
Sorted multi-adjoint logic programs:
termination results and applications

C.V. Damásio1, J. Medina2, and M. Ojeda-Aciego2

1 Centro Inteligência Artificial. Universidade Nova de Lisboa.cd@di.fct.unl.pt
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Abstract. A general framework of logic programming allowing for the combin-
ation of several adjoint lattices of truth-values is presented. The main contribu-
tion is a new sufficient condition which guarantees termination of all queries for
the fixpoint semantics for an interesting class of programs.Several extensions of
these conditions are presented and related to some well-known formalisms for
probabilistic logic programming.

1 Introduction

In the recent years there has been an increasing interest in models of reasoning under
“imperfect” information. As a result, a number of approaches have been proposed for
the so-called inexact or fuzzy or approximate reasoning, involving either fuzzy or an-
notated or similarity-based or probabilistic logic programming. Several proposals have
appeared in the literature for dealing with probabilistic information, namely Hybrid
Probabilistic Logic Programs [6], Probabilistic Deductive Databases [8], and Probabil-
istic Logic Programs with conditional constraints [9].

Residuated and monotonic logic programs [2] and multi-adjoint logic programs [10]
were introduced as general frameworks which abstract the particular details of the dif-
ferent approaches cited above and focus only on the computational mechanism of infer-
ence. This higher level of abstraction makes possible the development of general results
about the behaviour of several of the previously cited approaches.

The main aim of this paper is to focus on some termination properties of the fixed
point semantics of a sorted version of multi-adjoint logic programming. In this sorted
approach each sort identifies an underlying lattice of truth-values (weights) which must
satisfy the adjoint conditions. Although we restrict to theground case, we allow infinite
programs, and thus there is not loss of generality.

The major contribution of this paper is the termination theorems for a general class
of sorted multi-adjoint logic programs, complementing results in the literature and en-
hancing previous results in [1]. Then, we illustrate the application of the termination
theorems to obtain known termination results for some of thepreviously stated ap-
proaches languages.

The structure of the paper is as follows. In Section 2, we introduce the preliminary
concepts necessary for the definition of the syntax and semantics of sorted multi-adjoint
logic programs, presented in Section 3. In Section 4, we state the basic results regarding
the termination properties of our semantics, which are applied later in probabilistic
settings in Section 5. The paper finishes with some conclusions and pointers to future
work.
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2 Preliminary Definitions

We will make extensive use of the constructions and terminology of universal algebra,
in order to define formally the syntax and the semantics of thelanguages we will deal
with. A minimal set of concepts from universal algebra, which will be used in the sequel
in the style of [3], is introduced below.

2.1 Some Definitions from Universal Algebra

The notions of signature andΣ-algebra will allow the interpretation of the function and
constant symbols in the language, as well as for specifying the syntax.

Definition 1. A signatureis a pairΣ = 〈S, F 〉whereS is a set of elements, designated
sorts, andF is a collection of pairs〈f, s1 × · · · × sk → s〉 denoting functions, such
that s, s1, . . . , sk are sorts and no symbolf occurs in two different pairs. The number
k is the arity off ; if k is 0 thenf is a constant symbol. To simplify notation, we write
f : τ to denote a pair〈f, τ〉 belonging toF .

Definition 2. Let Σ = 〈S, F 〉 be a signature, aΣ-algebrais a pair
〈

{As}s∈S , I
〉

satisfying the two following conditions:

1. EachAs is a nonempty set called the carrier of sorts,
2. andI is a function which assigns a mapI(f) : As1 × · · · × Ask → As to each

f : s1 × · · · × sk → s ∈ F , wherek > 0, and an elementI(c) ∈ As to each
constant symbolc : s in F.

2.2 Multi-Adjoint Lattices and Multi-Adjoint Algebras

The main concept we will need in this section is that ofadjoint pair.

Definition 3. Let 〈P,�〉 be a partially ordered set and let(←, &) be a pair of binary
operations inP such that:

(a1) Operation& is increasing in both arguments
(a2) Operation← is increasing in the first argument and decreasing in the second

argument.
(a3) For anyx, y, z ∈ P , we have thatx � (y ← z) iff (x& z) � y

Then(←, &) is said to form anadjoint pairin 〈P,�〉.

Extending the results in [2,3,13] to a more general setting,in which different im-
plications (Łukasiewicz, Gödel, product) and thus, several modus ponens-like inference
rules are used, naturally leads to considering severaladjoint pairsin the lattice.

Definition 4. A multi-adjoint latticeL is a tuple(L,�,←1, &1, . . . ,←n, &n) satisfy-
ing the following conditions:

(l1) 〈L,�〉 is a bounded lattice, i.e. it has bottom(⊥) and top(⊤) elements;
(l2) (←i, &i) is an adjoint pair in〈L,�〉 for all i;
(l3) ⊤&i ϑ = ϑ &i⊤ = ϑ for all ϑ ∈ L for all i.
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Remark 1.Note that residuated lattices are a special case of multi-adjoint lattice, in
which the underlying poset has a lattice structure, has monoidal structure wrt& and⊤,
and only one adjoint pair is present.

From the point of view of expressiveness, it is interesting to allow extra operators to
be involved with the operators in the multi-adjoint lattice. The structure which captures
this possibility is that of a multi-adjoint algebra.

Definition 5. A Σ-algebraL is amulti-adjointΣ-algebrawhenever:

– The carrierLs of each sort is a lattice under a partial order�s.
– Each sorts contains operators←s

i : s×s→ s and&s
i : s×s→ s for i = 1, . . . , ns

(and possibly some extra operators) such that the tupleLs

(Ls,�s, I(←s
1), I(&

s
1), . . . , I(←s

n), I(&
s
n))

is a multi-adjoint lattice.

Multi-adjoint Σ-algebras can be found underlying the probabilistic deductive data-
bases framework of [8] where our sorts correspond to ways of combining belief and
doubt probability intervals. Our framework is richer sincewe do not restrain ourselves
to a single and particular carrier set and allow more operators.

In practice, we will usually have to assume some properties on the extra operators
considered. These extra operators will be assumed to be either aggregators, or con-
junctors or disjunctors, all of which are monotone functions (the latter, in addition, are
required to generalize their Boolean counterparts).

3 Syntax and Semantics of Sorted Multi-Adjoint Logic Programs

Sorted multi-adjoint logic programs are constructed from the abstract syntax induced
by a multi-adjointΣ-algebra. Specifically, given an infinite set of sorted propositional
symbolsΠ , we will consider the corresponding termΣ-algebra of formulas1 F =
Terms(Σ, Π). In addition, we will consider a multi-adjointΣ-algebraL, whose extra
operators can be arbitrary monotone operators, to host the manipulation of the truth-
values of the formulas in our programs.

Remark 2.As we are working with twoΣ-algebras, in order to discharge the notation,
we introduce a special notation to clarify which algebra a function symbol belongs to.
Let σ be a function symbol inΣ, its interpretation underL is denoted

.

σ (a dot on the
operator), whereasσ itself will denote its interpretation underF when there is no risk
of confusion.

3.1 Syntax of Sorted Multi-Adjoint Logic Programs

The definition of sorted multi-adjoint logic program is given, as usual, as a set of rules
and facts. The particular syntax of these rules and facts is given below:

1 Shortly, this corresponds to the algebra freely generated from Π and the set of function sym-
bols inL, respecting sort assignments.
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Definition 6. A sorted multi-adjoint logic programis a setP of rules〈A←s
i B, ϑ〉 such

that:

1. Therule (A←s
i B) is a formula (an algebraic term) ofF;

2. Theweightϑ is an element (a truth-value) ofLs;
3. Theheadof the ruleA is a propositional symbol ofΠ of sorts.
4. ThebodyB is a formula ofF with sorts, built from sorted propositional symbols

B1, . . . , Bn (n ≥ 0) by the use of function symbols inΣ.

Facts are rules with body⊤s, the top element of latticeLs. A query (or goal) is a
propositional symbol intended as a question?A prompting the system.

Sometimes, we will represent bodies of formulas as@[B1, . . . , Bn], where2 theBis
are the propositional variables occurring in the body and@ is the aggregator obtained
as a composition.

3.2 Semantics of Sorted Multi-Adjoint Logic Programs

Definition 7. An interpretationis a mappingI : Π →
⋃

s Ls such that for every pro-
positional symbolp of sorts thenI(p) ∈ Ls. The set of all interpretations of the sorted
propositions defined by theΣ-algebraF in theΣ-algebraL is denotedIL.

Note that by the unique homomorphic extension theorem, eachof these interpreta-
tions can be uniquely extended to the whole set of formulasF.

The orderings�s of the truth-valuesLs can be easily extended to the set of inter-
pretations as follows:

Definition 8. ConsiderI1, I2 ∈ IL. Then,〈IL,⊑〉 is a lattice whereI1 ⊑ I2 iff I1(p) �s

I2(p) for all p ∈ Πs. The least interpretation△ maps every propositional symbol of sort
s to the least element⊥s ∈ Ls.

A rule of a sorted multi-adjoint logic program is satisfied whenever the truth-value
of the rule is greater or equal than the weight associated with the rule. Formally:

Definition 9. Given an interpretationI ∈ IL, a weighted rule〈A←s
i B, ϑ〉 is satisfied

byI iff ϑ �s Î (A←s
i B). An interpretationI ∈ IL is amodelof a sorted multi-adjoint

logic programP iff all weighted rules inP are satisfied byI.

Definition 10. An elementλ ∈ Ls is acorrect answerfor a programP and a query?A
of sorts if for an arbitrary interpretationI which is a model ofP we haveλ �s I(A).

The immediate consequences operator, given by van Emden andKowalski, can be
easily generalised to the framework of sorted multi-adjoint logic programs.

Definition 11. Let P be a sorted multi-adjoint logic program. Theimmediate con-
sequences operatorTP maps interpretations to interpretations, and for an interpretation
I and an arbitrary propositional symbolA of sorts is defined by

TP(I)(A) =
⊔

s

{ϑ
.

&
s
i Î(B) | 〈A←s

i B, ϑ〉 ∈ P}

where
⊔

s is the least upper bound in the latticeLs.

2 Note the use of square brackets in this context.
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The semantics of a sorted multi-adjoint logic program can becharacterised, as usual,
by the post-fixpoints ofTP; that is, an interpretationI is a model of a sorted multi-
adjoint logic programP iff TP(I) ⊑ I. The single-sortedTP operator is proved to be
monotonic and continuous under very general hypotheses, see [10], and it is remarkable
that these results are true even for non-commutative and non-associative conjunctors.
In particular, by continuity, the least model can be reachedin at most countably many
iterations ofTP on the least interpretation. These results immediately extend to the
sorted case.

4 Termination Results

In this section we focus on the termination properties of theTP operator. In what follows
we assume that every function symbol is interpreted as a computable function. If only
monotone and continuous operators are present in the underlying sorted multi-adjoint
Σ-algebraL then the immediate consequences operator reaches the leastfixpoint at
most afterω iterations. It is not difficult to show examples in which exactly ω iterations
may be necessary to reach the least fixpoint.

The termination property we investigate is stated in the following definition, and
corresponds to the notion of fixpoint-reachability of Kiferand Subrahmanian [7]:

Definition 12. Let P be a sorted multi-adjoint logic program with respect to a multi-
adjointΣ-algebraL and a sorted set of propositional symbolsΠ . We say thatTP ter-
minates for every queryiff for every propositional symbolA there is a finiten such that
TP

n(△)(A) is identical tolfp(TP)(A).

In [1] several results were presented in order to provide sufficient conditions guaran-
teeing that every query can be answered after a finite number of iterations. In particular,
this means that for finite programs the least fixpoint ofTP can also be reached after afi-
nitenumber of iterations, ensuring computability of the semantics. Moreover, a general
termination theorem for a wide class of sorted multi-adjoint logic programs, designated
programs with finite dependencies, was anticipated.

The notion of dependency graph for sorted multi-adjoint logic programs captures
(recursively) the propositional symbols which are necessary to compute the value of a
given propositional symbol. Thedependency graphof P has a vertex for each proposi-
tional symbol inΠ , and there is an arc from a propositional symbolA to a propositional
symbolB iff A is the head of a rule with body containing an occurrence ofB. The de-
pendency graph for a propositional symbolA is the subgraph of the dependency graph
containing all the nodes accessible fromA and corresponding edges.

Definition 13. A sorted multi-adjoint logic programP hasfinite dependenciesiff for
every propositional symbolA the number of edges in the dependency graph forA is
finite.

The fact that a propositional symbol has finite dependenciesgives us some guar-
antees that we can finitely evaluate its value. However, thisis not sufficient since a
propositional symbol may depend directly or indirectly on itself, and theTP operator
might after all produce infinite ascending chains of values for this symbol. The fol-
lowing definition identifies an important class of sorted multi-adjoint logic programs
where we can show that these infinite ascending chains cannotoccur, and thus ensuring
termination.
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Definition 14. A multi-adjointΣ-algebra is said to belocalwhen the following condi-
tions are satisfied:

– For every pair of sortss1 ands2 there is a unary monotone casting function symbol
cs1s2 : s2 → s1 in Σ.

– All other function symbols have types of the formf : s × · · · × s → s, i.e. are
closed operations in each sort, satisfying the following boundary conditions for
everyv ∈ Ls:

I(f)(v, 1s, . . . , 1s) �s v

I(f)(1s, v, 1s, . . . , 1s) �s v
...

I(f)(1s, . . . , 1s, v) �s v

where1s is the top element ofLs. In particular, if f is a unary function symbol then
I(f)(v) �s v.

– The following property is obeyed:

(css1 ◦ cs1s2 ◦ . . . ◦ csns) (v) �s v

for everyv ∈ Ls and finite composition of casting functions with overall sort s→ s.

In local sorted multi-adjointΣ-algebras the non-casting function symbols are re-
stricted to operations in a unique sort. In order to combine values from different sorts,
one is deemed to use explicitly the casting functions in the appropriate places. Further-
more, the connectives are not assumed to be continuous. Evenin this case, we are able
to state a main termination result about sorted multi-adjoint logic programs:

Theorem 1. LetP be a sorted multi-adjoint logic program with respect to a local multi-
adjoint Σ-algebraL and the set of sorted propositional symbolsΠ , and having finite
dependencies.

If for every iterationn and propositional symbolA of sort s the set of relevant
values forA with respect toT n

P
(△) is a singleton, thenTP terminates for every query.

The idea underlying the proof is to use the set ofrelevant valuesfor a propositional
symbolA to collect the maximal values contributing to the computation ofA in an iter-
ation of theTP operator, whereas the non-maximal values are irrelevant for determining
the new value forA by TP. This is formalized in the following definition:

Definition 15. LetP be a multi-adjoint program, andA ∈ Πs.

– The setRI
P
(A) of relevant valuesfor A with respect to interpretationI is the set of

maximal values of the set{ϑ
.

&s
i Î(B) | 〈A←s

i B, ϑ〉 ∈ P}
– Theculprit setfor A with respect toI is the set of rules〈A←s

i B, ϑ〉 of P such that

ϑ
.

&s
i Î(B) belongs toRI

P
(A). Rules in a culprit set are calledculprits.

– Theculprit collectionfor TP
n(△)(A) is defined as the set of culprits used in the

tree of recursive calls ofTP in the computation.

The proof of the theorem is based on the bounded growth of the culprit collection
for TP

n(△)(A) . By induction onn, it will be proved that if we assumeT n+1
P

(△)(A) ≻s

T n
P

(△)(A) for A ∈ Π , then the culprit collection forT n+1
P

(△)(A) has cardinality at
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leastn + 1. Since the number of rules in the dependency graph forA is finite then the
TP operator must terminate after a finite number of steps, by using all the rules relevant
for the computation ofA.

As we shall see, Theorem 1 can be used to obtain the Probabilistic Deductive Data-
bases termination theorem [8], since the connectives allowed in rule bodies obey to the
boundary conditions. However, the theorem cannot be applied to show termination res-
ults of Hybrid Probabilistic Logic Programs (HPLPs) appearing in [5] because operat-
ors employed to capture disjunctive probabilistic strategies do not obey to the boundary
conditions. For obtaining the termination theorem for HPLPs we require the notion of
range dependency graph:

Definition 16. Therange dependency graphof a sorted multi-adjoint logic programP
has a vertex for each propositional symbol inΠ . There is an arc from a propositional
symbolA to a propositional symbolB iff A is the head of a rule with body containing
an occurrence ofB which does not appear in a sub-term with main function symbol
having finite image.

The rationale is to not include arcs of the dependency graph referring to propositional
symbols which can only contribute directly or indirectly with finitely many values to the
evaluation of the body. For instance, consider the ruleA← f(g(A, B), B)⊗g(f(C))⊗
D ⊗ g(E), wheref is mapped to a function with infinite range andg corresponds to a
function with finite range (i.e.g has finite image). According to the previous definition,
we will introduce an arc fromA to B and fromA to D. The propositional symbolA
occurs in the sub-termg(A, B), with finite image, and the same happens withg(f(C))
andg(E), and therefore they are excluded from the range dependency graph. The arc to
B is introduced because of the second occurrence ofB in f(g(A, B), B). The notion
of finite dependencies immediately extends to range dependency graphs, but one has to
explicitly enforce that for each propositional symbol there are only finitely many rules
for it in the program.

Theorem 2. If P is a sorted multi-adjoint logic program with acyclic range dependency
graph having finite dependencies, thenTP terminates for every query.

Proof (Sketch).Consider an arbitrary propositional symbolA and the corresponding
range dependency subgraph forA. We know that it is both finite and acyclic. It is pos-
sible to show that in these conditions only a finite number of values can be produced by
theTP operator, and therefore no infinite ascending chains for thevalues ofA can be
generated. This is enough to show the result (see for instance [1]). ⊓⊔

Corollary 1. If P is a sorted multi-adjoint logic program such that all function symbols
in the underlyingΣ-algebra have finite images, thenTP terminates for every query.

The proof is immediate since in this case the range dependency graph is empty.
Mark that the conditions of the theorem do not imply that program P is acyclic.

Cyclic dependencies through propositions in finitely ranged function symbols can oc-
cur, since these are discarded from the range dependency graph ofP. This is enough to
show the results for Hybrid Probabilistic Logic Programs.

In order to remove the acyclicity condition from Theorem 2, boundary conditions
are again necessary obtaining a new result combining Theorems 1 and 2. Specifically,
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the termination result can also be obtained if the local multi-adjoint Σ-algebra also
contains function symbolsg : s1 × · · · × sl → sk such that their interpretations are
isotonic functions with finite range. We call this kind of algebra alocal multi-adjoint
Σ-algebra with finite operators.

Theorem 3. LetP be a sorted multi-adjoint logic program with respect to a local multi-
adjoint Σ-algebra with finite operatorsL and the set of sorted propositional symbols
Π , and having finite dependencies.

If for all iteration n and propositional symbolA of sorts the set of relevant values
for A wrt T n

P
(△) is a singleton, thenTP terminates for every query.

The intuition underlying the proof of this theorem is simplyto apply a cardinality
argument. However, the formal presentation of the proof requires introducing some
technicalities which offer enough control on the increase of the computation tree for a
given query.

On the one hand, one needs to handle the number of applications of rules; this is
done by using the concept ofculprit collection, as in Theorem 1. On the other hand,
one needs to consider the applications of the finite operators, which are not adequately
considered by the culprit collections. With this aim, givena propositional symbolA, let
us consider the subset of rules of the program associated to its dependency graph3, and
denote it byPA. This set is finite, for the program has finite dependencies, so we can
write:

P
A = {〈Hi ← Bi, ϑi〉 | i ∈ {1, . . . , s}}

In addition, let us write each body of the rules above as follows:

Bi = @i[g
i
1(D

i
1), . . . , g

i
ki

(Di
ki

), Ci
1, . . . , C

i
mi

]

wheregi
j(D

i
j) represents the subtrees corresponding to the outermost occurrences of

finite operators, theCi
j are the propositional symbols which are not in the scope of

finite operator, and@i is the operator obtained after composing all the operators in the
body not in the scope of any finite operator.

Now, considerG(PA) = {g1
1, . . . , g

1
k1

, . . . , gs
1, . . . , g

s
ks
}, which is a finite multiset,

and let us define the following counting sets for the contribution of the finite operators
to the overall computation.

Definition 17. Thecounting sets forP andA for all n ∈ N, denotedΞA
n , are defined

as follows:

ΞA
n = {k < n | there isgi

j ∈ G(PA) s.t.gi
j(TP

n(△)(Di
j)) > gi

j(TP
n−1(△)(Di

j))}

With this definition we can state the main lemma needed in the proof of Thm 3.

Lemma 1. Under the hypotheses of Theorem 3, ifTP
n+1(△)(A) > TP

n(△)(A) then
either |ΞA

n+1| > |Ξ
A
n | or the culprit collection forTP

n+1(△)(A) is greater than that
for TP

n(△)(A).

Proof (of Theorem 3).The previous lemma is the key to the proof:

3 Mark we are using again the dependency graph, not the range dependency graph.
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– Firstly, since the program has finite dependencies there cannot be infinitely many
rules in the culprit collections forA.

– On the other hand, the sequence of cardinals|ΞA
n | is upper bounded (since the

range of each functiongi
j is finite andG(P(A)) is also finite).

As a result we obtain thatTP terminates for every query. ⊓⊔

In the next section we apply the above results to show the termination theorems for
important probabilistic based logic programming frameworks.

5 Termination of Probabilistic Logic Programs

The representation of probabilistic information in rule-based systems has attracted a
large interest of the logic programming community, fostered by knowledge represent-
ation problems in advanced applications, namely for deductive databases. Several pro-
posals have appeared in the literature for dealing with probabilistic information, namely
Hybrid Probabilistic Logic Programs [6], Probabilistic Deductive Databases [8], and
Probabilistic Logic Programs with conditional constraints [9]. Both Hybrid Probabil-
istic Logic Programs, Probabilistic Deductive Databases,and Ordinary Probabilistic
Logic Programs can be captured by Residuated Monotonic Logic Programs, as shown
in [4]. We illustrate here the application of the theorems ofthe previous section to obtain
known termination results for these languages. Notice thatthese results are obtained
from the abstract properties of the underlying algebras andtransformed programs. In
this way we simplify and synthesize the techniques used to show these results, which
can be applied in other settings as well.

5.1 Termination of Ordinary Probabilistic Logic Programs

Lukasiewicz [9] introduces a new approach to probabilisticlogic programming in which
probabilities are defined over a set of possible worlds and inwhich classical program
clauses are extended by a subinterval of[0, 1] that describes a range for the conditional
probability of the head of a clause given its body. In its mostgeneral form, probabilistic
logic programs of [9] are sets of conditional constraints(H | B)[c1, c2] whereH is
a conjunction of atoms andB is either a conjunction of atoms or⊤, andc1 ≤ c2 are
rational numbers in the interval[0, 1]. These conditional constraints express that the
conditional probability ofH givenB is betweenc1 andc2 or that the probability of
the antecedent is0. A semantics and complexity of reasoning are exhaustively studied,
and in most cases is intractable and not truth-functional. However, for a special kind
of probabilistic logic programs the author provides relationships to “classical” logic
programming. Ordinary probabilistic logic programs are probabilistic logic programs
where the conditional constraints have the restricted form

(A | B1 ∧ . . . ∧Bn)[c, 1] or (A | ⊤)[c, 1] (1)

Under positively correlated probabilistic interpretations (PCP-interpretations), reason-
ing becomes tractable and truth-functional. Ordinary conditional constraints (1) of or-
dinary probabilistic logic programs under PCP-interpretation can be immediately trans-
lated to a sorted multi-adjoint logic programming rule

A
c
← min (B1, . . . , min(Bn−1, Bn))
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over the multi-adjointΣ-algebra containing a single sortu signature with carrier[0, 1],
with the usual ordering on real numbers. A constant symbol for every element of[0, 1]
is necessary, as well as the minimum function (denoted byminu) and the product of
two reals (denoted by×u), and Goguen implication←u. The structure< [0, 1],≤
,←u,×u > is a well-known adjoint lattice, where Goguen implication is the residuum
of product t-norm. The function symbols←, min are interpreted by←u andminu,
respectively. The previous rule can also be represented as:

A
1
← c×min (B1, . . . , min(Bn−1, Bn))

Clearly, as remarked in [9], the resulting rule is equivalent to a rule of van Emden’s
Quantitative Deduction [12]. It is pretty clear that in these circumstances all the con-
ditions of Theorem 1 are fulfilled for ground programs of the above form having finite
dependencies, and we can guarantee termination ofTP for every query. This is the case
because we are using solely t-norms in the body, which by definition obey to the bound-
ary condition, over the unit interval[0, 1]. Since the unit interval is totally ordered and
we have a finite number of rules for every propositional symbol, we can guarantee that
the set of relevant values forTP

n(∆) is a singleton. Thus, we obtain a termination result
for Ordinary Probabilistic Logic Programs and Quantitative Deduction, extending the
one appearing in [12].

In general, if we have combinations of t-norms in the bodies of rules, over totally
ordered domains, we can guarantee termination for programswith finite dependencies.
This extends the previous results by Paulı́k [11]. The same applies if we reverse the
ordering in the unit interval, and use t-conorms in the bodies. This is necessary to un-
derstand the termination result for Probabilistic Deductive Databases, presented in the
next section.

5.2 Termination of Probabilistic Deductive Databases

A definition of a theory of probabilistic deductive databases is described in Lakshmanan
and Sadri’s work [8] where belief and doubt can both be expressed explicitly with equal
status. Probabilistic programs (p-programs) are finite sets of triples of the form:

(

A
c
←− B1, . . . , Bn; µr, µp

)

As usual,A, B1, . . . , Bn are atoms, which may not contain complex terms,c is a
confidence level, andµr (µp) is the conjunctive (disjunctive) mode associated with the
rule. For a given ground atomA, the disjunctive mode associated with all the rules forA

must be the same. The authors present a termination result assuming that it is used solely
positive correlation as disjunctive mode for combining several rules in the program, and
arbitrary conjunctive modes. The truth-values of p-programs are confidence levels of
the form〈[α, β], [γ, δ]〉, whereα, β, γ, andδ are real numbers in the unit interval4. The
valuesα andβ are, respectively, the expert’s lower and upper bounds of belief, while
γ andδ are the bounds for the expert’s doubt. The fixpoint semanticsof p-programs

4 Even though the authors say that they usually assume thatα ≤ β andγ ≤ δ, this cannot be
enforced otherwise they cannot specify properly the notionof trilattice. So, we also not assume
these constraints.
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relies on truth-ordering of confidence levels. Supposec1 = 〈[α1, β1], [γ1, δ1]〉 andc2 =
〈[α2, β2], [γ2, δ2]〉 are confidence levels, then we say that:

c1 ≤t c2 iff α1 ≤ α2, β1 ≤ β2 andγ1 ≥ γ2, δ1 ≥ δ2,

with corresponding least upper bound operationc1 ⊕t c2 defined as

〈[max{α1, α2}, max{β1, β2}], [min{γ1, γ2}, min{δ1, δ2}]〉

and greatest lower boundc1 ⊗t c2 as:

〈[min{α1, α2}, min{β1, β2}], [max{γ1, γ2}, max{δ1, δ2}]〉

The least upper bound of truth-ordering corresponds to the disjunctive mode designated
“positive correlation”, which is used to combine the contributions from several rules for
a given propositional symbol. We restrict attention to thisdisjunctive mode, since the
termination results presented in [8] assume all the rules adopt this mode. Conjunctive
modes are used to combine propositional symbols in the body,and⊗t corresponds to
thepositive correlationconjunctive mode. Another conjunctive mode isindependence
with c1 ∧ind c2 defined as

〈[α1 × α2, β1 × β2], [1 − (1 − γ1) × (1 − γ2), 1 − (1 − δ1) × (1 − δ2)]〉

The attentive reader will surely notice that all these operations work independently
in each component of the confidence level. Furthermore, theindependenceconjunctive
mode combines theα’s andβ’s with a t-norm (product), and theγ andδ parts are com-
bined with a t-conorm. This is a property enjoyed by all conjunctive modes specified
in [8]. In order to show the termination result we require twosorts, both with carrier
[0, 1], the first one denoted bym and ordered by≤, while the other is denoted byM
and ordered by≥ (this means that for this sort the bottom element is1 and the top one is
0, least upper bound ismin). The program transformation translates each ground atom
P in a p-program into four propositional symbolsPα, P β , P γ andP δ, representing
each component of the confidence level associated withP . The translation generates
four rules, in the resulting sorted multi-adjoint logic programming, from each rule in
the p-program. We illustrate this with an example, where theconjunctive mode use is
independence (remember that the disjunctive mode is fixed).A p-program rule of the
form

(

A
〈[a,b],[c,d]〉
←−−−−−−−− B1, . . . , Bn ; ind, pc

)

is encoded as the following four rules:

Aα
a

←m Bα
1 × . . .×Bα

n Aβ
b

←m B
β
1 × . . .×Bβ

n

Aγ
c

←M B
γ
1 ⊕ . . .⊕ Bγ

n Aδ
d

←M Bδ
1 ⊕ . . .⊕Bδ

n

The operation⊕ denotes the t-conorm function defined byv⊕w = 1−(1−v)×(1−w).
Other conjunctive modes can be encoded similarly. The termination of these programs
is now immediate. First, the rules forα propositional symbols only involveα pro-
positional symbols in the body. The same applies to the otherβ, γ andδ rules. The
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underlying carriers are totally ordered, and the functionssymbols in the body obey to
the boundary condition since they are either t-norms (forα andβ rules) or t-conorms
(for γ andδ rules). Thus, from the discussion on the previous section, Theorem 1 is
applicable and the result immediately follows for programswith finite dependencies.
This is a result shown based solely on general properties of the underlying lattices, not
resorting to specific procedural concepts as in [8]. Furthermore, since the grounding of
p-programs always results in a finite program, there is no lack of generality by assum-
ing finite dependencies. The use of other disjunctive modes introduce operators in the
bodies which no longer obey to the boundary condition. For this case, Lakshmanan and
Sadri do not provide any termination result, which is not strange since this violates the
general conditions of applicability of Theorem 1.

5.3 Termination of Hybrid Probabilistic Logic Programs

Hybrid Probabilistic Logic Programs [6] have been proposedfor constructing rule sys-
tems which allow the user to reason with and combine probabilistic information under
different probabilistic strategies. The conjunctive (disjunctive) probabilistic strategies
are pairwise combinations of t-norms (t-conorms, respectively) over pairs of real num-
bers in the unit interval[0, 1], i.e. intervals. In order to obtain a residuated lattice, the
carrierINT is the set of pairs[a, b] wherea andb are real numbers in the unit interval5.

The termination results presented in [5] assume finite ground programs. From a dif-
ficult analysis of the complex fixpoint construction one can see that only a finite number
of different intervals can be generated in the case of finite ground programs. We show
how this result can be obtained from Theorem 2 almost directly, given the embedding
of Hybrid Probabilistic Logic Programs into Residuated ones presented in [3]. This
embedding generates rules of the following kind

1. F
[a,b]
֋ sµ1

(

F1

)

⊓ . . . ⊓ sµk

(

Fk

)

2. F
[a,1]
֋ sµ1

(

E1

)

⊓ . . . ⊓ sµm

(

Em

)

3. F
[0,b]
֋ sµ1

(

E1

)

⊓ . . . ⊓ sµm

(

Em

)

4. F
[1,0]
֋ cρ

(

G, H
)

resorting to the auxiliary double bar function. from INT to INT and the functions
sµ : INT → INT , with µ in INT . For our analysis, it is only important to know that
all these functions have finite image, and thus when constructing the range dependency
graph no arc will be introduced for rules of the first three types.

The next important detail is that the rules of the fourth type, which use either con-
junctive or disjunctive strategiescρ, do not introduce any cyclic dependencies and the
dependencies are finite. This is the case, becauseF , G andH are propositional sym-
bols which represent ground hybrid basic formulas (see [6,3] for details), such that
F = G ⊕ρ H , i.e. the propositional symbolF represents a more complex formula ob-
tained from the conjunctive or disjunctive combination of the simpler formulasG and
H . Therefore, it is not possible to have a dependency from a simpler formula to a more
complex one. By application of Theorem 2 it immediately follows thatTP terminates
for every finite ground program, as we intended to show. Just as a side remark, The-
orem 3 can also be applied if in the program only occurs conjunctive basic formulas,

5 We do not impose thata ≤ b.
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without requiring any reasoning about the shape of the transformed program and its
dependencies.

6 Conclusions

A sorted version of multi-adjoint logic programming has been introduced, together with
several general sufficient results about the termination ofits fix-point semantics. Later,
these results are instantiated in order to prove termination theorems for some probab-
ilistic approaches to logic programming. Notice that theseresults are obtained solely
from the abstract properties of the underlying algebras andtransformed programs. In
this way we simplify and synthesize the techniques used to show these results, which
can be applied in other settings as well.
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13. P. Vojtáš. Fuzzy logic programming.Fuzzy Sets and Systems, 124(3):361–370, 2001.

13


