
Implicates and reduction techniques for

temporal logics?

I.P. de Guzmán, M. Ojeda-Aciego, A. Valverde

Dept. Matemática Aplicada, Universidad de Málaga,
P.O. Box 4114, 29080. Málaga, SPAIN,

Email: {guzman,aciego,a valverde}@ctima.uma.es

Abstract. Reduction strategies are introduced for the future fragment
of a temporal propositional logic on linear discrete time, named FNext.
These reductions are based in the information collected from the syn-
tactic structure of the formula, which allow the development of effi-
cient strategies to decrease the size of temporal propositional formulas,
viz. new criteria to detect the validity or unsatisfiability of subformulas,
and a strong generalisation of the pure literal rule. These results, used as
a preprocessing step, allow to improve the performance of any automated
theorem prover.

1 Introduction

The temporal dimension of information, the change of information over time and
knowledge about how it changes has to be considered by many AI systems. There
is obvious interest in designing computationally efficient temporal formalisms,
specially when intelligent tasks are considered, such as planning relational ac-
tions in a changing environment, building common sense reasoning into a moving
robot, in supervision of industrial processes,

Temporal logics are widely accepted and frequently used for specifying con-
current and reactive agents (which can be either physical devices or software
processes), and in the verification of temporal properties of programs. To verify
a program, one specifies the desired properties of the program by a formula in
temporal logic. The program is correct if all its computations satisfy the formula.
However, in its generality, an algorithmic solution to the verification problem is
hopeless. For propositional temporal logic, checking the satisfiability of a formula
can be done algorithmically, and theoretical work on the complexity of program
verification is being done [3]. The complexity of satisfiability and determination
of truth in a particular finite structure are considered for different propositional
linear temporal logics in [7].

Linear-time temporal logics have proven [5] to be a successful formalism
for the specification and verification of concurrent systems; but have a much
wider range of applications, for instance, in [2] a generalisation of the temporal

? Partially supported by Spanish CICYT project TIC97-0579-C02-02 and EC action
COST-15: Many-valued logics for computer science applications.

propositional logic of linear time is presented, which is useful for stating and
proving properties of the generic execution sequence of a parallel program. On
the other hand, relatively complete deductive systems for proving branching time
temporal properties of reactive systems [4] have been recently developed.

In recent years, several fully automatic methods for verifying temporal spec-
ifications have been introduced, in [6] a tableaux calculus is treated at length; a
first introduction to the tableaux method for temporal logic can be seen in [8].
However, the scope of these methods is still very limited. Theorem proving pro-
cedures for temporal logics have been traditionally based on syntactic manip-
ulations of the formula A to be proved but, in general, do not incorporate the
substitution of subformulas in A like in a rewrite system in which the rewrite re-
lation preserves satisfiability. One source of interest of these strategies is that can
be easily included into any prover, specifically into those which are non-clausal.

In this work we focus on the development of a set of reduction strategies
which, through the efficient determination and manipulation of lists of unitary
implicant and implicates, investigates exhaustively the possibility of decreasing
the size of the formula being analysed. The interest of such a set of reduction
techniques is that the performance of a given prover for linear-time temporal
logic can be improved because the size of a formula can be decreased, at a
polynomial cost, as much as possible before branching.

Lists of unitary models, so-called ∆-lists, are associated to each node in
the syntactic tree of the formula and used to study whether the structure of
the syntactic tree has or has not direct information about the validity of the
formula. This way, either the method ends giving this information or, otherwise,
it decreases the size of the problem before applying the next transformation. So,
it is possible to decrease the number of branchings or, even, to avoid them all.

The ideas in this paper generalise the results in [1], in a self-contained way,
by explicitly extending the reduction strategy to linear-time temporal logic and,
what is more important, by complementing the information in the ∆-lists by
means of the so-called ∆̂-sets. The former allow derivation of an equivalent and
smaller formula; the latter also allow derivation of a smaller formula, not equiv-
alent to the previous one, but equisatisfiable.

The paper is organised as follows:

– Firstly, preliminary concepts, notation and basic definitions are introduced:
specifically, it is worth to note the definition of literal and the way some of
them will be denoted.

– Secondly, ∆-lists, our basic tool, are introduced; its definition integrates some
reductions into the calculation of the ∆-lists. The required theorems to show
how to use the information collected in those lists are stated.

– Later, the ∆̂-sets are defined and results that use the information in these
sets are stated. One of these is a generalisation of the pure literal rule.

2 Preliminary Concepts and Definitions

In this paper, our object language is the future fragment of the Temporal Propo-
sitional Logic FNext with linear and discrete flow of time, and connectives ¬
(negation), ∧ (conjunction), ∨ (disjunction), F (sometime in the future), G
(always in the future), and ⊕ (tomorrow); V denotes the set of propositional
variables p, q, r, . . . (possibly subscripted) which is assumed to be completely
ordered with the lexicographical order, e.g. pn ≤ qm for all n, m, and pn ≤ pm if
and only if n ≤ m. Given p ∈ V , the formulas p and ¬p are the classical literals
on p.

Definition 1. Given a classical propositional literal `, the temporal literals1on `,
denoted Lit(`), are those wff of the form ⊕n`, F⊕n`, G⊕n`, FG`, GF` for all
n ∈ N.

The notion of temporal negation normal formula, denoted tnnf, is recursively
defined as follows:

1. Any literal is a tnnf.
2. If A and B are tnnf, then A ∨ B and A ∧ B are tnnf, which are called

disjunctive and conjunctive tnnf, respectively.
3. If A is a disjunctive tnnf, then GA is a tnnf.
4. If A is a conjunctive tnnf, then FA is a tnnf.
5. A formula is a tnnf if and only if it can be constructed by the previous rules.

For formulas in tnnf, we will write p for the classical negated literal ¬p.

As usual, a clause is a disjunction of literals and a cube is a conjunction of
literals. In addition, a G-clause is a formula GB where B is a classical clause,
and a F -cube is a formula FB in which B is a classical cube.

We denote ϑ` to mean a temporal literal on `, where ϑ is said to be its tem-
poral prefix ; if ϑ` is a temporal literal, then |ϑ| denotes the number of temporal
connectives in ϑ, and ϑ` denotes its opposite literal, where F = G, G = F ,
FG = GF , GF = FG and ⊕ = ⊕

The transformation of any wff into tnnf is linear by recursively applying the
transformations induced by the double negation, the de Morgan laws and the
equivalences in Fig. 1.

In addition, by using the associative laws we will consider expressions like
A1 ∨ · · · ∨ An or A1 ∧ · · · ∧ An as formulas.

We will use the standard notion of tree and address of a node in a tree. Given
a tnnf A, the syntactic tree of A, denoted by TA, is defined as usual. An address
η in TA will mean, when no confusion arises, the subformula of A corresponding
to the node of address η in TA; the address of the root node will be denoted ε.

If TC is a subtree of TA, then the temporal order of TC in TA, denoted
ordA(C), is the number of temporal ancestors of TC in TA.

1 As we will be concerned only on temporal literals, in the rest of the paper we will
drop the adjective temporal. In addition, we will use the notation ⊕n to denote the
n-folded application of the connective ⊕.

¬⊕A ≡ ⊕¬A ⊕FA ≡ F⊕A ⊕GA ≡ G⊕A

FFA ≡ F⊕A GGA ≡ G⊕A FGFA ≡ GFA

GFGA ≡ FGA FG⊕A ≡ FGA GF⊕A ≡ GFA

⊕
W

Ai ≡
W

⊕Ai ⊕
V

Ai ≡
V

⊕Ai ¬FA ≡ G¬A

¬GA ≡ F¬A F (
W

i∈J
Ai) ≡

W

i∈J
FAi G(

V

i∈J
Ai) ≡

V

i∈J
GAi

Fig. 1.

We will also use lists with its standard notation, nil, for the empty list.
Elements in a list will be written in juxtaposition.

If α and β are lists of literals and ϑ` is a literal, ϑ` ∈ α denotes that ϑ` is
an element of α; and α ⊆ β means that all elements of α are elements of β. If
α = ϑ1`1ϑ2`2 . . . ϑn`n, then α = ϑ1`1 ϑ2`2 . . . ϑn`n.

Definition 2. A temporal structure is a tuple S = (N, <, h), where N is the set
of natural numbers, < is the standard strict ordering on N, and h is a temporal
interpretation, which is a function h : L −→ 2N, where L is the language of the
logic, satisfying:

1. h(¬A) = N r h(A); h(A ∨ B) = h(A) ∪ h(B)
2. h(A → B) = (N r h(A)) ∪ h(B); h(A ∧ B) = h(A) ∩ h(B)
3. t ∈ h(FA) iff t′ exists with t < t′ and t′ ∈ h(A)
4. t ∈ h(GA) iff for all t′ with t < t′ we have t′ ∈ h(A)
5. t ∈ h(⊕A) iff we have t + 1 ∈ h(A)

A formula A is said to be satisfiable if there exists a temporal structure
S = (N, <, h) such that h(A) 6= ∅; if t ∈ h(A), then h is said to be a model of
A in t; if h(A) = N, then A is said to be true in the temporal structure S; if A
is true in every temporal structure, then A is said to be valid, and we denote it
|= A.

Formulas A and B are said to be equisatisfiable if A is satisfiable iff B is
satisfiable; ≡ denotes the semantic equality, i.e. A ≡ B if and only if for every
temporal structure S = (N, <, h) we have that h(A) = h(B); finally, the symbols
> and ⊥ mean truth and falsity, i.e. h(>) = N and h(⊥) = ∅ for every temporal
structure S = (N, <, h).

If Γ1 and Γ2 are sets of subformulas in A and X and Y are subformulas, then
the expression A[Γ1/X, Γ2/Y] denotes the formula obtained after substituting
in A every occurrence of elements in Γ1 by X and every occurrence of elements
in Γ2 by Y .

If η is an address in TA and X , then the expression A[η/X] is the formula
obtained after substituting in A the subtree rooted in η by X .

3 Adding Information to the Tree: ∆-lists

The idea underlying the reduction strategy we are going to introduce is the use
of information given by partial assignments. We associate to each tnnf A two

lists of literals denoted ∆0(A) and ∆1(A) (the associated ∆-lists of A)2 and two

sets of lists, denoted ∆̂0(A) and ∆̂1(A), whose elements are obtained out of the
associated ∆-lists of the subformulas of A.

The ∆-lists and the ∆̂-sets are the key tools of our method to reduce the size
of the formula being analysed. These reductions allow to study its satisfiability
with as few branching as possible.

In a nutshell, ∆0(A) and ∆1(A) are, respectively, lists of temporal implicates
and temporal implicants of A. The purpose of these lists is two-fold:

1. To transform the formula A into an equivalent and smaller-sized one (see
Sect. 3.3).

2. To be used in the definition the ∆̂b sets (see Sect. 4), which will be used
to transform the formula A into an equisatisfiable and smaller-sized one.
Furthermore, information to build a countermodel (if it exists) is provided.

The sense in which we mean temporal implicant/implicate is the following:

Definition 3.

– A literal ϑ` is a temporal implicant of A if |= ϑ` → A.
– A literal ϑ` is a temporal implicate of A if |= A → ϑ`.

3.1 The Lattices of Literals

Definition 4. For each classical propositional literal ` we define an ordering in
Lit(`) ∪ {⊥,>} as follows:

1. ϑ` ≤ %` if and only if |= ϑ` → %`
2. ϑ` ≤ > for all (possibly empty) ϑ.
3. ϑ` ≥ ⊥ for all (possibly empty) ϑ.

Each set Lit(`)∪ {⊥,>} provided with this ordering is a lattice, depicted in
Figure 2. For each literal ϑ` we will consider its upward and downward closures,
denoted ϑ`↑ and ϑ`↓.

3.2 Definition of the ∆-lists

Definition 5. Given a tnnf A, we define ∆0(A) and ∆1(A) to be the lists of
literals recursively defined below

∆0(ϑ`) = ∆1(ϑ`) = ϑ`

∆0 (
∧n

i=1
Ai) = Union∧(∆0(A1), . . . , ∆0(An))

∆0 (
∨n

i=1
Ai) = Intersection(∆0(A1), . . . , ∆0(An))

∆1 (
∧n

i=1
Ai) = Intersection(∆1(A1), . . . , ∆1(An))

∆1 (
∨n

i=1
Ai) = Union∨(∆1(A1), . . . , ∆1(An))

∆b (FA) = AddF(∆b(A))

∆b (GA) = AddG(∆b(A))

2 It can be shown that either A is equivalent to a literal, or at most one of these lists
is non-empty.

G

`

F⊕n`

⊕`

`

>

⊥

F`

GF`

FG`

⊕n+1`

G⊕n`

Fig. 2. Lattice Lit(`) ∪ {⊥,>}

The description of the operators involved in the definition above is the fol-
lowing:

1. The operators Add add a temporal connective to each element of a list of
literals and simplify the results to a tnnf according to the rules in Fig. 1.

2. The two versions of Union arise because of the intended interpretation of
these sets:

(a) Elements in ∆0 are considered as conjunctively connected, so we use
Union∧. This way, we obtain minimal implicates.

(b) Elements in ∆1 are considered as disjunctively connected, so we use
Union∨. This way, we obtain maximal implicants.

Remark 1. By conjunctively connected, we mean that two literals in ∆0 are
substituted by its conjunction if it is either a literal or > or ⊥, i.e. ϑ`∧ϑ`↑ = ϑ`,
ϑ` ∧ ϑ`↓ = ⊥ and the pair of literals G⊕n+1` and ⊕n+1` is simplified to G⊕n`,
for all n.

Similarly, the disjunctive connection in ∆1 means the application of the fol-
lowing rules ϑ` ∨ ϑ`↓ = ϑ`, ϑ` ∨ ϑ`↑ = >, and the pair of literals F⊕n+1` and
⊕n+1` is simplified to F⊕n` in ∆1, for all n.

It is easy to see that, for all `, we have that ∆b(A)∩ Lit(`) contains at most
one literal in the set {F⊕k`, G⊕k`, FG`, GF`} and, possibly, several of the type
⊕k`.

Definition 6. If a A is a tnnf, then to ∆-label A means to label each node η in
A with the ordered pair (∆0(η), ∆1(η)).

Example 1. Consider the formula A = (¬p∨¬Gq ∨ r ∨G(¬s∨¬q ∨u))∧¬(¬p∨
¬Gq ∨ r ∨ G(¬s ∨ u)); the ∆-labelled tree of A is3

3 For the sake of clarity, the ∆-labels of the leaves are not written.

A ≡ ∧(pGqrFsFu, nil)

∨ (nil, pFqrGsGu)

p Fq r G (nil, GqGsGu)

∨ (nil, qsu)

s q u

p Gq r F (FsFu, nil)

∧ (su, nil)

s u

Note that in node 1, literals Fq and Gq are collapsed into Fq, because of the
disjunctive connection in ∆1.

Example 2. Let us study the validity of A = G(¬p → p) → (¬Gp → Gp). The
∆-labelled tree equivalent to ¬A is

∧(⊥, nil)

G (Gp,Gp)

∨ (p, p)

p p

Fp Fp

In this case, ∆0(ε) = ⊥, because of the simplification of Gp and Fp due to
the conjunctive nature of the ∆0-sets. We will see later that ∆0(ε) = ⊥ implies
that the input formula, that is ¬A, is unsatisfiable, therefore A is valid.

3.3 Information in the ∆-lists

As indicated above, the purpose of defining ∆0 and ∆1 is to collect implicants
and implicates of A, as shown in the following theorem.

Theorem 1. Let A be a tnnf,

1. If ϑ` ∈ ∆0(A), then |= A → ϑ`.
2. If ϑ` ∈ ∆1(A), then |= ϑ` → A.

The theorem above will be used in the following equivalent form:

1. If ϑ` ∈ ∆0(A), then A ≡ A ∧ ϑ`.
2. If ϑ` ∈ ∆1(A), then A ≡ A ∨ ϑ`.

As a literal is satisfiable, by Theorem 1 item 2, we have the following result:

Corollary 1. If ∆1(A) 6= nil, then A is satisfiable.

3.4 Strong Meaning-Preserving Reductions

A lot of information can be extracted from the ∆-lists as corollaries of Theorem 1.
The first result is a structural one, for it says that either one of the ∆-lists is
empty, or both are equal and singletons.

Corollary 2. If A is not a literal and ∆1(A) 6= nil 6= ∆0(A), then there exists
ϑ` such that ∆1(A) = ∆0(A) = ϑ`. Such tnnf A is said to be ϑ`-simple.

The corollary below states conditions on the ∆-lists which allow to determine
the validity or unsatisfiability of the formula we are studying.

Corollary 3. Let A be a tnnf, then

1. (a) If ∆0(A) = ⊥, then A ≡ ⊥.
(b) If A =

∧n

i=1
Ai in which a conjunct Ai0 is a clause such that ∆1(Ai0) ⊆

∆0(A)↑, then A ≡ ⊥.
(c) If A =

∧n

i=1
Ai in which a conjunct Ai0 is a G-clause GB such that

Add⊕(∆1(B)) ⊆ ∆0(A)↑, then A ≡ ⊥.
2. (a) If ∆1(A) = >, then A ≡ >.

(b) If A =
∨n

i=1
Ai in which a disjunct Ai0 is a cube such that ∆0(Ai0) ⊆

∆1(A)↓, then A ≡ >.
(c) If A =

∨n

i=1
Ai in which a disjunct Ai0 is an F -cube FB such that

Add⊕(∆0(B)) ⊆ ∆1(A)↓, then A ≡ >.

The following definition gives a name to those formulas which have been
simplified by using the information in the ∆-lists.

Definition 7. Let A be an tnnf then it is said that A is:

1. finalizable if either A = >, or A = ⊥ or ∆1(A) 6= nil.
2. A tnnf verifying either (a) or (b) or (c) of item 1 in Corollary 3 is said to

be ∆0-conclusive.
3. A tnnf verifying either (a) or (b) or (c) of item 2 in Corollary 3 is said to

be ∆1-conclusive.
4. A tnnf A is said to be ∆-restricted if it has no subtree which is either ∆0-

conclusive, or ∆1-conclusive, or ϑ`-simple.
5. To ∆-restrict a tnnf A means to substitute each ∆1-conclusive formula by >,

each ∆0-conclusive formula by ⊥, and each ϑ`-simple formula by ϑ`; and
then eliminate the constants > and ⊥ by applying the 0-1 laws.
Note that ∆-restricting is a meaning-preserving transformation.

Example 3. Given the transitivity axiom A = FFp → Fp; the tnnf equivalent
to ¬A is F⊕p∧Gp; since ∆0(F⊕p∧Gp) = ⊥, we have that ¬A is ∆0-conclusive,
therefore ¬A is unsatisfiable and A is valid.

Example 4. Given the formula A = ⊕p ∧ ⊕Fp ∧ G(p → Fp), its ∆-labelled tree
is

∧(⊕pF⊕p, nil)

⊕p F⊕p G (nil, GpGFp)

∨ (nil, pFp)

p Fp

This tree is ∆0-conclusive, since Add⊕(∆1(31)) = ⊕pF⊕p ⊆ ∆0(ε)↑. In fact,
what we have in this example is Add⊕(∆1(31)) = ∆0(ε)

3.5 Weak Meaning-Preserving Reductions

The aim of this section is to give more general conditions allowing to use the
information in the ∆-lists which has not been able to be used by the strong
reductions. Specifically, a strong reduction uses the information in the ∆-lists
in a strong sense, that is, to substitute a whole subformula by either >, or ⊥,
or a literal. As in the propositional case, sometimes this is not possible and we
can only use the information in a weak sense, that is, to decrease the size of the
formula by eliminating literals depending on the elements of the ∆-lists.

The following notation is used in the statement of some results hereafter:

– If S is a set of literals in a tnnf A, then S0 denotes the set of all the occur-
rences of literals ϑ` ∈ S of temporal order 0 in A

– Lit(`, n) = {η | η = ϑ` and |ϑ| + ordA(η) ≥ n + 1}
– Lit(`, n) = {η | η = ϑ` and |ϑ| + ordA(η) ≥ n + 1}

Theorem 2. Let A be a tnnf and ϑ` a literal in A:

1. If ϑ` ∈ ∆0(A), then A ≡ ϑ` ∧ A[(ϑ`↑)0/>, (ϑ`↓)0/⊥]
2. If ϑ` ∈ ∆1(A), then A ≡ ϑ` ∨ A[(ϑ`↓)0/⊥, (ϑ`↑)0/>]

This theorem cannot be improved for an arbitrary literal ϑ`; although, for
some particular cases, it is possible to get more literals reduced, as shown by the
following theorem, which generalises the result in Theorem 2, by dropping the
restriction of order 0 for all the literals in the upward/downward closures.

Theorem 3. Let A be a tnnf,

1. If ϑ` ∈ ∆0(A) with ϑ` ∈ {FG`, GF`} ∪ {G⊕n` | n ∈ N}, then

A ≡ ϑ` ∧ A[ϑ` ↑ />, ϑ` ↓ /⊥]

2. If ϑ` ∈ ∆1(A) with ϑ` ∈ {FG`, GF`} ∪ {F⊕n` | n ∈ N}, then

A ≡ ϑ` ∨ A[ϑ` ↓ /⊥, ϑ` ↑ />]

Finally, the theorem below states a number of additional reductions that can
be applied when ϑ` equals either G⊕n` or F⊕n`.

Theorem 4. Let A be a tnnf and ϑ` a literal in A:

1. If G ⊕n ` ∈ ∆0(A), then A ≡ G ⊕n ` ∧ A[Lit(`, n)/>, Lit(`, n)/⊥]
2. If F ⊕n ` ∈ ∆1(A), then A ≡ F ⊕n ` ∨ A[Lit(`, n)/⊥, Lit(`, n)/>]

4 Adding Information to the Tree: ∆̂-sets

In the previous sections, the information in the ∆-lists has been used locally, that
is, the information in ∆b(η) has been used to reduce η. The purpose of defining

a new structure, the ∆̂-sets, is to allow the globalisation of the information, in
that the information in ∆b(η) can be refined by the information in its ancestors.

Given a ∆-restricted tnnf A, we define the sets ∆̂0(A) and ∆̂1(A), whose
elements are pairs (α, η) where α is a reduced ∆-list (to be defined below) asso-
ciated to a subformula B of A, and η is the address of B in A. These sets allow
to transform the formula A into an equisatisfiable and smaller sized one, as seen
in Section 4.1.

The following result uses those cases in Theorems 2, 3 and 4 which allow to
delete a whole subformula. The rest of possibilities only allow to delete literals;
these literals will be called reducible.

Theorem 5. Let A be a tnnf, B a subformula of A, and η the address in the
tree of A of a subformula of B:

1. (a) If ϑ` is any literal satisfying ϑ` ∈ ∆0(η)↑ ∩ (∆1(B) ∪ ∆0(B)) and
ordB(η) = 0, then A ≡ A[η/⊥].

(b) If ϑ` ∈ {FG`, GF`} ∪ {G⊕n` | n ∈ N} and satisfies and ϑ` ∈ ∆0(η)↑ ∩
(∆1(B) ∪ ∆0(B)), then A ≡ A[η/⊥].

(c) If ϑ` ∈ ∆0(η)↑, and F⊕n` ∈ ∆1(B)∪∆0(B), and |ϑ|+ ordB(η) ≥ n+1,
then A ≡ A[η/⊥].

2. (a) If ϑ` is any literal satisfying ϑ` ∈ ∆1(η)↓ ∩ (∆0(B) ∪ ∆1(B)) and
ordB(η) = 0, then A ≡ A[η/>].

(b) If ϑ` ∈ {FG`, GF`} ∪ {G⊕n` | n ∈ N} and satisfies and ϑ` ∈ ∆1(η)↓ ∩
(∆0(B) ∪ ∆1(B)), then A ≡ A[η/>].

(c) If ϑ` ∈ ∆1(η)↓, and G⊕n` ∈ ∆0(B)∪∆1(B), and |ϑ|+ ordB(η) ≥ n+1,
then A ≡ A[η/>]

This theorem can be seen as a generalisation of Corollary 3, in which a sub-
formula B can be substituted by a constant even when that subformula is not
equivalent to that constant.

The subformula at address η in A is said to be 0-conclusive in A (resp. 1-
conclusive in A) if it verifies some of the conditions in item 1 (resp. item 2)
above.

Definition 8. Given a tnnf A and an address η, the reduced ∆-lists for A,
∆A

b
(η) for b ∈ {0, 1}, are defined below,

1. If η is 0-conclusive in A, then ∆A
0 (η) = ⊥.

2. If η is 1-conclusive in A, then ∆A
1 (η) = >.

3. Otherwise, ∆A

b
(η) is the list ∆b(η) in which the reducible literals have been

deleted.

We define the sets ∆̂b(A) as follows

∆̂b(A) = {(∆A

b (η), η) | η is a non-leaf address in TA with ∆b(η) 6= nil}

If A is a tnnf, to label A means ∆-label A and to associate to the root of A
the ordered pair

(
∆̂0(A), ∆̂1(A)

)
.

Example 5. From Example 1 we had the following tree

A ≡ ∧(pGqrFsFu, nil)

∨ (nil, pFqrGsGu)

p Fq r G (nil, GqGsGu)

∨ (nil, qsu)

s q u

p Gq r F (FsFu, nil)

∧ (su, nil)

s u

Note that literals p, F q and r in ∆1 of node 1 are reducible in A because of the
occurrence of its duals in ∆0 of the root. Similarly Gq is also reducible in node
14, and q is reducible in 141. Therefore, the calculation of the ∆̂-sets leads to

∆̂0(A) = {(pGqrFsFu, ε), (FsFu, 5), (su, 51)}

∆̂1(A) = {(GsGu, 1), (GsGu, 14), (su, 141)}

4.1 Satisfiability-Preserving Results

In this section we study the information which can be extracted from the ∆̂-sets.

Definition 9. Let A be a tnnf then it is said that A is restricted if it is ∆-
restricted and satisfies the following:

– There are not elements (⊥, η) in ∆̂0(A).

– There are not elements (>, η) in ∆̂1(A).

Remark 2. A restricted and equivalent tnnf can be obtained by using the 0-1 laws
in conjunction with the elimination of conclusive subformulas in A, according to
Theorem 5.

The following results will allow, by using the information in the ∆̂-sets, to
substitute a tnnf A by an equisatisfiable and smaller sized A′.

Complete Reduction

This section is named after Theorem 6, because after its application on a lit-
eral G⊕n`, gives an equisatisfiable formula whose only literals in ` are of the
form ⊕n`.

Definition 10. A tnnf A is said to be G⊕n`-completely reducible if G⊕n` ∈ α
for (α, ε) ∈ ∆̂0(A).

Theorem 6. If A be a G⊕n`-completely reducible tnnf, then A is satisfiable if
and only if

B[G⊕k`/⊕k+1` ∧ . . . ∧ ⊕n`, F⊕k`/⊕k+1` ∨ . . . ∨ ⊕n`]

where B = A[Lit(`, n) ∪ G⊕n`↑/>, Lit(`, n) ∪ F⊕n`↓/⊥].

Furthermore, if h is a model of B in t, then the interpretation h′ such that
h′(q) = h(q) if q 6= p and h′(p) = h(p) ∪ [t + n + 2,∞) is a model of A in t.

Example 6. Given the density axiom A = Fp → FFp; the formula ¬A is equiv-
alent to the tnnf Fp ∧ G⊕p.

We have that ∆0(Fp∧G⊕p) = FpG⊕p. Note that, as the conjunction of Fp

and G⊕p is not a literal, no simplification can be applied. In addition, its ∆̂0-set
is {(FpG⊕p, ε)}, thus ¬A is completely reducible.

Now applying Theorem 6, we get that ¬A is satisfiable if and only if ⊕p is
satisfiable. Therefore ¬A is satisfiable, a model being h(p) = [2,∞), h(p) = {1}.

Example 7. Given the formula A = (Gp ∧ Fq) → F (p ∧ q), we have ¬A ≡
Gp ∧ Fq ∧ G(p ∨ q); its ∆-restricted form is

∧(GpFq, nil)

Gp Fq G(nil, GpFq)

∨ (nil, pq)

p q

and its ∆̂-sets are:

∆̂0(A) = {(GpFq, ε)} ∆̂1(A) = {(GpFq, 3), (pq, 31)}

This formula is completely reducible, by an application of Theorem 6, the
leaf in node 1 is deleted, and node 3 is substituted by Gq.

The resulting formula is Fq ∧ Gq, which is 0-conclusive and, therefore, un-
satisfiable.

The Pure Literal Rule

The result introduced here is an extension of the well known pure literal rule
for Classical Propositional Logic. Existing results in the bibliography allow a
straightforward extension of the concept of pure literal. Our definition makes
use of the ∆̂-sets, which allow to focus only on those literals which are essential
parts of the formula; this is because reducible literals are not included in the
∆̂-sets.

Definition 11. Let A be a tnnf.

1. A classical literal ` is said to be ∆̂-pure in A if a literal ϑ` occurs in ∆̂0(A)∪

∆̂1(A) and no literal on ϑ′` occurs in ∆̂0(A) ∪ ∆̂1(A).

2. A classical literal ` is said to be ∆̂-k-pure in A if ⊕k` occurs in an (α, η) ∈

∆̂0(A)∪∆̂1(A) with ordA(η) = 0, ⊕k` does not occur in any (α, η) ∈ ∆̂0(A)∪

∆̂1(A) with ordA(η) = 0, and for any other literal ϑ` or ϑ′`, occurring in

some element (α, η) ∈ ∆̂0(A) ∪ ∆̂1(A), we have |ϑ| + ordA(η) > k.

Theorem 7. Let A be a tnnf, ` a ∆̂-pure literal in A, and B the formula ob-
tained from A by the following substitutions

1. If (α, η) ∈ ∆̂0(A) with ϑ` ∈ α, then η is substituted by




η[Lit(`, n) ∪ G⊕n`↑/>, Lit(`, n) ∪ F⊕n`↓/⊥] if ϑ` = G⊕n`
η[ϑ`↑/>, ϑ`↓/⊥] if ϑ` ∈ {GF`, FG`}
η[(ϑ`↑)0/>, (ϑ`↓)0/⊥] otherwise

2. If (α, η) ∈ ∆̂1(A) with ϑ` ∈ α, then η is substituted by >.

Then, A is satisfiable if and only if B is satisfiable. Furthermore, if h is a model
of B in t, then the interpretation h′ such that h′(`′) = h(`′) if `′ 6= ` and
h′(`) = [t,∞) is a model of A in t.

Theorem 8. Let A be a tnnf, ` a ∆̂-k-pure literal in A, and B the formula
obtained from A by the following substitutions

1. If (α, η) ∈ ∆̂0(A) with ⊕k` ∈ α and ordA(η) = 0, then η is substituted by
η[(⊕k`↑)0/>, (⊕k`↓)0/⊥]

2. If (α, η) ∈ ∆̂1(A) with ⊕k` ∈ α, then η is substituted by >

Then, A is satisfiable if and only if B is satisfiable. Furthermore, if h is a model
of B in t, then the interpretation h′ such that h′(`′) = h(`′) if `′ 6= ` and
h′(`) = h(`) ∪ {t + k} is a model of A in t.

Example 8. Following with the formula in Example 5, we had

∆̂0(A) = {(pGqr, ε), (FsFu, 5), (su, 51)}

∆̂1(A) = {(GsGu, 1)(GsGu, 14), (su, 141)}

therefore

1. It is completely reducible: Gq ∈ α with (α, ε) ∈ ∆̂0(A).
2. literals p and r are 0-pure.

When applying the corresponding substitutions we get

B = ∧

G

∨

s u

F

∧

s u

This formula cannot be reduced any longer. By applying a branching rule4

we obtain

B = ∧

G

∨

s u

F

∧

s u ∨

s u

It is easy to check that node 21 is ∆0-conclusive, by substituting this node
by ⊥ we get ⊥ as a final result. Therefore the formula is unsatisfiable.

5 Conclusions and Future Work

We have introduced techniques for defining and manipulating lists of unitary im-
plicants/implicates which can improve the performance of a given prover for tem-
poral propositional logics by decreasing the size of the formulas to be branched.
These strategies are interesting because can be used in any existing theorem
prover, specially in non-clausal ones.

As future work, the information in the ∆-lists can be increased by refining
the process of generation of temporal implicants/implicates. In addition, current
work on G-clauses and F -cubes appears to be a new source of reduction results.

4 Every prover for linear-time temporal logic has such rules, in the example we use
just one of those in the literature.

References

1. G. Aguilera, I. P. de Guzmán, and M. Ojeda. Increasing the efficiency of automated
theorem proving. Journal of Applied Non-Classical Logics, 5(1):9–29, 1995.

2. R. Ben-Eliyahu and M. Magidor. A temporal logic for proving properties of topo-
logically general executions. Information and Computation 124(2):127–144, 1996.

3. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM 42(4):857–907, 1995.

4. L. Fix and O. Grumberg. Verification of temporal properties. Journal of Logic and

Computation 6(3):343–362, 1996.
5. Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems:

specifications. Springer-Verlag, 1992.
6. Z. Manna and A. Pnueli. Temporal verification of reactive systems: Safety.

Springer-Verlag, 1995.
7. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal

logics. Journal of the ACM, 32(3):733-749, 1985.
8. P. Wolper. The tableaux method for temporal logic: an overview. Logique et

Analyse 28 année, 110-111:119–136, 1985.

