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1 Introduction

In the recent years there has been an increasing interest in models of rea-
soning under “imperfect” information. As a result, a number of approaches
have been proposed for so-called inexact or fuzzy or approximate reasoning,
involving either fuzzy [16,23] or annotated [11] or similarity-based [18] or prob-
abilistic logic programming. Several proposals have appeared in the literature
for dealing with probabilistic information, namely Hybrid Probabilistic Logic
Programs [9], Probabilistic Deductive Databases [12], and Probabilistic Logic
Programs with conditional constraints [14].

This paper does not intend to survey the literature of this area (the interested
reader might consult for instance [6] for a starting point). We have just picked
three or four important cases to illustrate the applicability of our techniques.
Also, we center the discussion on the monotonic case, ignoring default nega-
tion. Default negation introduces other significant theoretical problems in the
general setting in which we are working, problems whose solutions depend
on the availability of results we are going to present for the first time here.
The major results show that general abstract approaches to the semantics of
logic programming are still needed and (still) produce very interesting research
problems and challenges.

Residuated and monotonic logic programs [3] and multi-adjoint logic pro-
grams [15] were introduced as general frameworks which abstract out the par-
ticular details of the different approaches cited above and focus only on the
computational mechanism of inference. This higher level of abstraction makes
possible the development of general results about the behaviour of several of
the previously cited approaches.

To make the discussion more concrete, consider the common-sense knowledge
that good papers reviewed by good referees are accepted for publication. In the
ideal classical two-valued approach, one would represent this by the definite
logic programming rule [22]:

paper accepted← good work, good referees

We know that in real-life things do not work exactly like this and some way
of dealing with uncertainty and imprecision is necessary. For instance, Quan-
titative Deduction Rules [21] allows us to express the following rule:

paper accepted
0.9
←− good work & good referees

The idea here is that propositions have truth-values in the unit interval [0, 1]
and weights can be assigned to rules. The above rule states that good work
conjoined with good referees entails that a paper is accepted with confidence
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degree 0.9. This is more evident if we make clear the connectives used in the
rules, as it is enforced by Fuzzy Logic Programming [24]. The following rule
is equivalent to the previous quantitative deduction rule:

paper accepted
0.9
←−p good work &G good referees

The above rule is satisfied whenever the value of paper accepted is greater or
equal than 0.9 times (product implication) the minimum (Gödel conjunction)
of the truth-values of good work and good referees. In Fuzzy Logic Program-
ming, we can choose a t-norm for combining the weight of the rule with the
result of another t-norm applied to all the propositions in the body. These
t-norms can be selected by the user, instead of being fixed a priori like in the
Quantitative Deduction Rule framework. Unfortunately, we cannot restrict
the discussion to linearly ordered lattices of truth-values, since for instance
dealing with probabilities requires using intervals of probability. This is par-
ticularly clear in the Probabilistic Deductive Databases system [12], where we
can express rules like:

(

paper accepted
〈[0.7,0.95],[0.03,0.2]〉
←−−−−−−−−−−−−−−−− good work, good referees; ind, pc

)

Here we have a complex confidence value containing two probability intervals,
one for the case where paper accepted is true and other for the case where
paper accepted is false (this representation allows for incomplete information).
The label ind indicates that good work is assumed to be probabilistically
independent from good referees, while pc specifies the way how the results of
the several rules for paper accepted are to be (disjunctively) combined.

Despite the differences between these languages, some interesting concepts
and mechanisms are common to all of them:

SORTED: Different forms of weights, confidence values, truth values, or de-
grees and corresponding operators;

MULTI-ADJOINT: Different implication symbols with partially ordered
weights associated to rules;

LOGIC PROGRAMS: Rules with a single propositional variable in the
head, and bodies constructed from arbitrary combinations of monotonic
functions.

This justifies the need to consider such a very abstract framework in order
to be able to state and prove general results, which can apply to such ap-
parently disparate approaches. In particular, we aim at obtaining termination
properties of the fix-point semantics of a sorted version of multi-adjoint logic
programming. The termination results are subtle since there are infinite pro-
grams that terminate for every query as well as finite ones that do not. Having
these results we can tell the knowledge engineers what kind of programs they
can build and which connectives they may use. Although we restrict ourselves
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to the ground case, we nevertheless allow infinite programs; thus there is not
loss of generality.

The first major contribution of this paper is the termination theorems for a
general class of sorted multi-adjoint logic programs, complementing results in
the literature and enhancing previous results in [7]. In our sorted approach each
sort identifies an underlying lattice of truth-values (weights) that must satisfy
the adjoint conditions (see below). The termination results rely on the careful
combination of both syntactical and semantical conditions, which appear to
summarise the techniques found in the literature for specific cases [16,10,12]. In
particular, we illustrate the application of the termination theorems to obtain
known termination results for some of the previously stated approaches and
languages.

Any logic programming language should be accompanied with query answer-
ing procedures. However two fundamental problems must be addressed: by
allowing infinite truth-values spaces queries may not terminate; by allowing
partial orders, the contributions of several rules must be combined together
to obtain the answer for some queries. By exploring the previous results, the
second important contribution of this work is a tabulation goal-oriented query
procedure, which tackles both problems. In particular, this tabulation proce-
dure terminates for a significant class of sorted multi-adjoint logic programs,
showing termination of query answering for several fuzzy and probabilistic
logic programming languages in the literature.

The structure of the paper is as follows. In Section 2, we introduce the pre-
liminary concepts necessary for the definition of the syntax and semantics of
sorted multi-adjoint logic programs, presented in Section 3. In Section 4, we
state the basic results regarding the termination properties of our semantics,
which are applied later in probabilistic settings in Section 5. The subsequent
section presents the tabulation-based query procedure, together with some il-
lustrative examples. The paper finishes with some conclusions and pointers to
future work.

2 Preliminary Definitions

We will make extensive use of the constructions and terminology of universal
algebra, in order to define formally the syntax and the semantics of the lan-
guages we will deal with. A minimal set of concepts from universal algebra,
which will be used in the sequel in the style of [5], is introduced below. We
use the quantitative deduction rules in order to illustrate the concepts to be
introduced.
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2.1 Some Definitions from Universal Algebra

The notions of signature and Σ-algebra allow the interpretation of the function
and constant symbols in the language, as well as for specifying the syntax.

Definition 1 A signature is a pair Σ = 〈S, F 〉 where S is a set of elements,
(sorts), and F is a collection of function declaration pairs 〈f, s1×· · ·×sk → s〉
denoting functions, such that s, s1, . . . , sk are sorts and no symbol f occurs in
two different pairs. The number k is the arity of f ; if k is 0 then f is a constant
symbol. A pair 〈f, τ〉 belonging to F will be usually denoted as f : τ .

Definition 2 Let Σ = 〈S, F 〉 be a signature, a Σ-algebra is a pair 〈{As}s∈S , I〉
satisfying the two following conditions:

(1) Each As is a non-empty set called the carrier of sort s,
(2) and I is a function which assigns a map I(f) : As1 × · · · × Ask → As to

each f : s1 × · · · × sk → s ∈ F , where k > 0, and an element I(c) ∈ As

to each constant symbol c : s in F.

For quantitative deduction rules we have a signature with a single sort, say u,
and the function types:

&P : u× u→ u ←P : u× u→ u 0.0: u

&G : u× u→ u ←G : u× u→ u
...

1.0: u

With this signature we construct the Σ-algebra unit where:

• the carrier Au of sort u is the unit interval [0, 1];
• the constant and function symbols are interpreted as follows:

I(&P ) : [0, 1]× [0, 1] −→ [0, 1] I(0.0) : [0, 1]

(x, y) 7→ x · y 7→ real number 0

I(←P ) : [0, 1]× [0, 1] −→ [0, 1]
...

(x, y) 7→ min(1, x/y)

I(&G) : [0, 1]× [0, 1] −→ [0, 1] I(1.0) : [0, 1]

(x, y) 7→ min(x, y) 7→ real number 1
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I(←G) : [0, 1]× [0, 1] −→ [0, 1]

(x, y) 7→







1 if x ≥ y

x otherwise

The &P and←P symbols denote, respectively, the product t-norm and Goguen’s
implication. The other operators &G and ←G are the minimum t-norm and
Gödel’s implication. Despite of the representation used above with just a dec-
imal digit, we assume that for every real number there is a corresponding con-
stant symbol denoting it in the signature. Of course, there are uncountably
many constant symbols, which obviously cannot be represented in a denumer-
able language. We ignore these important technical details in the following
discussion, since they will not affect our results. In practical terms, this sim-
ply means that “some” programs cannot be represented in the computer. It is
a usual practical assumption, to work only with rational numbers.

2.2 Multi-Adjoint Lattices and Multi-Adjoint Algebras

The Σ-algebra concept does not define any particular relation between the
interpretation of function symbols defined in the signature. For our purposes
we need to make clear the relationship between the arrow symbols, weights and
the values resulting from the evaluation of body formulas. The main concept
we will need in this section is that of adjoint pair.

Definition 3 Let 〈P,�〉 be a partially ordered set and let (←, &) be a pair of
binary operations in P such that:

(a1) Operation & is increasing in both arguments
(a2) Operation ← is increasing in the first argument and decreasing in the

second argument.
(a3) For any x, y, z ∈ P , we have that (y ← z) � x iff y � (x & z)

Then (←, &) is said to form an adjoint pair in 〈P,�〉.

The first two conditions specify the usual properties of “conjunction” and
“implication”. The adjoint condition is more interesting and allows us to use
many-valued versions of modus ponens. The value x can be understood as the
weight associated to the rules, and therefore condition (a3) expresses that in
order to satisfy the rule the value of the consequent (head) must be larger
than or equal to the value of the rule weight conjoined to the value of the
body. Dropping any of the sides of the equivalence in condition (a3) destroys
the expected properties of models of our programs (see [6]). This is the basic
inference rule used in sorted multi-adjoint logic programs.
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Extending the results in [3,5,23] to a more general setting, in which different
implications ( Lukasiewicz, Gödel, product) and thus, several modus ponens-
like inference rules are used, naturally leads to considering several adjoint pairs
in the lattice.

Definition 4 A multi-adjoint lattice L is a tuple (L,�,←1, &1, . . . ,←n, &n)
satisfying the following conditions:

(l1) 〈L,�〉 is a bounded lattice, i.e. it has bottom (⊥) and top (⊤) elements;
(l2) (←i, &i) is an adjoint pair in 〈L,�〉 for all i;
(l3) ⊤&i ϑ = ϑ &i⊤ = ϑ for all ϑ ∈ L for all i.

Remark 5 Note that residuated lattices are a special case of multi-adjoint
lattice, in which the underlying poset has a lattice structure, has monoidal
structure wrt & and ⊤, and only one adjoint pair is present.

The adjoint condition (a3) can now be fully understood. By setting x to ⊤ we
obtain the equivalence:

(y ←i z) � ⊤ iff y � ⊤&i z iff y � z

Thus, the truth-value of the arrow symbol is ⊤ iff the value of the head is
greater than or equal to the value of the body. This is the expected generali-
sation of the classical two-valued material implication connective. The adjoint
condition lets us introduce the notions of weight and satisfiable rule.

We have also seen in the examples in the introductory section, that it is
desirable to allow extra operators besides those necessary in the multi-adjoint
lattice definition. The structure which captures this possibility is that of a
multi-adjoint algebra.

Definition 6 A Σ-algebra L is a multi-adjoint Σ-algebra whenever:

• The carrier Ls of each sort is a lattice under a partial order �s.
• Each sort s contains operators ←s

i : s × s → s and &s
i : s × s → s for

i = 1, . . . , ns (and possibly some extra operators) such that the tuple Ls

(Ls,�s, I(←s
1), I(&

s
1), . . . , I(←s

ns), I(&
s
ns))

is a multi-adjoint lattice.

For the unit Σ-algebra, recall that we have a single sort u with carrier [0, 1].
The corresponding partial order �u is the usual ordering between real numbers
in the unit interval, which is a complete lattice. The structure

([0, 1],≤, I(←P ), I(&P ), I(←G), I(&G))
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is a multi-adjoint lattice. In this setting we have two implication symbols, but
more can easily be added by introducing the appropriate adjoint pairs; for
instance, a missing one is  Lukasiewicz’s adjoint pair.

Furthermore, multiple sorts can be found underlying the probabilistic deduc-
tive databases framework of [12] where our sorts correspond to ways of com-
bining belief and doubt probability intervals. Our framework is richer since
we do not restrain ourselves to a single and particular carrier set, as well as
allowing for more operators.

In practice, we will usually have to assume some properties on the introduced
extra operators. These extra operators will be assumed to be either aggrega-
tors, or conjunctors or disjunctors, all of which are monotone functions (con-
junctors and disjunctors, in addition, are required to generalise their Boolean
counterparts).

3 Syntax and Semantics of Sorted Multi-Adjoint Logic Programs

Sorted multi-adjoint logic programs were introduced in [7,8], and an enhanced
presentation is given below. Our programs are constructed from the abstract
syntax induced by a multi-adjoint Σ-algebra. Specifically, given an infinite set
of sorted propositional symbols Π, we will consider the corresponding term
Σ-algebra of formulas 3 F = Terms(Σ, Π). In addition, we will consider a
multi-adjoint Σ-algebra L, whose extra operators can be arbitrary monotone
operators, to host the manipulation of the truth-values of the formulas in our
programs.

Remark 7 As we are working with two Σ-algebras we introduce a special
notation to clarify which algebra a function symbol belongs to. Let σ be a
function symbol in Σ, its interpretation under L is denoted

.

σ (a dot on the
operator), whereas σ itself will denote its interpretation under F when there is
no risk of confusion.

In the sequel we take the liberty of using infix notation whenever it simplifies
presentation.

3 This corresponds to the algebra freely generated from Π and the set of function
symbols in Σ, respecting sort assignments.
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3.1 Syntax of Sorted Multi-Adjoint Logic Programs

The definition of sorted multi-adjoint logic program is given, as usual, as a
set of rules and facts. The particular syntax of these rules and facts is given
below:

Definition 8 Given a multi-adjoint Σ-algebra L, a sorted multi-adjoint logic
program is a set P of rules 〈A←s

i B, ϑ〉 such that:

(1) The rule (A←s
i B) is a formula (an algebraic term) of F;

(2) The weight ϑ is an element (a truth-value) of Ls;
(3) The head of the rule A is a propositional symbol of Π of sort s;
(4) The body B is an implication-free formula of F with sort s, built from

sorted propositional symbols B1, . . . , Bn (n ≥ 0) by the use of function
symbols in Σ.

Facts are rules with body ⊤s, the top element of lattice Ls. A query (or goal)
is a propositional symbol intended as a question ?A prompting the system. In
order to simplify notation, we alternatively represent a rule 〈A ←s

i B, ϑ〉 by

A
ϑ
← s

i B.

Sometimes, we will represent bodies of formulas as @[B1, . . . , Bn], where 4

the Bis are the propositional variables occurring in the body and @ is the
aggregator obtained as a composition. This sets the syntax for our programs.

Example 9 The following quantitative deduction program illustrates these
concepts:

〈good work ←P 1.0, 0.9〉

〈good referees←P 1.0, 1.0〉

〈paper accepted←P good work &G good referees, 0.9〉

The above program has two facts and a rule. The propositional variables are
good work, good referees and paper accepted all of sort u; the underlying
multi-adjoint algebra unit has been introduced before. Intuitively, good work
should be assigned the truth-value at least 0.9; good referees the value 1.0 and
the truth-value paper accepted at least 0.81.

We now proceed to formalise these intuitions.

4 Note the use of square brackets in this context.
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3.2 Semantics of Sorted Multi-Adjoint Logic Programs

Semantically, a propositional variable of sort s will be assigned an element
of the carrier multi-adjoint lattice of s. This is the extension of the classical
notion of interpretation.

Definition 10 An interpretation is a mapping I : Π→
⋃

s Ls such that I(p) ∈
Ls for every propositional symbol p of sort s. The set of all interpretations
of the sorted propositions defined by the Σ-algebra F in the Σ-algebra L is
denoted IL.

Note that by the unique homomorphic extension theorem (see for instance [17]
for a proof), each of these interpretations can be uniquely extended to the
whole set of formulas F. The valuation function obtained in this way from an
interpretation I is denoted by Î.

The orderings �s on the truth-value lattices Ls can be easily extended to the
set of interpretations as follows:

Definition 11 Consider I1, I2 ∈ IL. Then, 〈IL,⊑〉 is a lattice where I1 ⊑
I2 iff I1(p) �s I2(p) for all p ∈ Πs. The least interpretation △ maps every
propositional symbol of sort s to the least element ⊥s ∈ Ls.

A rule of a sorted multi-adjoint logic program is satisfied whenever the truth-
value of the rule is greater than or equal to the weight associated with the
rule. Formally:

Definition 12 Given an interpretation I ∈ IL, a weighted rule 〈A ←s
i B, ϑ〉

is satisfied by I iff ϑ �s Î (A←s
i B). An interpretation I ∈ IL is a model of

a sorted multi-adjoint logic program P iff all weighted rules in P are satisfied
by I.

Example 13 Consider the interpretation I1 which maps the propositional
symbols as follows:

I1(good work) = 0.95 I1(good referees) = 1.0 I1(paper accepted) = 0.92

It is clear that all the rules in the program of Example 9 are satisfied. Let us
analyse the last one:

〈paper accepted←P good work &G good referees, 0.9〉
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We have that:

0.9 ≤ Î1 (paper accepted←P good work &G good referees)

iff 0.9 · Î1 (good work &G good referees) ≤ Î1 (paper accepted)

iff 0.9 ·min(I1(good paper), I1(good referee)) ≤ I1(paper accepted)

iff 0.855 ≤ 0.92

Thus, the rule is satisfied by the given interpretation,

Definition 14 An element α ∈ Ls is a correct answer for a program P and
a query ?A of sort s, if for an arbitrary interpretation I which is a model of
P we have α �s I(A).

The immediate consequences operator, given by van Emden and Kowalski, can
be easily generalised to the framework of sorted multi-adjoint logic programs.

Definition 15 Let P be a sorted multi-adjoint logic program. The immediate
consequences operator TP maps interpretations to interpretations, and for an
interpretation I and an arbitrary propositional symbol A of sort s is defined
by

TP(I)(A) =
⊔

s

{ϑ
.

&
s
i Î(B) | 〈A←s

i B, ϑ〉 ∈ P}

where
⊔

s is the least upper bound in the lattice Ls.

The fundamental result is that the TP operator is monotonic, since the con-
junctors associated with the arrow symbols are monotonically increasing, as
well as the functions denoted by the body formulae.

Theorem 16 (Monotonicity of TP) Let I1 and I2 be two interpretations in
IL, and P be a sorted multi-adjoint logic program. Operator TP is monotonic:
if I1 ⊑ I2 then TP(I1) ⊑ TP(I2).

The semantics of a sorted multi-adjoint logic program can be characterised,
as usual, by the post-fixpoints of TP:

Theorem 17 An interpretation I of IL is a model of a sorted multi-adjoint
logic program P iff TP(I) ⊑ I.

By the Knaster-Tarski fix-point theorem, TP has a least fix-point which, by
the previous theorem is also a least model. Thus:

Definition 18 (Declarative Semantics) The semantics of a sorted multi-
adjoint logic program P is given by the least model MP of P, which always
exists.
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Example 19 For the program of Example 9 the minimal model M maps

M(good work) = 0.9 M(good referees) = 1.0 M(paper accepted) = 0.81

The TP operator provides a way of “operationally” obtaining the least fix-point
of any program:

Theorem 20 (Fix-point Semantics) Let P be a sorted multi-adjoint logic
program, and consider the transfinite sequence of interpretations of IL:

TP↑
0 = △

TP↑n+1 = TP(TP↑n)

TP↑α =
⊔

β<α TP↑β, α a limit ordinal

Then there is an ordinal λ such that TP ↑λ+1= TP ↑λ, the least fixpoint of TP.
Moreover MP = TP ↑λ.

Example 21 The computation of the minimal model of the program of Ex-
ample 9 is:

good work good referees paper accepted

TP↑0 = 0.0 0.0 0.0

TP↑1 = 0.9 1.0 0.0

TP↑2 = 0.9 1.0 0.81

TP↑
3 = 0.9 1.0 0.81

The computation stops after three iterations.

The major difference from standard classical logic programming is that our TP

operator might not be continuous, and therefore more than ω iterations may
be necessary to “reach” the least fix-point. This possibility is unavoidable if
one wants to retain generality. All the other important results carry over to our
sorted multi-adjoint logic programs. The single-sorted TP operator is proved
to be monotonic and continuous under very general hypotheses, see [15], and
it is remarkable that these results are true even for non-commutative and non-
associative conjunctors. In particular, by continuity, the least model can be
reached in at most countably many iterations of TP on the least interpretation.
These results immediately extend to the sorted case. For obvious practical
reasons, we will explore conditions that guarantee that programs reach their
fix-points in at most ω iterations.
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4 Termination Results

In this section we focus on the termination properties of the TP operator. In
what follows we assume that every function symbol is interpreted as a com-
putable function. If only monotone and continuous operators are present in
the underlying sorted multi-adjoint Σ-algebra L then the immediate conse-
quences operator reaches the least fix-point at most after ω iterations. It is
not difficult to show examples in which exactly ω iterations may be necessary
to reach the least fixpoint (see Example 23).

In [7,8] several results providing sufficient conditions guaranteeing that every
query can be answered after a finite number of iterations were announced. In
particular, this means that for finite programs the least fix-point of TP can also
be reached after a finite number of iterations, ensuring computability of the
semantics. Moreover, a general termination theorem for a wide class of sorted
multi-adjoint logic programs, designated programs with finite dependencies,
was anticipated.

The termination property we investigate is stated in the following definition,
and corresponds to the notion of fixpoint-reachability of Kifer and Subrah-
manian [11]:

Definition 22 Let P be a sorted multi-adjoint logic program with respect to a
multi-adjoint Σ-algebra L and a sorted set of propositional symbols Π. We say
that TP terminates for every query iff for every propositional symbol A there
is a finite n such that TP

n(△)(A) is identical to lfp(TP)(A).

In the classical definite logic programming case it is guaranteed that TP ter-
minates for every query. However, in our general setting we may have infinite
programs that terminate for every query while finite ones may not:

Example 23 Consider the following infinite program over the unit interval
multi-adjoint algebra and the countable number of propositional symbols Ai:

〈A1 ←P 1.0, 0.1〉

〈A2 ←P A1, 0.1〉

〈A3 ←P A2, 0.1〉
...

〈Ai+1 ←P Ai, 0.1〉
...
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The least fix-point is only attained at iteration ω of TP, however a fixed query
?An gets evaluated with value 0.1n after finitely many steps (specifically at
iteration n).

The notion of dependency graph for sorted multi-adjoint logic programs cap-
tures (recursively) the propositional symbols which are necessary to compute
the value of a given propositional symbol. The dependency graph of P has a
vertex for each propositional symbol in Π, and there is an arc from a propo-
sitional symbol A to a propositional symbol B for each rule with head A and
the body containing an occurrence of B. The dependency graph for a propo-
sitional symbol A is the subgraph of the dependency graph containing all the
nodes accessible from A and corresponding edges.

Definition 24 A sorted multi-adjoint logic program P has finite dependencies
iff for every propositional symbol A the number of edges in the dependency
graph for A is finite.

The program in Example 23 has finite dependencies since propositional symbol
Ai+1 depends solely on the values of A0, . . . , Ai through i + 1 rules (edges).

The fact that a propositional symbol has finite dependencies gives us some
guarantees that we can finitely compute its value. However, this is not sufficient
since a propositional symbol may depend directly or indirectly on itself, and
the TP operator might after all produce infinite ascending chains of values for
this symbol, because we may have an infinite number of truth-values.

Example 25 [11] Consider the following program, again with respect to the
unit single-sorted multi-adjoint Σ-algebra extended with the addition and divi-
sion of real numbers by 2:

〈A←P

1 + A

2
, 1.0〉

The iterations of the TP operator are:

TP↑0 TP↑1 TP↑2 · · · TP↑n · · · TP↑ω TP↑ω+1

A 0.0 1
2

3
4
· · · 2n−1

2n · · · 1.0 1.0

Clearly, we obtain a strictly increasing sequence which converges to 1.0, but this
value is only attained at the step ω. Intuitively, this query cannot be evaluated
in a finite number of steps.

The following definition identifies an important class of sorted multi-adjoint
logic programs for which we can show that these infinite ascending chains
cannot occur, and thus ensure termination.
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Definition 26 A multi-adjoint Σ-algebra is said to be local when the following
conditions are satisfied:

• For every pair of sorts s1 and s2 there is a unary monotone casting function
symbol cs1s2

: s2 → s1 in Σ.

• All other function symbols have types of the form f :

n
︷ ︸︸ ︷

s× · · · × s→ s, i.e. are
closed operations in each sort, satisfying the following boundary conditions
for every v ∈ Ls and k = 0, . . . , n− 1:

I(f)(⊤s, . . . ,⊤s

︸ ︷︷ ︸

k

, v,⊤s, . . . ,⊤s

︸ ︷︷ ︸

n−k−1

) �s v

where ⊤s is the top element of Ls. In particular, if f is a unary function
symbol then I(f)(v) �s v.

• The following property is obeyed:

(css1
◦ cs1s2

◦ . . . ◦ csns) (v) �s v

for every v ∈ Ls and finite composition of casting functions with overall sort
s→ s.

In local multi-adjoint Σ-algebras the non-casting function symbols are re-
stricted to operations in a unique sort. In order to combine values from dif-
ferent sorts, one has to use explicitly the casting functions in the appropriate
places; moreover, recall that the connectives are not assumed to be continu-
ous. Local multi-adjoint algebras are basically imposing that operators cannot
give more “information” than any of the arguments. The same applies to the
composition of casting functions; if one starts with a value v in some sort and
then converts it an arbitrary number of times, obtaining a value of the original
sort, then this cast value must not be greater than the starting value v. No
information gain (increase in truth-values) is obtained. This is particularly
important for applications where one has discrete and continuous carriers of
domains, e.g. discretisation of continuous domains.

The underlying idea of our first termination result is to use the set of relevant
values for a propositional symbol A to collect the maximal values contributing
to the computation of A in an iteration of the TP operator, whereas the non-
maximal values are irrelevant for determining the new value for A by TP. This
is formalized in the following definition:

Definition 27 Let P be a sorted multi-adjoint program, and A ∈ Πs.

• The set RI
P
(A) of relevant values for A with respect to interpretation I is

the set of maximal values of the set {ϑ
.

&s
i Î(B) | 〈A←s

i B, ϑ〉 ∈ P}
• The culprit set for A with respect to I is the set of rules 〈A ←s

i B, ϑ〉 of P

such that ϑ
.

&s
i Î(B) belongs to RI

P
(A). Rules in a culprit set are called
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culprits.
• The culprit collection for TP

n(△)(A) is defined as the set of culprits used in
the tree of recursive calls of TP in the computation.

With this definition, we are able to state a first termination result about sorted
multi-adjoint logic programs.

Theorem 28 Let P be a sorted multi-adjoint logic program with respect to a
local multi-adjoint Σ-algebra L and the set of sorted propositional symbols Π,
and having finite dependencies. If for every iteration n and propositional sym-
bol A of sort s the set of relevant values for A with respect to T n

P
(△) is a

singleton, then TP terminates for every query.

PROOF. The proof of the theorem is based on the bounded growth of the
culprit collection for TP

n(△)(A). By induction on n, it will be proved that if
we assume T n+1

P
(△)(A) ≻s T n

P
(△)(A) for A ∈ Π, then the culprit collection

for T n+1
P

(△)(A) has cardinality at least n+ 1. Since the number of rules in the
dependency graph for A is finite then the TP operator must terminate after
a finite number of steps, by using all the rules relevant for the computation
of A. The formalisation of this argument is given below:

Firstly, let us prove by induction that, if T n+1
P

(△)(A) ≻s T n
P

(△)(A) for A ∈ Π,
then the culprit collection for T n+1

P
(△)(A) has cardinality at least n + 1.

Base case: For n = 0, consider A ∈ Πs and assume T 1
P
(△)(A) ≻s T 0

P
(△)(A) =

△(A) and then, by definition of TP, we must have used at least one rule, and
thus the culprit collection contains at least one element.

Induction step: Now, we assume as the induction hypothesis that given
B ∈ Πt such that T n

P
(△)(B) ≻t T n−1

P
(△)(B), then the culprit collection for

T n
P

(△)(B) has at least n different rules for all sorts t and B ∈ Π.

Let A ∈ Πs and assume T n+1
P

(△)(A) ≻s T n
P

(△)(A), then there is at least one

rule in the program, 〈A ←s
i B, ϑ〉, such that T n+1

P
(△)(A) = ϑ

.

&s
i T̂ n

P
(△)(B).

Summing up, we have:

T n+1
P

(△)(A) = ϑ
.

&
s
i T̂ n

P
(△)(B) ≻s T n

P
(△)(A) ≻s ϑ

.

&
s
i

̂T n−1
P

(△)(B).

By monotonicity of both TP and
.

&s
i then there must be at least one proposi-

tional symbol C ∈ Πu occurring in the body B which changed value from step
n− 1 to step n, i.e. T n

P
(△)(C) ≻u T n−1

P
(△)(C).

Applying the induction hypothesis, at least n different rules are in the culprit
collection of T n

P
(△)(C), and belong to the dependency graph for A since C
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occurs in the body of a rule for A. We will prove that 〈A ←s
i B, ϑ〉 is not in

that culprit collection.

By contradiction, assume the existence of m < n + 1
such that 〈A←s

i B, ϑ〉 is also a culprit for TP

m(△)(A).

In this case, we can view the computation performed
by the TP operator as the evaluation of the term showed
at the right, where each csisj

is either a casting function
or the identity function on sort s, css, and Ti’s are again
terms.

Furthermore, there are no occurrences of propositional
symbols in the above term.

By the boundary condition one can easily conclude
that

T n+1
P

(△)(A) �s .

css1

(

· · · (
.

csks ((Tm
P

(△)A)))
)

Now, by resorting to the properties of the casting func-
tions we will obtain that:

T n+1
P

(△)(A) �s Tm
P

(△)(A) (1)

&s
i

ϑ css1

f1

... cs1s2

f2

...
...

fk

T1 csks

TP

m(△)(A)

Ts

...

...

obtaining a contradiction with the monotonicity of TP since

T n+1
P

(△)(A) ≻s T n
P

(△)(A) �s Tm
P

(△)(A).

For the proof of inequality (1) recall that, for the function operator fk in the
above term we know that:

.

T1�
sk ⊤sk . . .

.

Ts�
sk ⊤sk

By the boundary conditions we conclude immediately that

.

fk

(
.

T1, . . . ,
.

csks (Tm
P

(△)(A)) , . . . ,
.

Ts

)

�sk
.

csks (Tm
P

(△)(A))

This argument can be applied to any function symbol in the computation tree.

As a result, we obtain that the culprit collection for T n+1
P

(△)(A) has cardinality
at least n + 1, and the theorem is proved. 2

This theorem has a set of important corollaries, firstly, we can obtain results
about the complexity of reasoning:
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Corollary 29 If the conditions of Theorem 28 are fulfilled then at most m
iterations of TP are necessary to answer query ?A, where m is the number of
rules in the dependency graph for A.

One way of guaranteeing that we have at most one element in RI
P
(A) is to

enforce that �s is a total order. The next corollary results from finiteness of
number of rules for A:

Corollary 30 Let P be a sorted multi-adjoint logic program with respect to a
local multi-adjoint Σ-algebra L and to the set of sorted propositional symbols Π,
and having finite dependencies. If all the carrier lattices Ls are totally ordered
then TP terminates for every query.

An important instance of the above is the case of the unit interval:

Corollary 31 If the carrier of each sort s is the unit interval [0, 1] then TP

terminates for every query over any program P having finite dependencies.

Clearly, programs where only t-norms over the unit interval are used in weighted
rules are catered by the previous result, extending the results of [16].

Example 32 Consider the following program:

〈a←P b &G c, 0.8〉

〈a←P 1.0, 0.5〉

〈b←P a, 0.7〉

〈c←P 1.0, 1.0〉

Since we have four rules, and the min operator obeys to the boundary condition
of Theorem 28, let us confirm that we need at most 4 iterations to obtain the
fixpoint:

a b c

TP↑0 = 0.0 0.0 0.0

TP↑1 = 0.5 0.0 1.0

TP↑2 = 0.5 0.35 1.0

TP↑3 = 0.5 0.35 1.0

As we shall see, Theorem 28 and its Corollaries can be used to obtain the Prob-
abilistic Deductive Databases termination theorem [12], since the connectives
allowed in rule bodies obey to the boundary conditions. However, the theorem
cannot be applied to show termination results of Hybrid Probabilistic Logic
Programs (HPLPs) appearing in [10] because operators employed to capture
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disjunctive probabilistic strategies do not obey to the boundary conditions.
For obtaining the termination theorem for HPLPs we require the notion of
range dependency graph:

Definition 33 The range dependency graph of a sorted multi-adjoint logic
program P has a vertex for each propositional symbol in Π. There is an arc
from a propositional symbol A to a propositional symbol B iff A is the head
of a rule with body containing an occurrence of B which does not appear in a
sub-term with main function symbol having finite range.

The rationale is to not include arcs of the dependency graph referring to
propositional symbols which can only contribute directly or indirectly with
finitely many values to the evaluation of the body.

For instance, consider the rule A ← f(g(A, B), B) ⊗ g(f(C)) ⊗ D ⊗ g(E),
where f is mapped to a function with infinite range and g corresponds to a
function with finite range (i.e. the image of g is a finite set). According to the
previous definition, we will introduce an arc from A to B and from A to D.
The propositional symbol A occurs in the sub-term g(A, B), with finite range,
and the same happens with C in g(f(C)) and E in g(E), and therefore they
are excluded from the range dependency graph. The arc to B is introduced
because of the second occurrence of B in f(g(A, B), B). The notion of finite
dependencies immediately extends to range dependency graphs, but one has
to explicitly enforce that for each propositional symbol there are only finitely
many rules for it in the program.

Theorem 34 If P is a sorted multi-adjoint logic program with acyclic range
dependency graph having finite dependencies, then TP terminates for every
query.

PROOF. The idea is to consider an arbitrary propositional symbol A and
the corresponding range dependency sub-graph for A. We know that it is both
finite and acyclic. It is possible to show that in these conditions only a finite
number of values can be produced by the TP operator, and therefore no infinite
ascending chains for the values of A can be generated.

The formalisation of the proof proceeds by induction on the depth of a propo-
sitional symbol B in the range dependency sub-graph for A.

Depth 0: This means that either there is no rule for the propositional sym-
bol, or no propositional symbols occur in bodies for B or all propositional
symbols occur “in the scope of” a function symbol having finite range. It is
immediate to see that in any of these cases only finitely many values for B
can be produced for each rule. Since the number of rules for B is assumed to
be finite, the set containing the combination of all these values by the least
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upper bound operation has also finite cardinality, and thus the set TP(B) is
also finite.

Depth n + 1: All the propositional symbols occurring in the range depen-
dency sub-graph for B have depth at most n. By induction hypothesis, all
these symbols can take only a finite number of values. Since all propositional
symbols occurring in the body of a rule for B are in the dependency graph,
or “in the scope of” a function symbol with finite range, then all the bodies
of rules for B in P also have a finite number of possible evaluations. By a
similar argument to the base case, we immediately conclude that TP(B) can
take only a finite number of values. 2

Corollary 35 If P is a sorted multi-adjoint logic program such that all func-
tion symbols in the underlying Σ-algebra have finite range, then TP terminates
for every query.

The proof is immediate since in this case the range dependency graph is empty.

Example 36 Consider the following variant of the program of Example 25:

〈A←P f
(

1 + A

2

)

, 1.0〉

Suppose function symbol f denotes the function fin defined as

fin(x) =







0 if x < 0.5

0.5 if 0.5 ≤ x < 1.0

1.0 if x = 1.0

Since f denotes a function with finite range, then the range dependency graph
is empty. Therefore, the TP operator terminates for every query, as the next
iterations show:

A

TP↑0 = 0.0

TP↑
1 = 0.5

TP↑2 = 0.5

It is worth to note that the conditions of the theorem do not imply that pro-
gram P is acyclic, as in the example. Cyclic dependencies through propositions
in finitely ranged function symbols can occur, since these are discarded from
the range dependency graph of P. This is enough to show the results for Hybrid
Probabilistic Logic Programs.

In order to remove the acyclicity condition from Theorem 34, boundary con-
ditions have an important role, allowing to obtain a new result combining
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Theorems 28 and 34. Specifically, the termination result can be obtained
as well if the local multi-adjoint Σ-algebra also contains function symbols
g : s1×· · ·×sl → sk such that their interpretations are isotonic functions with
finite range. We call this kind of algebra a local multi-adjoint Σ-algebra with
finite operators.

Theorem 37 Let P be a sorted multi-adjoint logic program with respect to
a local multi-adjoint Σ-algebra with finite operators L and the set of sorted
propositional symbols Π, and having finite dependencies. If for every iteration
n and propositional symbol A of sort s the set of relevant values for A wrt
T n

P
(△) is a singleton, then TP terminates for every query.

The intuition underlying the proof of this theorem is simply to apply a cardi-
nality argument. However, the formal presentation of the proof requires intro-
ducing some technicalities which offer enough control on the increase of the
computation tree for a given query.

On the one hand, one needs to handle the number of applications of rules;
this is done by using the concept of culprit collection, as in Theorem 28. On
the other hand, one needs to consider the applications of the finite operators,
which are not adequately considered by the culprit collections. With this aim,
given a propositional symbol A, let us consider the subset of rules of the
program associated to its dependency graph 5 , and denote it by PA. This set
is finite, for the program has finite dependencies, so we can write:

P
A = {〈Hi ← Bi, ϑi〉 | i ∈ {1, . . . , s}}

In addition, let us write each body of the rules above as follows:

Bi = @i[g
i
1(D

i
1), . . . , g

i
ki

(Di
ki

), Ci
1, . . . , C

i
mi

]

where gi
j(D

i
j) represents the subtrees corresponding to the outermost occur-

rences of finite operators, the Ci
j are the propositional symbols which are not

in the scope of finite operator, and @i is the operator obtained after composing
all the operators in the body not in the scope of any finite operator.

Now, consider G(PA) = {g1
1, . . . , g

1
k1

, . . . , gs
1, . . . , g

s
ks
}, which is a finite multiset,

and let us define the following counting sets for the contribution of the finite
operators to the overall computation.

Definition 38 The counting sets for P and A for all n ∈ N, denoted ΞA
n , are

5 Note we are using again the dependency graph, not the range dependency graph.
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defined as follows:

ΞA
n = {k < n | there is gi

j ∈ G(PA) such that
.

gi
j ( ̂TP

k(△)(Di
j)) >

.

gi
j ( ̂TP

k−1(△)(Di
j))}

With this definition we can state the main lemma needed in the proof of
Theorem 37.

Lemma 39 Under the hypotheses of Theorem 37, if TP

n+1(△)(A) > TP

n(△
)(A) then either |ΞA

n+1| > |ΞA
n | or the culprit collection for TP

n+1(△)(A) is
greater than that for TP

n(△)(A).

PROOF. We will proceed by induction on n.

Base case n = 0: for any A it is straightforward that if TP(△)(A) >△ (A) = ⊥
then a new rule has been used.

Inductive case: Assume that the result is true for any propositional symbol
and n = k; in order to prove the result for k + 1, assume that TP

k+1(△)(A) >
TP

k(△)(A).

By the singleton hypothesis, there is a rule indexed by i ∈ {1, . . . , s} such that

TP

k+1(△)(A) = ϑi

.

&
̂TP

k(△)(@i[g
i
1(Di

1), . . . , g
i
ri

(Di
ri

), Ci
1, . . . , C

i
mi

])

now, for the rule indexed by i, by definition of TP as a l.u.b., we have

TP

k(△)(A) ≥ ϑi

.

&
̂TP

k−1(△)(@i[g
i
1(D

i
1), . . . , gi

ri
(Di

ri
), Ci

1, . . . , C
i
mi

])

then, by the monotonicity of the connectives in the body, either there exists
j ∈ {1, . . . , ri} such that

.

gi
j ( ̂TP

k(△)(Di
j)) >

.

gi
j ( ̂TP

k−1(△)(Di
j))

or there exists j ∈ {1, . . . , mi} such that

TP

k(△)(Ci
j) > TP

k−1(△)(Ci
j)

In the former case, it is obvious that |ΞA
k+1| > |Ξ

A
k |; in the latter case, then

the induction hypothesis on the propositional variable Ci
j applies. 2

Proof of Theorem 37 The previous lemma provides the key idea:
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• Firstly, since the program has finite dependencies there cannot be infinitely
many rules in the culprit collections for A.
• On the other hand, the sequence of cardinals |ΞA

n | is upper bounded (since
the range of each function gi

j is finite and G(PA) is also finite).

As a result we obtain that TP terminates for every query. 2

As a final remark, we can pre-process the body of rules which have occur-
rences of the least upper bound operators, by introducing rules for each such
occurrence. Suppose you have the following rule with respect to unit interval
Σ-algebra, extended with the max operator 6 :

〈A←P B &G max(C, D), 0.7〉

This can be substituted by the following rules, where maxCD is a new propo-
sition symbol

〈A←P B &G maxCD, 0.7〉

〈maxCD ←P C, 1.0〉

〈maxCD ←P D, 1.0〉

In this way, we can generalise all the previous results by allowing least upper
bound operations in the body. This is an observation due to Umberto Straccia.

In the next section we apply the previous results to show the termination
theorems for important probabilistic based logic programming frameworks.

5 Termination of Probabilistic Logic Programs

The representation of probabilistic information in rule-based systems has at-
tracted a large interest of the logic programming community, fostered by
knowledge representation problems in advanced applications, namely for de-
ductive databases. Several proposals have appeared in the literature for deal-
ing with probabilistic information, namely Hybrid Probabilistic Logic Pro-
grams [9], Probabilistic Deductive Databases [12], and Probabilistic Logic Pro-
grams with conditional constraints [14]. Both Hybrid Probabilistic Logic Pro-
grams, Probabilistic Deductive Databases, and Ordinary Probabilistic Logic
Programs can be captured by Residuated Monotonic Logic Programs, as shown
in [6]. We illustrate here the application of the theorems of the previous section
to obtain known termination results for these languages. Notice that these re-
sults are obtained from the abstract properties of the underlying algebras and

6 The least upper-bound operator in the unit interval.
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transformed programs. In this way we simplify and synthesize the techniques
used to show these results, which can be applied in other settings as well.

5.1 Termination of Ordinary Probabilistic Logic Programs

Lukasiewicz [14] introduces a new approach to probabilistic logic programming
in which probabilities are defined over a set of possible worlds and in which
classical program clauses are extended by a subinterval of [0, 1] that describes
a range for the conditional probability of the head of a clause given its body. In
its most general form, probabilistic logic programs of [14] are sets of conditional
constraints (H | B)[c1, c2] where H is a conjunction of atoms and B is either
a conjunction of atoms or ⊤, and c1 ≤ c2 are rational numbers in the interval
[0, 1]. These conditional constraints express that the conditional probability of
H given B is between c1 and c2 or that the probability of the antecedent is 0. A
semantics and complexity of reasoning are exhaustively studied, and in most
cases is both intractable and not truth-functional. However, for a special kind
of probabilistic logic programs the author provides relationships to “classical”
logic programming. Ordinary probabilistic logic programs are probabilistic
logic programs where the conditional constraints have the restricted form

(A | B1 ∧ . . . ∧ Bn)[c, 1] or (A | ⊤)[c, 1] (2)

Under positively correlated probabilistic interpretations (PCP-interpretations),
reasoning becomes tractable and truth-functional. Ordinary conditional con-
straints (2) of ordinary probabilistic logic programs under PCP-interpretation
can be immediately translated to a sorted multi-adjoint logic programming
rule

〈A←P B1 &G . . . &G Bn−1 &G Bn, c〉

over the multi-adjoint unit Σ-algebra. The previous rule can also be repre-
sented as:

〈A←P c &P (B1 &G . . . &G Bn−1 &G Bn) , 1.0〉

Clearly, as remarked in [14], the resulting rule is equivalent to a rule of van
Emden’s Quantitative Deduction [21]. It is pretty clear that in these circum-
stances all the conditions of Theorem 28 are fulfilled for ground programs of
the above form having finite dependencies, and we can guarantee termination
of TP for every query. This is the case because we are using solely t-norms in
the body, which by definition obey to the boundary condition, over the unit
interval [0, 1]. Since the unit interval is totally ordered and we have a finite
number of rules for every propositional symbol, we can guarantee that the
set of relevant values for TP

n(∆) is a singleton. Thus, we obtain a termination
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result for Ordinary Probabilistic Logic Programs and Quantitative Deduction,
extending the one appearing in [21].

In general, if we have combinations of t-norms in the bodies of rules, over
totally ordered domains, we can guarantee termination for programs with
finite dependencies. This extends the previous results by Pauĺık [16]. The same
applies if we reverse the ordering in the unit interval, and use t-conorms in the
bodies. This is necessary to understand the termination result for Probabilistic
Deductive Databases, presented in the next section.

5.2 Termination of Probabilistic Deductive Databases

A definition of a theory of probabilistic deductive databases is described in
Lakshmanan and Sadri’s work [12] where belief and doubt can both be ex-
pressed explicitly with equal status. Probabilistic programs (p-programs) are
finite sets of triples of the form:

(

A
c
←− B1, . . . , Bn; µr, µp

)

As usual, A, B1, . . . , Bn are atoms, which may not contain complex terms, c is
a confidence level, and µr (µp) is the conjunctive (disjunctive) mode associated
with the rule. For a given ground atom A, the disjunctive mode associated
with all the rules for A must be the same. The authors present a termination
result assuming that it is used solely positive correlation as disjunctive mode
for combining several rules in the program, and arbitrary conjunctive modes.
The truth-values of p-programs are confidence levels of the form 〈[α, β], [γ, δ]〉,
where α, β, γ, and δ are real numbers in the unit interval 7 . The values α and
β are, respectively, the expert’s lower and upper bounds of belief, while γ and
δ are the bounds for the expert’s doubt. The fixpoint semantics of p-programs
relies on truth-ordering of confidence levels. Suppose c1 = 〈[α1, β1], [γ1, δ1]〉
and c2 = 〈[α2, β2], [γ2, δ2]〉 are confidence levels, then we say that:

c1 ≤t c2 iff α1 ≤ α2, β1 ≤ β2 and γ1 ≥ γ2, δ1 ≥ δ2,

with corresponding least upper bound operation c1 ⊕t c2 defined as

〈[max{α1, α2}, max{β1, β2}], [min{γ1, γ2}, min{δ1, δ2}]〉

and greatest lower bound c1 ⊗t c2 as:

〈[min{α1, α2}, min{β1, β2}], [max{γ1, γ2}, max{δ1, δ2}]〉

7 Even though the authors say that they usually assume that α ≤ β and γ ≤ δ, this
cannot be enforced otherwise they cannot specify properly the notion of trilattice.
So, we will not assume these constraints.
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The least upper bound of truth-ordering corresponds to the disjunctive mode
designated “positive correlation”, which is used to combine the contributions
from several rules for a given propositional symbol. We restrict attention to
this disjunctive mode, since the termination results presented in [12] assume
that all the rules adopt this mode. Conjunctive modes are used to combine
propositional symbols in the body, and ⊗t corresponds to the positive cor-
relation conjunctive mode. Another conjunctive mode is independence with
c1 ∧ind c2 defined as

〈[α1 × α2, β1 × β2], [1 − (1− γ1)× (1− γ2), 1 − (1− δ1)× (1− δ2)]〉

The attentive reader will surely notice that all these operations work indepen-
dently in each component of the confidence level. Furthermore, the indepen-
dence conjunctive mode combines the α’s and β’s with a t-norm (product), and
the γ and δ parts are combined with a t-conorm. This is a property enjoyed by
all conjunctive modes specified in [12]. In order to show the termination result
we require two sorts, both with carrier [0, 1], the first one denoted by m and
ordered by ≤, while the other is denoted by M and ordered by ≥ (this means
that for this sort the bottom element is 1 and the top one is 0, least upper
bound is min). The program transformation translates each ground atom P in
a p-program into four propositional symbols P α, P β, P γ and P δ, representing
each component of the confidence level associated with P . The translation
generates four rules, in the resulting sorted multi-adjoint logic programming,
from each rule in the p-program. We illustrate this with an example, where the
conjunctive mode use is independence (remember that the disjunctive mode
is fixed). A p-program rule of the form

(

A 〈[a,b],[c,d]〉
←−−−−−−−− B1, . . . , Bn ; ind, pc

)

is encoded as the following four rules:

Aα 1.0
←−

m

G a &P Bα
1 &P . . . &P Bα

n Aβ 1.0
←−

m

G b &P Bβ
1 &P . . . &P Bβ

n

Aγ 0.0
←−

M

K c ∨P Bγ
1 ∨P . . . ∨P Bγ

n Aδ 0.0
←−

M

K d ∨P Bδ
1 ∨P . . . ∨P Bδ

n

The functions ←m
G and &P denote again Gödel’s implication (with min con-

junctor) and product or Goguen’s t-norm. Regarding the sort M , we have
implication symbol ←M

K denoting Kleene-Dienes implication, i.e.

I(←M
K )(x, y) = max(1− y, x)

while ∨P denotes the t-conorm function defined by v⊕w = 1−(1−v)×(1−w).
Other conjunctive modes can be encoded similarly. The termination of these
programs is now immediate. First, the rules for α propositional symbols only
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involve α propositional symbols in the body. The same applies to the other β,
γ and δ rules. The underlying carriers are totally ordered, and the function
symbols in the body obey to the boundary condition since they are either
t-norms (for α and β rules) or t-conorms (for γ and δ rules). Thus, from the
discussion on the previous section, Theorem 28 is applicable and the result im-
mediately follows for programs with finite dependencies. This is a result shown
based solely on general properties of the underlying lattices, not resorting to
specific procedural concepts as in [12]. Furthermore, since the grounding of
p-programs always results in a finite program, there is no lack of generality
by assuming finite dependencies. The use of other disjunctive modes intro-
duce operators in the bodies which no longer obey to the boundary condition.
For this case, Lakshmanan and Sadri do not provide any termination result,
which is not strange since this violates the general conditions of applicability
of Theorem 28.

5.3 Termination of Hybrid Probabilistic Logic Programs

Hybrid Probabilistic Logic Programs [9] have been proposed for constructing
rule systems which allow the user to reason with and combine probabilistic
information under different probabilistic strategies. The conjunctive (disjunc-
tive) probabilistic strategies are pair-wise combinations of t-norms (t-conorms,
respectively) over pairs of real numbers in the unit interval [0, 1], i.e. intervals.
In order to obtain a residuated lattice, the carrier INT is the set of pairs
[a, b] where a and b are real numbers in the unit interval 8 .

The termination results presented in [10] assume finite ground programs. From
a difficult analysis of the complex fix-point construction one can see that only
a finite number of different intervals can be generated in the case of finite
ground programs. We show how this result can be obtained from Theorem 34
almost directly, given the embedding of Hybrid Probabilistic Logic Programs
into Residuated ones presented in [5]. This embedding generates rules of the
following four types

(1) F
[a,b]
 sµ1

(

F1

)

⊓ . . . ⊓ sµk

(

Fk

)

(2) F
[a,1]
 sµ1

(

E1

)

⊓ . . .⊓ sµm

(

Em

)

(3) F
[0,b]
 sµ1

(

E1

)

⊓ . . .⊓ sµm

(

Em

)

(4) F
[1,0]
 cρ

(

G, H
)

resorting to the auxiliary double bar function . from INT to INT and the
functions sµ : INT → INT , with µ in INT . For our analysis, it is only
important to know that all these functions have finite range, and thus when

8 We do not impose that a ≤ b.
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constructing the range dependency graph no arc will be introduced for rules
of the first three types.

The next important detail is that the rules of the fourth type, which use either
conjunctive or disjunctive strategies cρ, do not introduce any cyclic dependen-
cies and the dependencies are finite. This is the case, because F , G and H are
propositional symbols which represent ground hybrid basic formulas (see [9,5]
for details), such that F = G⊕ρ H , i.e. the propositional symbol F represents
a more complex formula obtained from the conjunctive or disjunctive combi-
nation of the simpler formulas G and H . Therefore, it is not possible to have a
dependency from a simpler formula to a more complex one. By application of
Theorem 34 it immediately follows that TP terminates for every finite ground
program, as we intended to show. Just as a side remark, Theorem 37 can also
be applied if only conjunctive basic formulas occur in the program, without
requiring any reasoning about the shape of the transformed program and its
dependencies.

6 A tabling procedure for sorted multi-adjoint logic programming

In the previous sections we have presented several termination results as well
as embeddings. The major practical problem is that the TP operator may take
ω iterations to converge, even when all queries terminate. So, an immediate
application of the bottom-up fix-point semantics will not be able in some
circumstances to determine the computed answer of a particular query after
a finite amount of time (because there are an infinite number of propositional
symbols). With finite dependencies, one could restrict the computation to sub-
program PA, but this still suffers from a lot of re-computation of the body of
rules.

Here we aim at the use of tabulation (tabling, or memoising) methods to in-
crease the efficiency of the previously proposed proof procedures. Tabulation
is a technique which is receiving increasing attention in the logic programming
and deductive database communities [1,2,19,20]. The underlying idea is, es-
sentially, that atoms of selected tabled predicates as well as their answers are
stored in a table. When an identical atom is recursively called, the selected
atom is not resolved against program clauses; instead, all corresponding an-
swers computed so far are looked up in the table and the associated answer
substitutions are applied to the atom. The process is repeated for all sub-
sequent computed answer substitutions corresponding to the atom. Further-
more, the use of tabulation allows the combination of the contributions of the
several rules for a propositional variable, which is essential in the non-boolean
case.
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In this section, we provide a tabulation goal-oriented query procedure and
show that it is terminating for all queries if and only if the immediate con-
sequences operator terminates for every query. On the basis of this property
and the previous termination results, we show that the tabulation procedures
terminate for a significant class of sorted multi-adjoint logic programs. As a
particular case, query answering in several fuzzy and probabilistic logic pro-
gramming languages are proven to terminate.

6.1 Description of the procedure

Regarding the definition of an appropriate query procedure for our logic pro-
grams, there are two major problems to address: termination and efficiency.
On the one hand, the TP operator is bottom-up but not goal-oriented. Further-
more, in every step the bodies of rules are all re-computed. On the other hand,
the usual SLD based implementations of Fuzzy Logic Programming languages
(e.g. [24]) are goal-oriented, but inherit the problems of non-termination and
re-computation of goals. For tackling these issues, the tabulation implemen-
tation technique has been proposed in the deductive databases and logic pro-
gramming communities [1,2,20]. More recently, an extension of SLD for imple-
menting generalised annotated logic programs has been proposed in [11,19],
we will follow these ideas in order to implement our tabling procedure. Other
implementation techniques have been proposed for dealing with uncertainty
in logic programming, for instance translation into Disjunctive Stable Mod-
els [13], but rely on the properties of specific truth-value domains.

In this section we present a general tabulation procedure for our sorted multi-
adjoint logic programs. The data structure we will use for the description of
the method is that of a forest, that is, a finite set of trees. Each one of these
trees has a root labelled with a propositional symbol together with a truth-
value from the underlying lattice (called the current value for the tabulated
symbol); the rest of the nodes of each of these trees are labelled with an
“extended” formula in which some of the propositional symbols have been
substituted by its corresponding value. For the description of the adaptation of
the tabulation procedure to the framework of multi-adjoint logic programming,
we will assume a program P consisting of a finite number of weighted rules

having the form H
ϑ
←− s

i B together with a query ?A. The purpose of the
computational procedure is to give (if possible) the greatest truth-value for A
that can be inferred from the information in the program P.
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6.2 Operations for Tabulation

For the sake of clarity in the presentation, we will introduce the following
notation: given a propositional symbol A, of a given sort, we will denote by
P(A) the set of rules in P which have head A. The tabulation procedure
uses four basic operations: Create New Tree, New Subgoal, Value Update,
and Answer Return. The first operation creates a tree for the first invocation
of a given goal. New Subgoal is applied whenever a propositional variable
in the body of a rule is found without a corresponding tree in the forest,
and resorts to the previous operation. Value update is used to propagate the
truth-values of answers to the root of the corresponding tree. Finally, answer
return substitutes a propositional variable by the current truth-value in the
corresponding tree. We now describe formally the operations:

6.2.1 Rule 1: Create New Tree.

Given a propositional symbol A of sort s, let the set of rules for A be P(A) =

{A
ϑj

←− s
ij
Bj | j = 1, . . . , m}, construct the tree below, and append it to the

current forest. If the forest did not exist, then generate a forest with that tree.

A : ⊥s

ϑ1 &s
i1
B1 ϑ2 &s

i2
B2 . . . ϑm &s

im
Bm

6.2.2 Rule 2: New Subgoal.

Select a non-tabulated propositional symbol C occurring in a leaf of some tree
(this means that there is no tree in the forest with the root node labelled
with C), then create a new tree as indicated in Rule 1, and append it to the
forest.

6.2.3 Rule 3: Value Update.

If there are no propositional symbols in a leaf, then evaluate the corresponding
formula (assume that its value is, say, s) and then update the current value
(say r) of the propositional symbol at the root of the tree by the value of
lub(r, s), computed in the carrier lattice of that propositional symbol.
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6.2.4 Rule 4: Answer Return.

Select in any non-root node a propositional symbol C which is tabulated, and
consider that the current value of C is r.

• If the propositional symbol has been selected in a leaf node N [. . . , C, . . . ],
then extend the branch with the node shown in the figure below.

N [. . . , C, . . . ]

N [. . . , r, . . . ]

• Otherwise, if the propositional symbol has been selected in a non-leaf node
N [. . . , C, . . . ] such as that in the left of Fig. 1 then, if s � r, then update
the whole branch substituting the constant s by r, as in the right of Fig. 1.

...

N [. . . , C, . . . ]

N [. . . , s, . . . ]
...

...

N [. . . , C, . . . ]

N [. . . , r, . . . ]
...

Figure 1. Answer Return operation

It is worth to interpret the execution of each of the previous rules in terms of
the better known fix-point semantics.

For instance, the only rule which changes the values of the roots of the trees
in the forest is Rule 3. Note that, the only nodes with several immediate
successors are the root nodes, these successors correspond to the different
rules with head identical to the label of the root node. From there downwards,
the extension is done by Rule 4, which either updates the nodes of an existing
branch or extends the branch with one new node.

Remark 40 It is convenient to note that in the leaf of each branch there is
a conjunction of the weight of the rule which determined the branch with an
instantiation of the body of the rule.

6.3 A non-deterministic procedure for tabulation

Now, we can state the general non-deterministic procedure for calculating
the answer to a given query by using a tabulation technique in terms of the
previous rules.

Initial step Create the initial forest with the create new tree rule, applied to
the query.

31



Next steps Non-deterministically select a propositional symbol and apply
one of the rules 2, 3, or 4.

As we shall show, the order of application of the rules is irrelevant. There are
other improvements that can be made to the basic tabulation proof procedure.
In particular, all nodes whose value of the body cannot surpass the current
value of the root node can be safely removed. A sound rule for determining the
maximum value the body can achieve consists in substituting all the proposi-
tional variables occurring in the node by ⊤s. This rule can reduce the search
space further more. This pruning rule can be enhanced if there is information
available about completed tables in the forest, i.e. the ones which have reached
the fix-point.

6.4 Soundness and completeness

As in any non-deterministic procedure, it is necessary to show that the ob-
tained result is independent from the different choices made during the exe-
cution of the algorithm. With this aim, we state two propositions, which will
provide, as a consequence, the independence of the ordering of applications of
steps in the tabulation proof procedure as well as soundness and completeness.

Definition 41 Given a sorted multi-adjoint logic program P and a query ?A.
We say that the tabling procedure has constructed a terminated forest for P

and ?A when no rules of the tabling proof procedure can be applied.

Proposition 42

(1) The current values of a terminated forest generate a model of PA. That
is, the current values are greater than or equal to those given by the least
fix-point of the immediate consequences operator TP.

(2) Given a forest (terminated or not), then for all roots Cj : rj we have that
there exists an iteration k of the TP operator such that rj ≤ TP ↑k (Cj).

PROOF. (1) By construction of the forest, each tree has its root labelled
with a propositional symbol, say A, and its immediate successors encode the
different rules and facts in P(A) as a chain which ends in an expression with-
out propositional symbols (they have been substituted by values). During the
execution of the procedure, Rule 3 is applied to update the current value of
the propositional symbol at the root, only if this value is less than the value
of the expression in the leaf. Obviously, by definition of the semantics and Re-
mark 40, we obtain that any rule or fact is satisfied. The result follows from
the fact that the least fix-point of the operator TP is the minimal model of the
program.
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(2) By induction on the number of operations used to generate the forest.

For the base case, assume that only one rule has been used to generate the
forest. In this case, we only have one tree in the forest, whose current value
is ⊥s. Obviously, any iteration of TP(△) has a value greater than or equal to
⊥s on A of sort s, so we are done.

For the inductive case, consider that the result is true for any forest generated
in n steps, and let us prove the result for any forest F generated in n+1 steps.

Our induction hypothesis will be that there exists an integer k such that
rj ≤ TP

k(Cj) for all roots Cj : rj in a forest generated in n steps.

Let us look at the last rule applied for generating F . There is only one case
we have to consider, for the only rule which actually can change the current
values of the propositional symbols in the roots is Rule 3.

After an application of Rule 3, exactly one propositional variable, say C,
has got its current value changed. The new current value is the value of the
expression in a leaf of the tree, which has the form ϑj &s

ij
Bj [rj1 , . . . , rjm

] where
the values rj1, . . . , rjm

are current values stored in the forest. Therefore, by
the induction hypothesis, the monotonicity of the TP operator, and its very
definition we have

ϑj

.

&
s
ij
Bj [rj1, . . . , rjm

] ≤ ϑj

.

&
s
ij
Bj [TP

k(Cj1), . . . , TP

k(Cjm
)] ≤

≤
⊔

s

{

ϑj

.

&
s
ij
Bj [TP

k(Cj1), . . . , TP

k(Cjm
)] | A

ϑj
←− s

ij
Bj ∈ P

}

= TP

k+1(C)

As an easy consequence of the previous proposition we obtain the following
result, where we recall that PA is the set of rules in the dependency graph for
propositional symbol A:

Theorem 43 Consider a sorted multi-adjoint logic program P and query ?A

(1) Every terminated forest for ?A calculates exactly the minimal model for
program PA.

(2) The tabulation procedure terminates for a query ?A if and only if the min-
imal model of PA is reached by iterating the TP operator a finite number
of times.

The results in Section 4 can guarantee that, under the assumptions of the
various theorems, our tabulation proof procedure also terminates. Therefore,
our tabulation proof procedure can be used for query-answering with respect
to the several formalisms described in Section 5.
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6.5 Exemplification of the procedure

We now illustrate the tabulation procedure at work, showing how our tabu-
lation proof procedure handles mutual recursions in a program corresponding
to the probabilistic framework of Lakshmanan and Sadri:

Example 44 Consider the following p-program:

(

a 〈[0.8,0.9],[0.0,0.1]〉
←−−−−−−−−−−−−−− b, c ; ind, pc

)

(

a 〈[0.1,0.3],[0.4,0.6]〉
←−−−−−−−−−−−−−− ; ind, pc

)

(

b 〈[0.9,1.0],[0.0,0.0]〉
←−−−−−−−−−−−−−− ; ind, pc

)

(

c 〈[0.7,0.8],[0.0,1.0]〉
←−−−−−−−−−−−−−− a ; ind, pc

)

(

c 〈[0.3,0.6],[0.2,0.7]〉
←−−−−−−−−−−−−−− ; ind, pc

)

Instead of applying the translation of Section 5.2, we sketch the construction
of a new multi-adjoint Σ-algebra, where the underlying complete lattice is the
lattice of confidence levels of Probabilistic Deductive Databases under truth-
ordering. The translation of the above p-program has the following form:

a
⊤t←− 〈[0.8, 0.9], [0.0, 0.1]〉 ∧ind b ∧ind c

a
⊤t←− 〈[0.1, 0.3], [0.4, 0.6]〉

b
⊤t←− 〈[0.9, 1.0], [0.0, 0.0]〉

c
⊤t←− 〈[0.7, 0.8], [0.0, 1.0]〉 ∧ind a

c
⊤t←− 〈[0.3, 0.6], [0.2, 0.7]〉

Notice that all rules have confidence level ⊤t = 〈[1, 1], [0, 0]〉, meaning that the
rule is satisfied iff the value of the body is ≤t than the head. Furthermore, the
conjunctor associated with the implication symbol is the greatest lower bound in
truth-ordering, i.e. positive correlation conjunctive mode, and not ∧ind. Since
it is not essential to provide an explicit definition of implication, we leave the
details to the reader (see also Section 5.2).

Suppose it is intended to determine the truth-degree of proposition a. The
computation is started by applying Rule 1 to a and a possible forest generated
by the algorithm is presented in Figure 2. All the nodes are annotated by a
possible order of creation, and the selected nodes by Rule 2 are underlined.
Since ⊤t ⊗t v = v, we omit these expressions in the Figure (introduced by
Rule 1). Other executions exist, but the computations will terminate in any
case and generate the same truth-degrees for all propositional symbols.

The first nodes (i) (ii) and (iii) were created by the Create New Tree operation
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(i) a : 〈[0.0, 0.0], [1.0, 1.0]〉 → 〈[0.1, 0.3], [0.4, 0.6]〉 → 〈[0.216, 0.54], [0.2, 0.6]〉

(ii) 〈[0.1, 0.3], [0.4, 0.6]〉 (iii) 〈[0.8, 0.9], [0.0, 0.1]〉 ∧ind b ∧ind c

(vi) 〈[0.8, 0.9], [0.0, 0.1]〉 ∧ind 〈[0.9, 1.0], [0.0, 0.0]〉 ∧ind c

(x) 〈[0.8, 0.9], [0.0, 0.1]〉 ∧ind 〈[0.9, 1.0], [0.0, 0.0]〉 ∧ind 〈[0.3, 0.6], [0.2, 0.7]〉

(iv) b : 〈[0.0, 0.0], [1.0, 1.0]〉 → 〈[0.9, 1.0], [0.0, 0.0]〉

(v) 〈[0.9, 1.0], [0.0, 0.0]〉

(vii) c : 〈[0.0, 0.0], [1.0, 1.0]〉 → 〈[0.3, 0.6], [0.2, 0.7]〉

(viii) 〈[0.3, 0.6], [0.2, 0.7]〉 (ix) 〈[0.7, 0.8], [0.0, 1.0]〉 ∧ind a

(xi) 〈[0.7, 0.8], [0.0, 1.0]〉 ∧ind 〈[0.216, 0.54], [0.2, 0.6]〉

Figure 2. Example forest for query a

(Rule 1). Applying Rule 3 to node (ii) we update the truth-degree for a from
〈[0.0, 0.0], [1.0, 1.0]〉 to 〈[0.1, 0.3], [0.4, 0.6]〉. The New SubGoal selects propo-
sitional variable b at node (iii) and creates the new tree with root (iv). The
computation proceeds and we get for b the truth-degree 〈[0.9, 1.0], [0.0, 0.0]〉, by
a simple application of Value Update to node (v). The Answer Return applied
to node (iii) generates the new node (vi).

The procedure now determines the truth-degree of c, and the reader can eas-
ily follow the steps. Notice that, New Subgoal operation at node (ix) does
not create a new tree. The truth-value of c is back propagated to node (vi)
and originates a new answer update for a. Notice that node (xi) evaluates to
〈[0.216, 0.54], [0.2, 0.73]〉, and thus the value for a is a mixture of the previous
tabled value with the new one. This value is then consumed by node (i) but the
truth-value obtained at node (xi) is smaller than the current root node value
of c, and the computation terminates since no more operations are applicable.
This is expected from the discussion in Section 6.4.
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7 Conclusions

A sorted version of multi-adjoint logic programming has been introduced,
together with several general sufficient results about the termination of its
fix-point semantics. Later, these results are instantiated in order to prove ter-
mination theorems for some probabilistic approaches to logic programming.
Notice that these results are obtained solely from the abstract properties of
the underlying algebras and transformed programs. In this way we simplify
and synthesize the techniques used to show these results, which can be ap-
plied in other settings such as van Emden’s Quantitative Deduction, Possibilis-
tic Logic Programming, Non-classical SLD resolution, Ordinary Probabilistic
Logic Programs and Probabilistic Deductive Databases; for all these situa-
tions, reasoning is polynomial in the size of the ground program. Last but not
least, we have described a general non-deterministic tabulation goal-oriented
query procedure for sorted multi-adjoint logic programs over complete lat-
tices. We prove its soundness and completeness as well as independence of the
selection ordering.

As future work, on the one hand, a first goal is the attempt to extend this
technique to the first order case; on the other hand, we are also interested in
gaining a better understanding of Fuzzy Rule Systems to be translated into
our framework. An implementation of the tabulation procedure is underway
using the GAP package of XSB Prolog [19], as well as a distributed implemen-
tation for the use in the Semantic Web. A major distinguishing feature of our
tabulation proof-procedure is that it is defined for arbitrary combinations of
operators in the body of programs; however, theoretical and/or experimental
comparison with existent approaches to the computation of minimal models
for fuzzy logic programs are still needed.

Finally, we have ignored in this article the issue of default (or non-monotonic)
negation. The introduction of non-monotonic negation raises new problems,
but we have already started the research in this direction. In fact, a well-
founded and a stable model like semantics allowing non-monotonic constructs
in the body of programs were defined in [4]. The termination results are po-
tentially applicable to this non-monotonic (or antitonic) setting, in particular
for the well-founded based semantics. Using the results of the present work,
we are able to show immediately that each iteration of the well-founded fix-
point operator terminates. However, it has to be shown additionally that this
sequence itself terminates, which is by no means a trivial result. We intend to
address this problem in the nearby future.
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