1,0] — =
2. F sy (B) 0o ns, (Ba) 4 F o, (GH)

resorting to the auxiliary double bar functiofrom ZN7 to ZAV'T and the functions
Sy INT — INT,with 4 in ZN'T . For our analysis, it is only important to know that
all these functions have finite image, and thus when constiuthe range dependency
graph no arc will be introduced for rules of the first threegtyp

The next important detail is that the rules of the fourth typhich use either con-
junctive or disjunctive strategies, do not introduce any cyclic dependencies and the
dependencies are finite. This is the case, becayse and H are propositional sym-
bols which represent ground hybrid basic formulas (se€q f@!3details), such that
F =G o, H, i.e. the propositional symbdf represents a more complex formula ob-
tained from the conjunctive or disjunctive combination foé simpler formulags and
H. Therefore, it is not possible to have a dependency from pleinfiormula to a more
complex one. By application of Theorem 2 it immediately dolk that7p terminates
for every finite ground program, as we intended to show. Just side remark, The-
orem 3 can also be applied if in the program only occurs cattiua basic formulas,

5 We do not impose that < b.

12

without requiring any reasoning about the shape of the toamed program and its
dependencies.

6

Conclusions

A sorted version of multi-adjoint logic programming has bé&groduced, together with

several general sufficient results about the terminatidtsdix-point semantics. Later,

these results are instantiated in order to prove termindtieorems for some probab-
ilistic approaches to logic programming. Notice that thessilts are obtained solely
from the abstract properties of the underlying algebrastearsformed programs. In
this way we simplify and synthesize the techniques usedda shese results, which

can be applied in other settings as well.

References

1.

10.

11.

12.

13.

C.V. Damasio, J. Medina and M. Ojeda-Aciego. Termimatiesults for sorted multi-
adjoint logic programming. Itnformation Processing and Management of Uncertainty for
Knowledge-Based SystertfRMU’04. Accepted.

. C. V. Damasio and L. M. Pereira. Monotonic and residuéigit programs. Lect. Notes in

Artificial Intelligence 2143, pp. 748—759, 2001.

. C. V. Damasio and L. M. Pereira. Hybrid probabilisticitogrograms as residuated logic

programs.Studia Logica72(1):113-138, 2002.

. C. V. Damasio and L. M. Pereira. Sorted monotonic logmgpams and their embeddings.

In Information Processing and Management of Uncertainty fooWledge-Based Systems,
IPMU’04. Accepted.

. M. Dekhtyar, A. Dekhtyar and V.S. Subrahmanian. HybridtRbilistic Programs: Al-

gorithms and Complexity. Proc. of Uncertainty in AI'99 cenénce, 1999

. A. Dekhtyar and V.S. Subrahmanian. Hybrid Probabiliftftograms, Journal of Logic

Programming43(3):187—-250, 2000

. M. Kifer and V. S. Subrahmanian, Theory of generalizedosated logic programming and

its applications.J. of Logic Programmindg.2(4):335-367, 1992

. L. Lakhsmanan and F. Sadri, On a theory of probabilistdudéve databases heory and

Practice of Logic Programming(1):5-42, 2001

. T. Lukasiewicz. Probabilistic logic programming withnzlitional constraintsACM Trans.

Comput. Log2(3): 289-339 (2001).

J. Medina, M. Ojeda-Aciego, and P. Vojtas. Multi-adjdogic programming with continu-
ous semantics. Lect. Notes in Artificial Intelligence 2138, 351-364, 2001.

L. Paulik. Best possible answer is computable for fugkip-resolution. Lecture Notes on
Logic 6, pp. 257—-266, 1996.

M. H. van Emden. Quantitative deduction and its fixpdiettry. Journal of Logic Program-

ming, 4(1):37-53, 1986.

P. Vojtas. Fuzzy logic programminguzzy Sets and Systeri24(3):361-370, 2001.

13

