
A Neural Implementation of

Multi-Adjoint Logic Programming

J. Medina, E. Mérida-Casermeiro, M. Ojeda-Aciego

Dept. Matemática Aplicada. Universidad de Málaga

{merida,jmedina,aciego}@ctima.uma.es 1

Abstract

We present a neural net based implementation of propositional [0, 1]-valued multi-
adjoint logic programming. The implementation needs some preprocessing of the
initial program to transform it in a homogeneous program; then, transformation
rules carry programs into neural networks, where truth-values of rules relate to
output of neurons, truth-values of facts represent input, and network functions are
determined by a set of general operators; the output of the net being the values of
propositional variables under its minimal model.

1 Introduction

Fuzzy logic is a powerful mathematical tool for dealing with modeling and
control aspects of complex processes, as well as with uncertain, incomplete
and/or inconsistent information. On the other hand, neural networks have
a massively parallel architecture-based dynamics which are inspired by the
structure of human brain, adaptation capabilities, and fault tolerance.

The main advantages of fuzzy logic systems are the capability to express non-
linear input/output relationships by a set of qualitative if-then rules, and to
handle both numerical data and linguistic knowledge, especially the latter,
which is extremely difficult to quantify by means of traditional mathematics.
The main advantage of neural networks, on the other hand, is the inherent
learning capability, which enables the networks to adaptively improve their
performance. The key properties of neuro-fuzzy networks are the accurate
learning and adaptive capabilities of the neural networks, together with the
generalization and fast learning capabilities of fuzzy logic systems.

1 Partially supported by Spanish DGI project BFM2000-1054-C02-02.

Preprint submitted to Elsevier Science 15 September 2003

Numerous examples of synergistic fuzzy neural network models have been
proposed in the literature [3,6,11,17]: the fusion problem of neural networks
and fuzzy logic is addressed mainly through two types of methods: one is
to substitute membership functions or fuzzy operations for active functions
of neurons; another way is the introduction of the fuzzified input data. Most
models of those integrated networks are just a regular fuzzy neural network [3]
with real number inputs and fuzzy weighting factors, which is a typical fuzzy
logic controller implemented by neural networks.

In this work, we introduce a hybrid approach to handling uncertainty, which
is expressed in the rich language of multi-adjoint logic but is implemented by
using ideas borrowed from the world of neural networks.

The handling of uncertainty inside our logic model is based on the use of a
generalised set of truth-values, usually a (finite or infinite) subset of the real
unit interval [0, 1], instead of the Boolean constants {v, f}, in this respect it
is an approach to fuzzy logic programming which, in particular, extends [22].
On the other hand, multi-adjoint logic programming [14] is a generalization of
residuated logic programming [4] in that several different implications are al-
lowed in the same program. In this respect, as far as we are concerned, the only
existing approach which allows for more than one type of implication in the
programs is [1], although there are considerable differences in the underlying
logic used: their logic of bunched implications was developed as an attempt to
obtain a direct decomposition of implication in absence of structural rules in
linear logic, similar to the splitting of conjunction into an additive and a mul-
tiplicative part, whereas multi-adjoint logic builds on the framework of fuzzy
and residuated logic, as a means to facilitate the task of the specification.

Considering several implications in the same program is interesting because
it provides a more flexible framework for the specification of problems, for in-
stance, in situations in which connectives are built from the users preferences.
In these contexts, it is likely that knowledge is described by a many-valued
logic program where connectives have many-valued truth functions and, per-
haps, aggregation operators (such as arithmetic mean or weighted sum) where
different implications could be needed for different purposes, and different
aggregators are defined for different users, depending on their preferences.

The long-term goal of our research is to develop a multi-adjoint approach
to abductive logic programming. In this paper, following ideas in [16], we
present a neural-like implementation of multi-adjoint logic programming with
the advantage that, at least potentially, we can calculate in parallel the answer
for any query.

An important point of the implementation is a preprocessing of the initial
program to transform it into a homogeneous program; the ideas under this

2

definition are based on [6]. For simplicity in the presentation we will only
describe the implementation for [0, 1]-valued programs, although the general
framework of multi-adjoint logic is lattice-valued.

The structure of the paper is as follows: In Section 2, the preliminary defini-
tions are introduced, together with the syntax and semantics of multi-adjoint
logic programs; in Section 3, the translation from multi-adjoint programs into
homogeneous programs is given, the preservation of the semantics is proved,
and the complexity of the translation is studied; then, in Section 4, the model
of neural network is described; it is in Section 5 where the translation from
homogeneous programs to neural net is given. The paper finishes with some
examples in Section 6, and then some conclusions are drawn.

2 Preliminary definitions

Multi-adjoint logic programming is a general theory of logic programming
which allows the simultaneous use of different implications in the rules and
rather general connectives in the bodies; a preliminar version was presented
in [14], where models of these programs were proved to be post-fixpoints of the
immediate consequences operator, which turned out to be monotonic under
very general hypotheses. In addition, the continuity of the immediate conse-
quences operator was studied, and some sufficient conditions for its continu-
ity were obtained. A procedural semantics, under these conditions, for multi-
adjoint logic programs, together its completeness result was given in [15].

To make this paper as self-contained as possible, the necessary definitions
about multi-adjoint structures are included in this section. For motivating
comments, the interested reader is referred to [14].

The first interesting feature of multi-adjoint logic programs is that a number of
different implications are allowed in the bodies of the rules. The basic definition
is the generalization of residuated lattice given below:

Definition 1 Let 〈L,�〉 be a lattice. A multi-adjoint lattice L is a tuple (L,�
,←1,&1, . . . ,←n,&n) satisfying the following items:

(1) 〈L,�〉 is bounded, i.e. it has bottom and top elements;
(2) >&i ϑ = ϑ&i> = ϑ for all ϑ ∈ L for i = 1, . . . , n;
(3) (←i,&i) is an adjoint pair in 〈L,�〉 for i = 1, . . . , n; i.e.

(a) Operation &i is increasing in both arguments,
(b) Operation ←i is increasing in the first argument and decreasing in

the second argument,
(c) For any x, y, z ∈ P , we have that x � (y ←i z) holds if and only if

3

(x&i z) � y holds.

The need of the monotonicity of operators ←i and &i is clear, if they are to
be interpreted as generalised implications and conjunctions. The third prop-
erty in the definition, corresponds to the categorical adjointness; but can be
adequately interpreted in terms of multiple-valued inference as asserting that
the truth-value of y ←i z is the maximal x satisfying x&i z � y, and also the
validity of the following generalised modus ponens rule [8,7]:

If x is a lower bound of ψ ←i ϕ, and z is a lower bound of ϕ then a lower
bound y of ψ is x&i z.

Although, the multi-adjoint paradigm was developed for multi-adjoint lattices,
for the sake of simplicity, in this specific implementation we will restrict our
attention to [0, 1] with its standard ordering ≤.

Example 1 The three pairs of connectives (←P ,&P), (←G,&G), (←L,&L)
given below are adjoint pairs on the real unit interval, which are called, respec-
tively, product, Gödel and Lukasiewicz connectives:

x←P y =




x/y if y > x

1 otherwise
; x&P y = x · y

x←G y =





1 if y ≤ x

x otherwise
; x&G y = min(x, y)

x←L y = min(1− y + x, 1); x&L y = max(0, x+ y − 1)

Definition 2 A multi-adjoint program is a set of weighted rules 〈F, ϑ〉 satis-
fying the following conditions:

(1) F is a formula of the form A ←i B where A is a propositional symbol
called the head of the rule, and B is a well-formed formula built from
propositional symbols B1, . . . , Bn (n ≥ 0) by the use of monotone opera-
tors, which is called the body formula.

(2) The weight ϑ is an element (a truth-value) of [0, 1].

Facts are rules with body 2 1 and a query (or goal) is a propositional symbol
intended as a question ?A prompting the system.

Regarding the implementation as a neural network, to be introduced later,
it will be useful to introduce the homogeneous rules, in order to provide a
simpler and standard representation for any multi-adjoint program.

2 It is also customary to use write > instead of 1, and even not to write any body.

4

Definition 3 A weighted rule is said to be homogeneous if it has one of the
following forms:

• 〈A←i &i(B1, . . . Bn), ϑ〉
• 〈A←i @(B1, . . . , Bn), 1〉
• 〈A←i B1, ϑ〉

where B1, . . . , Bn are propositional symbols.

In this definition of homogeneous rules, we consider the last form to be different
from the first, although formally the latter is a particular case of the former.
The reason to do so is related to the number of steps of computation generated
by each of them; this fact will be clarified in the following section.

The homogeneous rules represent exactly the simplest type of (proper) rules we
can have in our program. In some sense, homogeneous rules allow a straight-
forward generalization of the standard logic programming framework, in that
no operators other than ←i and &i are used. The purpose of the next section
is to give a procedure for translating a multi-adjoint logic program into one
containing only homogeneous rules.

Once we have given the syntax of our programs, the semantics is given below.

Definition 4 An interpretation is a mapping I from the set of propositional
symbols Π to the lattice 〈[0, 1],≤〉.

Note that each of these interpretations can be uniquely extended to the whole
set of formulas, and this extension is noted as Î. The set of all the interpreta-
tions is denoted IL.

The ordering ≤ of the truth-values L can be easily extended to IL, which also
inherits the structure of complete lattice and is denoted v. The minimum
element of the lattice IL, which assigns 0 to any propositional symbol, will be
denoted M.

Definition 5

(1) An interpretation I ∈ IL satisfies 〈A ←i B, ϑ〉 if and only if ϑ ≤
Î (A←i B).

(2) An interpretation I ∈ IL is a model of a multi-adjoint logic program P

iff all weighted rules in P are satisfied by I.
(3) An element λ ∈ L is a correct answer for a program P and a query ?A if

for any interpretation I ∈ IL which is a model of P we have λ ≤ I(A).

The operational approach to multi-adjoint logic programs used in this paper
will be based on the fixpoint semantics provided by the immediate conse-

5

quences operator, given by van Emden and Kowalski [21], which can be gen-
eralised to the framework of multi-adjoint logic programs by means of the
adjoint property, as shown below:

Definition 6 Let P be a multi-adjoint program. The immediate consequences
operator, TP : IL → IL, maps interpretations to interpretations, and for I ∈ IL

and A ∈ Π is defined by

TP(I)(A) = sup
{
ϑ&i Î(B) | 〈A←i B, ϑ〉 ∈ P

}

As usual, it is possible to characterise the semantics of a multi-adjoint logic
program by the post-fixpoints of TP; that is, an interpretation I is a model
of a multi-adjoint logic program P iff TP(I) v I. The TP operator is proved
to be monotonic and continuous under very general hypotheses, see [15], and
it is remarkable that these results are true even for non-commutative and
non-associative conjunctors, although these facts will not be stressed here.

Regarding continuity, the result below was proved in [14].

Theorem 1 If all the operators occurring in the bodies of the rules of a pro-
gram P are continuous, and the adjoint conjunctions are continuous in their
second argument, then TP is continuous.

Once we know that TP can be continuous under very general hypotheses, then
the least model can be reached in at most countably many iterations beginning
with the least interpretation, that is, the least model is TP ↑ ω(M).

3 Obtaining a homogeneous program

In order to provide a simpler and standard neural network representation, in
this section we present a translation method for transforming a multi-adjoint
program into another consisting solely of homogeneous rules,.

3.1 Handling rules

We will state a procedure for transforming a given program into another
(equivalent) one containing only facts and homogeneous rules. It is based on
two types of transformations: The first one handles the main connective of the
body of the rule, and the second one handles the subcomponents of the body.

T1. A weighted rule 〈A ←i &j(B1, . . . ,Bn), ϑ〉, in which the implication of the

6

rule and the conjunction in the body do not form an adjoint pair, is substi-
tuted by the following pair of formulas:

〈A←i A1, ϑ〉

〈A1 ←j &j(B1, . . . ,Bn), 1〉

where A1 is a fresh propositional symbol, and 〈←j,&j〉 is an adjoint pair.
For the case 〈A←i @(B1, . . . ,Bn), ϑ〉 in which the main connective of the

body of the rule happens to be an aggregator, and ϑ 6= 1 the transformation
is similar:

〈A←i A1, ϑ〉

〈A1 ←i @(B1, . . . ,Bn), 1〉

where A1 is a fresh propositional symbol.
T2. A weighted rule 〈A←i Θ(B1, . . . ,Bn), ϑ〉, where Θ is either &i or an aggre-

gator, and a component Bk is assumed to be either of the form &j(C1, . . . , Cl)
or @(C1, . . . , Cl), is substituted by the following pair of formulas in either
case:

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉

〈A1 ←j &j(C1, . . . , Cl), 1〉

or

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉

〈A1 ←i @(C1, . . . , Cl), 1〉

where A1 is a fresh propositional symbol.

The procedure to transform the rules of a program so that all the resulting
rules are homogeneous, is presented in Fig. 1. It is based in the two previous
transformations, and in its description by abuse the notation we use the terms
T1-rule (resp. T2-rule) to mean an adequate input rule for transformation T1
(resp. T2):

Some applications of the algorithm above are presented in the examples below,
in which we are using the more standard infix notation for the conjunctions
in the body of the rules:

Example 2 Consider 〈A ←P (B1 &P B2) &GB3, ϑ〉, which is a T1-rule, for
the main connective in the body is not the adjoint conjunctor to the implication.
A first step of the previous algorithm gives:

〈A←P A1, ϑ〉 Homogeneous

〈A1 ←G (B1 &P B2) &GB3, 1〉

7

Program Homogenization
begin

repeat

for each T1-rule do

Apply transformation T1
end-for

for each T2-rule do

Apply transformation T2
end-for

until neither T1-rules nor T2-rules exist
end

Fig. 1. Pseudo-code for translating into a homogeneous program.

Now, the second rule has to be modified, and the result is given below:

〈A←P A1, ϑ〉 Homogeneous

〈A1 ←G A2 &GB3, 1〉 Homogeneous

〈A2 ←P B1 &P B2, 1〉 Homogeneous

Example 3 Consider the rule

〈A←P (B1 &GB2) &P @(B3, B4), ϑ〉

The first step of the algorithm gives the following result

〈A←P A1 &P @(B3, B4), ϑ〉

〈A1 ←G B1 &GB2, 1〉 Homogeneous

The procedure continues with the first rule above

〈A←P A1 &P A2, ϑ〉 Homogeneous

〈A2 ← @(B3, B4), 1〉 Homogeneous

〈A1 ←G B1 &GB2, 1〉 Homogeneous

The idea of including new symbols and definitions (we will use this term in the
sequel) for these symbols is a reformulation and adaptation of the technique
introduced originally in the context of automated deduction in [19]. The orig-
inal aim of this technique was to obtain a structure-preserving transformation
of a formula into clause form.

8

3.2 Handling facts

After the exhaustive application of the previous procedure we can assume
that all our rules are homogeneous. Regarding facts, it might be possible that
the program contained facts about the same propositional symbol but with
different weights.

Assume all the facts about A are

〈A← 1, ϑj〉 j ∈ {1, . . . , l}

then, the following fact is substituted for the previous ones

〈A← 1, sup{ϑj | j ∈ {1, . . . , l}〉

the computed truth-value for A will be denoted ϑA.

The new program obtained from P after the homogenization of rules and facts
is denoted P∗. Note that in this new program there are new propositional
symbols, if Π is the set of propositional symbols occurring in P, then the set
of propositional symbols occurring in P∗ is denoted Π∗; obviously Π ⊆ Π∗.

3.3 Preservation of the semantics

It is necessary to check that the semantics of the initial program has not been
changed by the transformation. The following results will show that every
model of P∗ is also a model of P and, in addition, the minimal model of P∗ is
also the minimal model of P.

Theorem 2 Every model of P∗ when restricted to variables in Π is also a
model of P.

PROOF.

It will be sufficient to show that the two transformations T1 and T2 have this
property; that is, every model of the output of the rules is also a model of the
input of the transformation.

T1. Assume that I is a model of the rules

〈A←i A1, ϑ〉 and 〈A1 ←j &j(B1, . . . ,Bn), 1〉

9

therefore we have

ϑ&i I(A1) � I(A) and Î(&j(B1, . . . ,Bn)) � I(A1)

Now, by monotonicity, we have

ϑ&i Î(&j(B1, . . . ,Bn)) � I(A)

which means that I is a model of 〈A←i &j(B1, . . . ,Bn), ϑ〉.
The case of an aggregator as the main connective of the body is similar.

T2. Now, assume that I is a model of the pair of rules

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉

〈A1 ←j &j(C1, . . . , Cl), 1〉

then we have

ϑ&i Î(Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn)) � I(A)

Î(&j(C1, . . . , Cl)) � Î(A1)

Now, by monotonicity, recalling that Bk was assumed to be &j(C1, . . . , Cl),

and the definition of Î we have

ϑ&i Î(Θ(B1, . . . ,Bk−1,Bk,Bk+1, . . . ,Bn)) � I(A)

that is, I is a model of

〈A←i Θ(B1, . . . ,Bk−1,Bk,Bk+1, . . . ,Bn), ϑ〉

In the case of an aggregator, the proof is similar. 2

Theorem 3 The minimal model of P∗ when restricted to the variables in Π
is also the minimal model of P.

PROOF.

The structure of the proof is as follows: Assume any model I of P, then extend
it to Π∗ in such a way that it is also a model of P∗, then use minimality on P∗.

Let M∗ be the minimal model of P∗, and let us denote by M its restriction
to P. By the previous theorem we have that M is also a model of P, so let us
prove that it is minimal.

The intuition after the definition of the extension is the following: for a given
rule the transformations T1 and T2 introduce a finite number of fresh proposi-
tional symbols and definitions for these symbols. The procedure ends when the

10

new symbol get defined completely in terms of propositional symbols from Π.
This feature allows for extending any model I to these new symbols in a re-
cursive manner. For the sake of readability consider that the new symbols are
denoted by Ai.

Given a model I of P, consider a definition 〈Ak ←j B, 1〉, which makes sense
because there is only one rule headed with Ai for each fresh symbol Ai intro-
duced in the program:

(1) If all the propositional symbols in B are in Π, define:

I∗(Ak) = Î(B)

(2) If the body contains some defined symbol, define

I∗(Ak) = Î∗(B)

Clearly, this extension I∗ is also a model of P∗, therefore the minimal model
M∗ of P∗ satisfies M∗ v I∗. Now, by restricting the domain of the models to
Π we obtain M v I. Therefore, M is the minimal model of P. 2

3.4 Complexity

In this section it is shown that the complexity of the algorithm for transforming
a multi-adjoint program into a homogeneous one is linear on the size of the
program.

Theorem 4 Let 〈A ←i Θ(B1, . . . ,Bl), ϑ〉 be a rule with n connectives in the
body (n ≥ 1). Then we have the following affirmations:

• The number of homogeneous rules obtained after applying the procedure is
n, if either Θ = &i or Θ = @ with ϑ = 1; and n+ 1 otherwise.

• The number of transformations obtained after applying the procedure is n−1
if either Θ = &i or Θ = @ with ϑ = 1; and n otherwise.

PROOF. By induction in the number n of connectives in the body.

If n = 1, we must consider two cases:

• If Θ = &i, or Θ = @ and ϑ = 1, the rule is homogeneous, so the final
number of rules is 1.
• Otherwise, we apply only the transformation T1, and we obtain the rules

〈A←i A1, ϑ〉 and 〈A1 ←j Θ(B1, . . . ,Bn), 1〉

11

where ←j depends on Θ. But these are two homogeneous rules, because in
the body there is only one connective. Thus, the final number of rules is 2.

Now, we assume the result is true for all rule with c < n connectives in the
body, and we must prove it for n connectives.

• If Θ = &i, or Θ = @ and ϑ = 1, we must apply the transformation T2 and
we obtain the rules

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉

〈A1 ←j Θ′(C1, . . . , Cl), 1〉

where ←j depends on the connective Θ′. But in both cases, in the body of
the second rule, there are c connectives with c ≥ 1, and in the body of the
first rule, there are n− c < n connectives. Thus, we can apply the induction
hypothesis and, finally, the number resultant of rules is c+ (n− c) = n.
• Otherwise, we use the transformation T1 and we have the rules

〈A←i A1, ϑ〉 and 〈A1 ←j Θ(B1, . . . ,Bn), 1〉

where if Θ is an aggregator, and if Θ = &j, then←j is its adjoint implication.
Consequently, by a similar reasoning to the previous case, the final number

of rules is n and the first rule is homogeneous, so the final number of rules
is n+ 1.

Similarly, we can prove the other statement. 2

In the next section we present a model of network which allows to evaluate
the TP operator and, therefore, by iteration will be able to approximate the
actual values of the least model up to any prescribed precision.

4 On the type of the network

Using neural networks in the context of logic programming is not a com-
pletely novel idea; for instance, in [6] it is shown how fuzzy logic programs
can be transformed into neural nets, where adaptations of uncertainties in
the knowledge base increase the reliability of the program and are carried out
automatically.

Regarding the approximation of the semantics of logic programs, in [9] the
fixpoint of the TP operator for a certain class of classical propositional logic
programs (called acyclic logic programs) is constructed by using a 3-layered
recurrent neural network, as a means of providing a massively parallel com-

12

putational model for logic programming; this result is later extended in [10]
to deal with the first order case.

Our approach somehow tries to join the two approaches above, and it is inter-
esting since our logic is much richer than classical or the usual versions of fuzzy
logic in the literature, although we only consider the propositional case. Al-
though there are some results regarding the expressive power of feed-forward
multilayered neural nets, such as Kurková’s theorem [12], the structure of our
net is not described as an n-layered network, instead a more straightforward
approach is used.

Before describing the model of neural net chosen to implement the immediate
consequences operator TP for multi-adjoint logic programming, some consid-
erations are needed:

Firstly, the set of operators to be implemented will consist of the three most
important adjoint pairs on the real unit interval: product (&P ,←P), Gödel
(&G,←G) and Lukasiewicz (&L,←L), defined in Example 1. Regarding the
selection of operators implemented, just recall that every continuous triangular
norm (or t-norm), which is the type of conjunctor more commonly used in the
context of fuzzy reasoning, is expressible as an ordinal sum of these three
basic conjunctors [7]. Regarding the aggregation operators, we will implement
a family of weighted sums, which are denoted @(n1,...,nm) and defined as follows:

@(n1,...,nm)(p1, . . . , pm) =
n1p1 + · · ·+ nmpm

n1 + · · ·+ nm

Now, we can properly begin the description: A neural network will be consid-
ered in which each process unit is associated to either a propositional symbol
of the initial program or an homogeneous rule of the transformed program.
The state of the i-th neuron in the instant t is expressed by its output Si(t).
Therefore, the state of the network can be expressed by means of a state vector
~S(t), whose components are the output of the neurons forming the network,
and its initial state is:

SA(0) =




ϑA if 〈A← >, ϑA〉 ∈ P,

0 otherwise.

where SA(0) denotes the component associated to a propositional symbol A.

Regarding the user interface, there are two types of neurons, visible or hidden,
the output of the visible neurons is part of the overall output of the net, and
the output of the hidden neurons is only used as input values for other neurons.
Visible neurons are associated to propositional symbols of the initial program
and the hidden neurons are those associated to definitions and homogeneous

13

rules. This is because we are interested in the values of the minimal model,
that is the consequence operator T ω

P
(M), about each propositional symbol of

the initial program.

The connection between neurons is denoted by a matrix of weights W , in
which wkj indicates the existence or absence of connection between unit k and
unit j; if the neuron represents a weighted sum, then the matrix of weights
also represents the weights associated to any of the inputs. The weights of
the connections related to neuron i (that is, the i-th row of the matrix W)
are represented by ~wi•, and are allocated in an internal vector register of the
neuron, which can be seen as a distributed information system.

The initial truth-value of the propositional symbol or homogeneous rule vi is
loaded in the internal register, together with a signal mi for distinguishing
whether the neuron is associated to either a fact or a rule; in the latter case,
information about the type of operator is also included. Therefore, we have
two vectors: one storing the truth-values ~v of atoms and homogeneous rules,
and another ~m storing the type of the neurons in the net.

The signal mi indicates the functioning mode of the neuron. If mi = 1, then
the neuron is assumed to be associated to a propositional symbol, and its next
state is the maximum value among all the operators involved in its input, its
previous state, and the initial truth-value vi. More precisely:

Si(t + 1) = max
{
vi,max

k
{Sk(t) | wik > 0}

}

When a neuron is associated to the product, Gödel, or Lukasiewicz implication,
respectively, then the signal mi is set to 2, 3, and 4, respectively. Its input is
formed by the external value vi of the rule, and the outputs of the neurons
associated to the body of the implication.

The output of the neuron mimics the behaviour of the implication in terms
of the adjoint property when a rule of type mi has been used; specifically, the
output in the next instant will be:

• Product implication, mi = 2

Si(t+ 1) = vi

∏

k/wik>0

Sk(t)

• Gödel implication, mi = 3

Si(t+ 1) = min
{
vi,min

k
{Sk(t) | wik > 0}

}

14

• Lukasiewicz implication, mi = 4

Si(t+ 1) = max{vi +
∑

k/wik>0

(Sk(t)− 1), 0}

Neurons associated to aggregation operators have signal ti = 5, and its output
is

Si(t + 1) =
∑

k/wik>0

w′ikSk(t)

where
w′ik =

wik∑

r/wir>0

wir

It is important to note that the neurons’s output is never decreasing, as shown
in the following theorem.

Theorem 5 Operators Si are non-decreasing for all i.

PROOF. We proceed by induction.

For t = 0, if mi 6= 1 we have that Si(0) = 0 ≤ Si(1).

If mi = 1, the neuron is related to a propositional symbol A, so we have that

Si(0) =




ϑA if 〈A← >, ϑA〉 ∈ P,

0 otherwise.

thus, Si(0) ≤ Si(1) = max {ϑA,maxk{Sk(0) | wik > 0}}.

Assume Si(t−1) ≤ Si(t) for all i as the induction hypothesis. We have several
cases, depending on mi:

If mi = 1, the neuron corresponds to a fact, then:

Si(t + 1) = max
{
vi,max

k
{Sk(t) | wik > 0}

}

(∗)

≥max
{
vi,max

k
{Sk(t− 1) | wik > 0}

}
= Si(t)

where (∗) is due to the induction hypothesis to neurons k.

If mi = 2, the neuron corresponds to product implication, then:

Si(t + 1) = vi

∏

k/wik>0

Sk(t)
(∗)

≥ vi

∏

k/wik>0

Sk(t− 1) = Si(t)

15

where (∗) is due to the induction hypothesis and that the product in [0, 1] is
monotonic.

The proof of the cases mi = 3, 4, 5 is similar. 2

The input of the initial values to the neurons is governed by an external reset
signal r, common to all the neurons. The user is allowed to modify both the
values of the internal registers of the neurons and their state vector ~S(t). A
more formal description of this reset signal is given below:

r = 1. The initial truth-value vi, the type of formula mi, and the i-th row
of the matrix of weights ~wi• are set in the internal registers. This allows to
reinitialise the network when a new problem has to be studied.
r = 0. The neurons evolve with the usual dynamics and are only affected by
the state vector of the net ~S(t). The value mi, set in their internal register,
selects the function which is activated in the neuron. By using a delay, the
output of the activated function is compared with the previous value of the
neuron.

Once the corresponding values for both the registers and the initial state of
the net have been loaded, the signal r is set to 0.

Figure 2 shows a generic neuron; the main inputs are the vector ~S of outputs
of all the neurons in the net, the initial truth value of the neuron vi and the
signal mi that establishes the type of rule the neuron is associated with. The
other signals allow to set some parameters of the problem into the neuron,
so r is a reset signal that introduces the external values of ~wi• as the new
parameters of the neuron and x as its new state. The i-th neuron receives the

output of the rest of neurons in the previous step ~S(t).

5 Representing a homogenous program by a neural net

As we have observed in the previous section, each propositional symbol of
the initial program P, and the new rules of the homogeneous program P∗ are
represented by a neuron in the net. The different types of neuron are described
below:

(1) A propositional symbol: Its type is mi = 1. The initial truth-value vi

is set either to 0 (by default) or to the truth-value ϑA if A is a fact.
The i-th row of the matrix of weights have all components set to 0

but those corresponding to rules whose head is the given propositional
symbol, in which case have value 1.

16

Fig. 2. A generic neuron

(2) Product: These neurons correspond to a homogeneous product rule.
Its internal registers are mi = 2, vi uses the truth-value of the rule in
vi, and the corresponding row in the matrix of weights is fixed with all
components 0, except those assigned to propositional symbols involved
in the body, which are set to 1.
Example 4 Consider the program below, consisting of two facts and one
rule

〈p← >, 0.2〉 〈q ← >, 0.8〉 〈p←P q, 0.5〉

we would use a net with three neurons, the first and second to represent
the facts p and q, and the third to represent p ←P q. Thus, the registers
of the associated neurons are initialized as follows:
• For neuron 1: v1 = 0.2, m1 = 1, w1• = (0, 0, 1), since the head of the

rule represented by the third neuron is p.
• For neuron 2: v2 = 0.8, m2 = 1, w2• = (0, 0, 0), because there is no rule

with head q.
• For neuron 3: v3 = 0.5, m3 = 2, w3• = (0, 1, 0), for the body of the rule

depends on q, represented by the second neuron.
Example 5 Given the homogeneous rule

〈p←P (q&P r&P s), 0.7〉

there are four neurons to represent each propositional symbol. The fifth
neuron would have its internal registers initialized as follows:
v5 = 0.7, m5 = 2 and w5• = (0, 1, 1, 1, 0), assuming the ordering of neu-

rons corresponding to propositional symbols p, q, r, s respectively. More-
over w1• = (0, 0, 0, 0, 1), since the head of the rule is the propositional
symbol p.

(3) Gödel: The only difference with the previous case is that mi = 3.
(4) Lukasiewicz: The only difference with the previous case is that mi = 4.

17

Example 6 For the program with three facts and two rules

〈p← >, 0.7〉 〈r ← >, 0.5〉 〈s← >, 0.6〉

〈p←G (q&G r&G s), 0.8〉 〈q ←L (p&L r&L s), 0.7〉

we should use a net with six neurons, the first four corresponding to
the propositional symbols p, q, r and s, whereas the other two ones cor-
respond to the rules. As the initial vector of truth-values we have v =
(0.7, 0, 0.5, 0.6, 0.8, 0.7), and the vector of types (indicating the interpre-
tation of the neurons) is ~m = (1, 1, 1, 1, 3, 4). Finally, the weights matrix
W is set to

W =




· · · · 1 ·

· · · · · 1

· · · · · ·

· · · · · ·

· 1 1 1 · ·

1 · 1 1 · ·




where the dots indicate a zero value.
(5) Weighted sums: These neurons are related to rules of the type:

〈p← @(n1,n2,...,nk)(q1, q2, . . . , qk), 1〉

So the truth-value is always one and it is unimportant which type of
implication is used since all of them assign the same value to the head of
the rule.

The register of this type of neurons is set with truth-value vi = 1, its
type is mi = 5, and the vector wi• indicates the weights (wij ≥ 0) of the
rest of neurons on the output of the weighted sum. The normalization
process for the weighted sum is done internally by the neuron using the

values in the vector wi• calculating w′ij as w′ij =
wij∑
j wij

.

Example 7 Consider the non homogeneous rule:

〈p←P @(3,7)(q, r) , 0.5〉

which is transformed into

〈h← @(3,7)(q, r), 1〉 〈p←P h, 0.5〉

we have three neurons associated, respectively, to the propositional sym-
bols p, q and r, we need two extra neurons, one to represent the first rule,
whose registers are initialized as v4 = 1, m4 = 5 and w4• = (0, 3, 7, 0, 0),
and another one to represent the product implication, with v5 = 0.5,
m5 = 2 and w5• = (0, 0, 0, 1, 0). Moreover, since the symbol p is the

18

head of the rule corresponding to the fifth neuron, we must set w15 = 1,
resulting in :

W =




· · · · 1

· · · · ·

· · · · ·

· 3 7 · ·

· · · 1 ·




and ~m = (1, 1, 1, 5, 2).

At this stage, no learning algorithm is used because the net just described
completely specifies the behaviour of the immediate consequences operator TP.
The use of the adaptive capabilities of the networks are used in the search for
explanations of a set of given observations in the context of abductive logic
programming, as introduced in [13], but this is not in the scope of this paper.

5.1 Relating the net and TP

In this section we will relate the behavior of the components of the state vector
with the immediate consequence operator. Firstly, we need to introduce some
notation to group the set of rules in P depending on the signal mi:

• PP is the set of product homogeneous rules,
• PG is the set of Gödel homogeneous rules,
• PL is the set of Lukasiewicz homogeneous rules
• P@ is the set of aggregator homogeneous rules

Theorem 6 Given a homogeneous program P and a symbol A, then

TP

n(M)(A) = SA(2n− 2) for n ≥ 1.

PROOF. By induction on n:

For n = 1 is trivially true,

T 1
P
(M)(A) = sup{ϑ&i M(B) | 〈A←i B, ϑ〉 ∈ P} = ϑA = SA(0)

Note that sometimes we are abusing the notation, in that in the expression S∗
the star indicates either an index of an existing neuron or the formula attached
to the neuron. However, the context and the symbols used are enough to avoid
any ambiguity.

19

Now, assume that T n
P

(M)(A) = SA(2n− 2) for all propositional symbol A. We
have to consider the different types of rules in P: we will prove that for each

weighted rule j = 〈A←i B, ϑ〉 ∈ Pi we have ϑ&i T̂ n
P

(M)(B) = Sj(2n− 1).

Let us consider the case of product rules. In this case B = B1 &P . . .&P Bl

and thus:

ϑ&P T̂ n
P

(M)(B) =ϑ&P T̂ n
P

(M)(B1 &P . . .&P Bl)

=ϑ&P T
n
P

(M)(B1) &P . . .&P T
n
P

(M)(Bl)

=ϑ&P SB1
(2n− 2) &P . . .&P SBl

(2n− 2)

=Sj(2n− 1)

where the last equality is due to the definition and the induction hypothesis.
For the case of Gödel and Lukasiewicz rules the proof follows similarly.

In the case of aggregator-based rules, given a rule of the form j = 〈A ←
@(B1, . . . , Bl),>〉 we have:

T̂ n
P

(M)(B) = T̂ n
P

(M)(@(B1, . . . , Bl))

= @(T n
P

(M)(B1), . . . , T
n
P

(M)(Bl))
(∗)
= @(SB1

(2n− 2), . . . , SBl
(2n− 2))

= Sj(2n− 1)

where the last equality is due to the definition and (∗) by induction hypothesis.

Thus, we have

T n+1
P

(M)(A) = sup
{
ϑ&i T̂ n

P
(M)(B) | A

ϑ
←i B ∈ P

}

= sup
{
ϑA, sup{ϑ&P T̂

n
P

(M)(B) | A
ϑ
←P B ∈ PP},

sup{ϑ&G T̂ n
P

(M)(B) | A
ϑ
←G B ∈ PG},

sup{ϑ&L T̂ n
P

(M)(B) | A
ϑ
←L B ∈ PL},

sup{T̂ n
P

(M)(B) | A
>
← B ∈ P@}

}

(∗)
= sup

{
ϑA, sup{SA←PB

(2n− 1) | A
ϑ
←P B ∈ PP},

sup{SA←GB
(2n− 1) | A

ϑ
←G B ∈ PG},

sup{SA←LB
(2n− 1) | A

ϑ
←L B ∈ PL},

sup{SA←B(2n− 1) | A
ϑ
← B ∈ P@}

}

= SA(2n)

20

where the equality (∗) follows from the previous result, and the last equality
is due to definition of SA(n). 2

A number of simulations have been obtained through a MATLAB implemen-
tation in a conventional sequential computer. A high level description of the
implementation is given below:

5.2 Implementation

(1) Initialize the network is with the appropriate values of ~v, ~m, W and, in
addition, a tolerance value tol to be used as a stop criterion. The output
Si(t) of the neurons associated to facts (which are propositional variables,
so mi = 1) are initialized with its truth-value vi.

(2) Repeat until the following stop criterion is fulfilled ‖~S(t)− ~S(t− 1)‖2 <
tol, where ‖ · ‖ denotes euclidean distance.

Update all the states Si of the neurons of the network (in parallel):
(a) If mi = 1, then:

(i) Find the neurons j (if any) which operate on the body of the
rule i. These neurons form the set Ji = {j |Wi,j = 1}.

(ii) Then, update the state of neuron i as follows:

Si(t) =





max{vi,maxJ Sj(t− 1)} if Ji 6= ∅

vi otherwise

(b) If mi = 2, 3, then:
(i) Find the neurons j (if any) which operate on the neuron i, that

is, construct the set Ji = {j |Wi,j = 1}.
(ii) Then, update the state of neuron i as follows:

Si(t) =




vi

∏
Ji
Sj(t− 1) if ti = 2

min{vi,minJ Sj(t− 1)} if ti = 3

Note that when mi = 2 the neuron corresponds to a product impli-
cation and when mi = 3 to a Gödel implication.

(c) If mi = 4 the neuron represents a Lukasiewicz implication, then:
(i) Find the set Ji = {j | Wi,j = 1}, and let Ni be its cardinal.
(ii) Then, update the state of neuron i as follows:

Si(t) = max{vi +
∑

J

Sj(t− 1)−Ni, 0}

(d) If mi = 5, then the neuron corresponds to an aggregator, and its
update follows a different pattern:

21

(i) Determine the set Ki = {j | Wi,j > 0} and calculate sum =∑
Ki
Wi,j

(ii) Update the neuron as follows:

Si(t) =
1

sum

∑

Ki

Wi,j ∗ Sj(t− 1)

Until the stop criterion ‖~S(t)− ~S(t− 1)‖2 < tol is fulfilled.

Regarding the analysis of the convergence of the network, from Thm. 6, this
is the case if the immediate consequences operator reaches the fixpoint after
a finite number of steps. Otherwise, because of the monotonicity of TP, it is
the case that the net always obtains an approximation to the fixed point up
to any level of precision.

Obtaining the exact fixed point of the TP operator is possible for special classes
of programs without aggregation operators, for instance in [18] termination
in finitely many steps is proved for homogeneous programs with only one
conjunction connective and without aggregators.

6 Examples

A number of programs have been carried out with the implementation. We
present two toy examples:

Example 8 Consider the program with facts 〈o ← >, 0.2〉, 〈w ← >, 0.2〉,
〈r ← >, 0.5〉 and rules

〈h←G (r&P o) , 0.9〉 〈v ←G @(1,2)(o, w) , 0.8〉

〈n←P r , 0.8〉 〈n←P w , 0.9〉

〈w ←P v , 0.75〉

As there are non-homogeneous rules, the rules of the program are transformed
as follows

〈i← r&P o , 1〉 〈j ← @(1,2)(o, w) , 1〉

〈h←G i , 0.9〉 〈v ←G j , 0.8〉

〈n←P r , 0.8〉 〈n←P w , 0.9〉

〈w ←P v , 0.75〉

Therefore, we will need 13 neurons (7 hidden ones) associated to h, n, o, r, v, w
and the homogeneous rules.

22

The initial values of the registers ~m,~v and W are:

• ~m = (1, 1, 1, 1, 1, 1, 2, 5, 3, 3, 2, 2, 2)
• ~v = (0, 0, 0.2, 0.5, 0, 0.2, 1, 1, 0.9, 0.8, 0.8, 0.9, 0.75)
• The matrix W is defined as

W =




· · · · · · · · 1 · · · ·

· · · · · · · · · · 1 1 ·

· · · · · · · · · · · · ·

· · · · · · · · · · · · ·

· · · · · · · · · 1 · · ·

· · · · · · · · · · · · 1

· · 1 1 · · · · · · · · ·

· · 1 · · 2 · · · · · · ·

· · · · · · 1 · · · · · ·

· · · · · · · 1 · · · · ·

· · · 1 · · · · · · · · ·

· · · · · 1 · · · · · · ·

· · · · 1 · · · · · · · ·




After five iterations, the net gets a stable state:

~S = (0.1, 0.4, 0.2, 0.5, 0.2, 0.2, 0.1, 0.2, 0.1, 0.2, 0.4, 0.18, 0.15)

with the following values for the propositional symbols: vh = 0.1; vn = 0.4;
vo = 0.2; vr = 0.5; vv = 0.2; vw = 0.2.

Example 9 Consider the program with rules

〈p←G @(1,2,3)(q, r, s) , 0.8〉 〈q ←P (t&L u) , 0.6〉

〈t←P (v&G u) , 0.5〉 〈v ←P u , 0.8〉

and facts 〈u← >, 0.75〉, 〈r ← >, 0.7〉, 〈s← >, 0.6〉.

Firstly, we will transform the rules of the program into an homogeneous one,

23

as follows

〈h←P @(1,2,3)(q, r, s) , 1〉 〈i←L t&L u , 1〉

〈j ←G v&G u , 1〉 〈p←G h , 0.8〉

〈q ←P i , 0.6〉 〈t←P j , 0.5〉

〈v ←P u , 0.8〉

The net will consist of 14 neurons, to represent the initial propositional symbols
p, q, r, s, t, u, v together with the rules of the homogeneous program.

The initial values of the net are:

• ~m = (1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2)
• ~v = (0, 0, 0.7, 0.6, 0, 0.75, 0, 1, 1, 1, 0.8, 0.6, 0.5, 0.8)
• The matrix W is defined as

W =




· · · · · · · · · · 1 · · ·

· · · · · · · · · · · 1 · ·

· · · · · · · · · · · · · ·

· · · · · · · · · · · · · ·

· · · · · · · · · · · · 1 ·

· · · · · · · · · · · · · ·

· · · · · · · · · · · · · 1

· 1 2 3 · · · · · · · · · ·

· · · · 1 1 · · · · · · · ·

· · · · · 1 1 · · · · · · ·

· · · · · · · 1 · · · · · ·

· · · · · · · · 1 · · · · ·

· · · · · · · · · 1 · · · ·

· · · · · 1 · · · · · · · ·




After running the net, its state vector get stabilized at

~S = (0.5383, 0.03, 0.7, 0.6, 0.3, 0.75, 0.6, 0.5383, 0.05, 0.6, 0.5383, 0.03, 0.3, 0.6)

where the last seven components correspond to hidden neurons, the first ones
are interpreted as the obtained truth-value for p, q, r, s, t, u and v by means
for T ω

P
(M).

24

m

4

<--<-- <--<--

x

Fig. 3. Neural network for Example 9.

Figure 3 represents a possible network that is able to solve Example 9, so it
has 14 neurons. Seven of them, associated to the symbols p, q, r, s, t, u and
v, whose register v has been initialized with either 0 or the value for facts, the
register m is 1 for all of them and the weight vectors have all components 0,
excepting for neurons associated to p, q, t and v whose components 11, 12, 13
and 14 have the value 1 respectively, that is w1,11 = w2,12 = w5,13 = w7,14 = 1.

The other neurons are hidden, the initial truth value of the neuron associated
to the rule 〈h ←P @(1,2,3)(q, r, s), 1〉 is 1, and its type is 5, the weights of
connections are in this case 1, 2, 3 (this operator is the only one with weight
different from 1).The rest of neurons are associated to Lukasiewicz, Gödel, or
product implications, so their types are 4, 3 or 2, whereas their truth values
are those given by the program.

7 Conclusions and future work

A neural-like model has been introduced, which implements the procedural
semantics recently given to multi-adjoint logic programming. This way, it is
possible to obtain the computed truth-values of all propositional symbols in-
volved in the program in a parallel way. This model can easily be modified to
add new types of fuzzy rules.

We consider only the three most important adjoint pairs in the unit interval
(product, Gödel, and Lukasiewicz) and weighted sums. As future work, we
aim at developing a general neural network for t-norms, by the introduction
of an ordinal sum unit in order to combine the basic conjunctors.

Regarding termination, the net always obtains a fixed point of TP up to any
level of precision. For special classes of programs it is also possible to obtain
the exact fixed point of the TP operator, as shown in [18]. Initial unpublished

25

work extending the ideas in [5] shows that this kind of result can be extended
to any multi-adjoint homogeneous program. This seems to be a new result,
since the works [9,10] assume acyclicity while resorting to more standard units.

Concerning learning aspects, our approach being more complex than usual
systems, it seems likely that some ideas from hybrid type networks should
have to be taken into account, for instance reinforcement for fuzzy control like
systems [2]. As current and future work, we are extending the framework by
adding learning capabilities to the net, so that it will be able to adapt the
truth-values of the rules in a given program to fit a number of observations.
Following this idea, a neural net implementation for abductive multi-adjoint
logic programming, already sketched in [13], is planned. Another interesting
line of (more theoretically oriented) future work is to study the problem of
whether ordinary feed forward networks can be captured by multi-adjoint LP.

Acknowledgements

We thank P. Eklund for providing interesting comments on previous versions
of this work.

References

[1] P. A. Armeĺın and D. J. Pym. Bunched Logic Programming. Lecture Notes in

Computer Science 2083:289–304, 2001.

[2] H.R. Berenji and P. Khedkar. Learning and tuning fuzzy logic controllers
through reinforcements. IEEE Tr. on Neural Networks, 3(5):724–740, 1992.

[3] J.J. Buckley and Y. Hayashi. Fuzzy neural networks : a survey. Fuzzy Sets and

Systems, 66:1–13, 1994.

[4] C.V. Damásio and L. Moniz Pereira. Monotonic and residuated logic programs.
In Symbolic and Quantitative Approaches to Reasoning with Uncertainty,

ECSQARU’01, pages 748–759. Lect. Notes in Artificial Intelligence, 2143, 2001.

[5] C.V. Damásio and M. Ojeda-Aciego. On termination of a tabulation procedure
for residuated logic programming. In 6th Intl Workshop on Termination,

WST’03, pages 40–43, 2003.

[6] P. Eklund and F. Klawonn. Neural fuzzy logic programming. IEEE Tr. on

Neural Networks, 3(5):815–818, 1992.

[7] S. Gottwald. A treatise on many-valued logics. Research Studies Press, 2001.

[8] P. Hájek. Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer Academic,
1998.

26

[9] S. Hölldobler and Y. Kalinke. Towards a new massively parallel computational
model for logic programming. In ECAI’94 workshop on Combining Symbolic

and Connectioninst Processing, pages 68–77, 1994.

[10] S. Hölldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of
logic programs by recurrent neural networks. Applied Intelligence, 11(1):45–58,
1999.

[11] N. Kasabov. Neuro-fuzzy techniques for Intelligent Information Processing.
Physica Verlag, 1999.

[12] V. Kurková. Kolmogorov’s theorem and multilayer neural networks, Neural

Networks 5: 501-506, 1992.

[13] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. A neural approach
to abductive multi-adjoint reasoning. In AI - Methodologies, Systems,

Applications. AIMSA’02, pages 213–222, Lect. Notes in Computer Science 2443,
2002.

[14] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming
with continuous semantics. In Logic Programming and Non-Monotonic

Reasoning, LPNMR’01, pages 351–364. Lect. Notes in Artificial Intelligence
2173, 2001.

[15] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A procedural semantics for multi-
adjoint logic programming. In Progress in Artificial Intelligence, EPIA’01,
pages 290–297. Lect. Notes in Artificial Intelligence 2258, 2001.

[16] E. Mérida-Casermeiro, G. Galán-Maŕın, and J. Muñoz Pérez. An efficient
multivalued Hopfield network for the traveling salesman problem. Neural

Processing Letters, 14:203–216, 2001.

[17] S. Mitra and Y. Hayashi. Neuro-fuzzy rule generation: Survey in soft computing
framework. IEEE Tr. Neural Networks, 11:748–768, 2000.

[18] L. Pauĺık. Best Possible Answer is Computable for Fuzzy SLD-Resolution
In Proceedings of Gödel’96 : Logical Foundations of Mathematics, Computer
Science and Physics; Kurt Gödel’s Legacy, pages 257–266, 1997.

[19] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form
translation. Journal of Symbolic Computation, 2(3):293–304, 1986.

[20] D. J. Pym. Logic Programming with Bunched Implications. Electronic Notes

in Theoretical Computer Science 17. Didier Galmiche (ed.). Elsevier, 2000.

[21] M. H. van Emden and R. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733–742, 1976.

[22] P. Vojtáš. Fuzzy logic programming. Fuzzy Sets and Systems, 124(3):361–370,
2001.

27

