
Interval-valued Neural
Multi-Adjoint Logic Programs

J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego

Dept. Matemática Aplicada. Universidad de Málaga
{jmedina,merida,aciego}@ctima.uma.es

Abstract. The framework of multi-adjoint logic programming has shown
to cover a number of approaches to reason under uncertainty, imprecise
data or incomplete information. In previous works, we have presented a
neural implementation of its fix-point semantics for a signature in which
conjunctors are built as an ordinal sum of a finite family of basic con-
junctors (Gödel and Lukasiewicz t-norms). Taking into account that a
number of approaches to reasoning under uncertainty consider the set of
subintervals of the unit interval as the underlying lattice of truth-values,
in this paper we pursue an extension of the previous approach in order
to accomodate calculation with truth-intervals.

1 Introduction

A number of different approaches have been proposed with the aim of bet-
ter explaining observed facts, specifying statements, reasoning and/or executing
programs under some type of uncertainty whatever it might be. The frameworks
of fuzzy logic programming [10] and residuated logic programming [1] abstract
the details of several well-known approaches to generalized logic programming.

Multi-adjoint logic programs were introduced as a common umbrella to cover
a number of approaches to reason under uncertainty, imprecise data or incom-
plete information and, in particular, can be instantiated as both fuzzy logic
programming and residuated logic programming. The handling of uncertainty in
the multi-adjoint approach is based on the use of a generalised set of truth-values
as an extension of fuzzy logic programming. On the other hand, multi-adjoint
logic programming generalizes residuated logic programming in that several dif-
ferent implications are allowed in the same program, as a means to facilitate the
task of the specification.

The recent paradigm of soft computing promotes the use and integration of
different approaches for problem solving. The approach presented in [7, 9] intro-
duced a hybrid framework to handling uncertainty, expressed in the language
of multi-adjoint logic but implemented by using ideas from the world of neural
networks.

Several semantics have been proposed for multi-adjoint logic programs but,
regarding the implementation, the fix-point semantics was the chosen one: given
a multi-adjoint logic program P its meaning (the minimal model) is obtained

by iterating the TP operator. At least theoretically, by computing the sequence
of iterations of TP one could answer in parallel all the possible queries to P; in
order to take advantage of this potential parallelism, a recurrent neural network
implementation of TP was introduced in [7], where the truth values belonged
to the unit interval, the connectives were the usual t-norms Gödel, product
and Lukasiewicz, together with any weighted sum. Later, this neural net was
improved in order to be able to use any finite ordinal sum of Gödel, product and
 Lukasiewicz t-norms in [8].

The machinery underlying multi-adjoint programs is that of adjoint pairs,
which abstracts out the behaviour of classical conjunction and implication and
provides a convenient version of the modus-ponens rule to be used on sets of
truth-values more general than {0, 1}. A possible extension of the previous ap-
proach consists in implementing an interval-based semantics. This generalization
is not unnatural, since when defining a fuzzy set sometimes it is not easy to as-
sociate a value in the unit interval to any element in the set, but we’d rather
associate an interval instead; this generalization of fuzzy set is called an interval-
valued fuzzy set.

The method of using intervals, either symbolic (inf, sup) or numerical [a, b],
to describe uncertain information has been adopted in several mechanisms, and
they are useful in applications such as decision and risk analysis, engineering
design, and scheduling. Intervals are also used in some frameworks for generalized
logic programming such as the hybrid probabilistic logic programs [2] and the
probabilistic deductive databases [6]. Just note that, in the latter framework, one
could write rules like:

paper accepted
〈[0.7,0.95],[0.03,0.2]〉
←−−−−−−−−−−−−−−−− good work, good referees

where we have a complex confidence value containing two probability intervals,
one for the case where paper accepted is true and other for the case where
paper accepted is false (there can exist some lack of information, or undefined-
ness, in these intervals).

The purpose of this paper is to present a refined version of the neural imple-
mentation of [7, 8] in order to cope with interval-valued data. The main difference
with the previous version is that the type of conjunctors considered in the neu-
ron are pairs of conjunctors on the unit interval, the first (second) one intended
to make the calculations on the initial (final) point of the truth-intervals; in
addition, the procedure to handle the aggregators, usually weighted sums, has
been conveniently adapted to work with truth-intervals.

The structure of the paper is as follows: In Section 2, the syntax and semantics
of multi-adjoint logic programs are introduced; in Section 3, the new proposed
neural model for homogeneous multi-adjoint programs is presented in order to
work with truth-intervals, a high level implementation is introduced and proven
to be sound. The paper finishes with some conclusions and future work.

2

2 Preliminary definitions

Multi-adjoint logic programming is a general theory of logic programming which
allows the simultaneous use of different implications in the rules and rather gen-
eral connectives in the bodies. To make this paper as self-contained as possible,
the necessary definitions about multi-adjoint structures are included in this sec-
tion. The basic definition is the generalization of residuated lattice given below:

Definition 1. A multi-adjoint lattice L is a tuple (L,�,←1, &1, . . . ,←n, &n)
satisfying the following items:

1. 〈L,�〉 is a bounded lattice, i.e. it has bottom and top elements;
2. >&i ϑ = ϑ &i> = ϑ for all ϑ ∈ L for i = 1, . . . , n;
3. (&i,←i) is an adjoint pair in 〈L,�〉 for i = 1, . . . , n; i.e.

(a) Operation &i is increasing in both arguments,
(b) Operation ←i is increasing in the first argument and decreasing in the

second argument,
(c) For any x, y, z ∈ P , we have that x � (y ←i z) holds if and only if

(x &i z) � y holds.

2.1 Syntax and semantics

Definition 2. A multi-adjoint program is a set of weighted rules 〈F, ϑ〉 satisfy-
ing the following conditions:

1. F is a formula of the form A←i B where A is a propositional symbol called
the head of the rule, and B is a well-formed formula, which is called the
body, built from propositional symbols B1, . . . , Bn (n ≥ 0) by the use of
monotone operators.

2. The weight ϑ is an element of the underlying truth-values lattice L.

Facts are rules with body1 > and a query (or goal) is a propositional symbol
intended as a question ?A prompting the system.

Once presented the syntax of multi-adjoint programs, the semantics is given
below.

Definition 3. An interpretation is a mapping I from the set of propositional
symbols Π to the lattice 〈L,�〉.

Note that each of these interpretations can be uniquely extended to the whole set
of formulas, and this extension is denoted as Î. The set of all the interpretations
is denoted IL.

The ordering � of the truth-values L can be easily extended to IL, which
also inherits the structure of complete lattice and is denoted v. The minimum
element of the lattice IL, which assigns ⊥ to any propositional symbol, will be
denoted M.
1 It is also customary not to write any body.

3

Definition 4.

1. An interpretation I ∈ IL satisfies 〈A←i B, ϑ〉 if and only if ϑ � Î (A←i B).
2. An interpretation I ∈ IL is a model of a multi-adjoint logic program P iff

all weighted rules in P are satisfied by I.

The operational approach to multi-adjoint logic programs used in this paper
will be based on the fixpoint semantics provided by the immediate consequences
operator, given in the classical case by van Emden and Kowalski, which can be
generalised to the multi-adjoint framework by means of the adjoint property, as
shown below:

Definition 5. Let P be a multi-adjoint program; the immediate consequences
operator, TP : IL → IL, maps interpretations to interpretations, and for I ∈ IL

and A ∈ Π is given by

TP(I)(A) = sup
{

ϑ &i Î(B) | 〈A←i B, ϑ〉 ∈ P
}

As usual, it is possible to characterise the semantics of a multi-adjoint logic
program by the post-fixpoints of TP; that is, an interpretation I is a model of
a multi-adjoint logic program P iff TP(I) v I. The TP operator is proved to be
monotonic and continuous under very general hypotheses.

Once one knows that TP can be continuous under very general hypotheses,
then the least model can be reached in at most countably many iterations be-
ginning with the least interpretation, that is, the least model is TP ↑ω(M).

3 An interval-valued network for multi-adjoint logic
programming

Regarding the implementation as a neural network, the introduction of the so-
called homogeneous rules given in [7], provided a simpler and standard repre-
sentation for any multi-adjoint program.

Definition 6. A weighted formula is said to be homogeneous if it has one of
the following forms:

– 〈A←i &i(B1, . . . , Bn), ϑ〉
– 〈A←i @(B1, . . . , Bn),>〉
– 〈A←i B1, ϑ〉

where A,B1, . . . , Bn are propositional symbols.

The homogeneous rules represent exactly the simplest type of (proper) rules
one can have in a program. In some sense, homogeneous rules allow a straight-
forward generalization of the standard logic programming framework, in that no
operators other than ←i and &i are used. The way in which a general multi-
adjoint program is homogenized is irrelevant for the purposes of this paper;

4

anyway, it is worth mentioning that it is a model-preserving procedure with
linear complexity.

In this section, we introduce a neural network that implements an extension of
the previous approaches [7, 8] with the enhancements stated in the introduction:
namely, the calculation with truth-intervals and the possibility of considering
ordinal sums. This extension generates an overloaded use of intervals, on the
one hand, as truth-values and, on the other hand, as the data needed in the
definition of an ordinal sum which, aiming at self-contention, is recalled below:

Definition 7. Let (&i)i∈A be a family of t-norms and a family of non-empty
pairwise disjoint subintervals [xi, yi] of [0, 1]. The ordinal sum of the summands
(xi, yi, &i), i ∈ A is the t-norm & defined as

&(x, y) =

{
xi + (yi − xi) &i(x−xi

yi−xi
, y−xi

yi−xi
) if x, y ∈ [xi, yi]

min(x, y) otherwise

For the handling of truth-intervals we will consider the lattice 〈I([0, 1]),≤〉,
where I([0, 1]) is the set of all subintervals of [0, 1], and given [a, b], [c, d] ∈
I([0, 1]), we have

[a, b] ≤ [c, d] if and only if a ≤ c and b ≤ d

sup{[a, b], [c, d]} = [sup{a, c}, sup{b, d}]

inf{[a, b], [c, d]} = [inf{a, c}, inf{b, d}]

3.1 Description of the net

Each process unit is associated either to a propositional symbol of the ini-
tial program or to an homogeneous rule of the transformed program P. The
state of the i-th neuron in the instant t is expressed by its output vector,
Si(t) = (S1

i (t), S2
i (t)), which denotes an interval. Thus, the state of the net-

work can be expressed by means of a state matrix S(t), whose rows are the
output of the neurons forming the network. In the initial state matrix, S(0), all
the rows are null, that is (0, 0), but those corresponding to neurons associated
to a propositional symbol A, in which case SA(0) is defined to be:

SA(0) = (S1
A(0), S2

A(0)) =

{
(ϑ1

A, ϑ2
A) if 〈A← >, [ϑ1

A, ϑ2
A]〉 ∈ P,

(0, 0) otherwise.

The connection between neurons is denoted by a matrix of weights W , in
which wij indicates the existence (value 1) or absence (value 0) of connection
from unit j to unit i; if the neuron represents a weighted sum, then the weights
are also represented in the entries associated to any of its inputs. The weights
of the connections related to neuron i (that is, the i-th row of the matrix W)
are represented by a vector wi, and are allocated in an internal vector register
of the neuron.

Four more internal registers vi,xi,yi,mi are defined in any neuron:

5

– The initial truth-interval [v1
i , v2

i] of a propositional symbol or homogeneous
rule is loaded in the internal register vi.

– The registers xi,yi are used to restrict the domain of primitive conjunctors
in order to enable the possibility of defining conjunctors as ordinal sums
by using the technique presented in [8]. Note that if xi = (x1

i , x
2
i), then x1

i

denotes the initial point of the domain of the first conjunctor, whereas x2
i

denotes the initial point of the domain of the second conjunctor.
– Vector mi = (m1

i ,m
2
i) indicates the functioning mode of the neuron, the

possible pairs are (1, 1) to denote a propositional symbol, or (5, 5) to denote
an aggregator rule, or (x, y) with 2 ≤ x, y ≤ 4, to denote a rule where
x (resp. y) denotes the t-norm acting in the beginning (resp. end) of the
intervals.

S(t)

�

r

max
k | wik>0 k | wik>0 k | wik>0 k | wik>0

(Sk , Si)

Si (t + 1)

w′
ikSk

k | wik>0

&
P(z ′′

k) &
G(z ′′

k) &
L(z ′′

k)

wimi

mi
=

vi
y ixi

wimi viy ixi

5=2m =i
j mi

j mi
jmi

jmi
j1 =3 =4

Σ

Fig. 1. The proposed generic neuron.

3.2 On the output of a neuron

Taking into account the values of the registers and the state matrix S at instant
t the output of a given neuron is computed as follows:

If mi = (1, 1), then its next state is the maximum value among all the
operators involved in its input and its previous state in each component. More
formally, let us denote Ki = {k | wik > 0} then we have:2

Si(t + 1) = max{Si(t), max{Sk(t) | k ∈ Ki}}
2 Note that the computation involves the join operation in the lattice I([0, 1]).

6

When mi = (m1
i ,m

2
i), with m1

i ,m
2
i ∈ {2, 3, 4}, the neuron i is associated to a

homogenous rule where the connective is built from two basic conjunctors. The
description of the output of the neuron will be given in terms of the vectors
zk(t) = (z1

k(t), z2
k(t)), which accommodate the value of Sj

k(t), originally in the
subinterval [xj

i , y
j
i], to the unit interval and, for each k ∈ Ki and j ∈ {1, 2}, are

computed as follows:

zj
k(t) =


1 if Sj

k(t) ≥ yj
i

Sj
k(t)− xj

i

yj
i − xj

i

if xj
i ≤ Sj

k(t) < yj
i

0 if Sj
k(t) < xj

i

Once the vectors zk(t) have been computed, then the corresponding conjunctor
(product, Gödel or Lukasiewicz) is applied, and the result is again accommodate
in the interval [xj

i , y
j
i]. Thus, the output of the neuron is3

Sj
i (t + 1) =


xj

i + (yj
i − xj

i) · (vj
i &P zj

1 &P · · ·&P zj
Ni

) if mj
i = 2

xj
i + (yj

i − xj
i) · (vj

i &G zj
1 &G · · ·&G zj

Ni
) if mj

i = 3

xj
i + (yj

i − xj
i) · (vj

i &L zj
1 &L · · ·&L zj

Ni
) if mj

i = 4

(1)

where Ni is the cardinal of Ki = {k | wik > 0}.
Note that, for instance, if mi = (2, 3), the components Sj

i (t) of the output
mimic the behaviour of the product (for j = 1) and Gödel (for j = 2) implica-
tions, respectively, in terms of the adjoint property.

Finally, a neuron associated to an aggregator has mi = (5, 5), and its output
is

Si(t + 1) =
∑

k∈Ki

w′ikSk(t) where w′ik =
wik∑

r∈Ki

wir

3.3 Implementation

A number of simulations have been obtained through a MATLAB implemen-
tation in a conventional sequential computer. A high level description of the
implementation is given below:

1. Initialize the network is with the appropriate values of the matrices V , X,
Y , M , W and, in addition, a tolerance value tol to be used as a stop criterion.
The output Si(t) of the neurons associated to facts are initialized with its
truth-value vi = (v1

i , v2
i).

2. Find the neurons k (if any) which operate on the neuron i, that is, construct
the set Ki = {k | wik > 0} and calculate Ni =

∑
Ki

wik.
When wik = 1 for all k ∈ Ki then Ni is the cardinal of Ki.

3 The functions corresponding to each case are represented in Fig. 1 as &
′
P , &

′
G, &

′
L,

resp.

7

3. Repeat Update all the states Si(t) = (S1
i (t), S2

i (t)) of the neurons of the
network:
(a) If mi = (1, 1), then update the state of neuron i as follows, for j ∈ {1, 2}

Sj
i (t + 1) =

{
max{Sj

i (t), maxKi
Sj

k(t)} if Ki 6= ∅
vj

i otherwise

(b) If mj
i = 2, 3 or 4, then update the state of neuron i to Sj

i (t + 1) as
defined in Eq (1).

(c) If mj
i = 5, then the neuron corresponds to an aggregator, and is updated

by:

Sj
i (t + 1) =

1
Ni

∑
k∈Ki

wik · Sj
k(t)

Until the stop criterion ‖S(t + 1)− S(t)‖∞ < tol is fulfilled.

We introduce some toy examples below in order to show the behavior of the
network.

Example 1. Consider the homogenous program with the fact 〈r ← >, [0.1, 0.2]〉
and the two rules 〈p← @1,2(r, q), [1, 1]〉, 〈q ←PG p, [0.6, 0.7]〉.

The net for the program will consist of five neurons, three of which represent
propositional symbols p, q, r, and the rest are needed to represent the rules (one
for the aggregator and another for the product-Gödel rule).

Note that no ordinal sum occurs in the program, therefore the matrices X
and Y are constantly 0 and 1, respectively. The initial values for the rest of
matrices are:

V =


0.0 0.0
0.0 0.0
0.1 0.2
1.0 1.0
0.6 0.7

 , M =


1 1
1 1
1 1
5 5
2 3

 , W =


· · · 1 ·
· · · · 1
· · · · ·
· 1 2 · ·
· 1 · · ·


After running the net, it gets stabilized after 328 iterations providing the

following truth-intervals for p, q and r (only three decimal digits are given):

p = [0.055, 0.200], q = [0.033, 0.200], r = [0.100, 0.200] �

Example 2. Consider the fact 〈r, [0.3, 0.5]〉 and the rules 〈p ← @1,2(r, q), [1, 1]〉
and 〈q ←TG p &TG r, [0.7, 0.8]〉, where T is the ordinal sum given by the Lukasiewicz
conjunction on [0.2, 0.4] and product conjunction on [0.6, 0.9].

The net for the program consists of eight neurons, three of which represent
variables p, q, r, and the rest are needed to represent the rules (one for the ag-
gregator and four for the TG one).

The initial values of the net are the matrices:

8

V =



0.0 0.0
0.0 0.0
0.3 0.5
1.0 1.0
0.7 0.8
0.7 0.8
0.7 0.8
1.0 1.0


,M =



1 1
1 1
1 1
5 5
4 3
2 3
3 3
3 3


, X =



0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.2 0.0
0.6 0.0
0.0 0.0
0.0 0.0


, Y =



1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
0.4 1.0
0.9 1.0
1.0 1.0
1.0 1.0


together with the following matrix of weights

W =



· · · 1 · · · ·
· · · · · · · 1
· · · · · · · ·
· 2 1 · · · · ·
1 · 1 · · · · ·
1 · 1 · · · · ·
1 · 1 · · · · ·
· · · · 1 1 1 ·


After running the net, it gets stabilized at 430 iterations giving the following

output for p, q and r:

p = [0.233, 0.500], q = [0.355, 0.500], r = [0.400, 0.500] �

Regarding the soundness of the implementation sketched above, the following
theorem can be obtained, although space restrictions do not allow to include the
proof.

Theorem 1. Given a homogeneous program P and a propositional symbol A,
then the sequence SA(n) approximates the value of the least model of P in A up
to any prescribed level of precision.

4 Conclusions and future work

A new neural-like model has been proposed which extends that recently given
to multi-adjoint logic programming in such a way that it is possible both to do
calculations with truth-intervals and obtaining the computed truth-values of all
propositional symbols involved in the program in a parallel way. This extended
approach considers, in addition to the three most important adjoint pairs in
the unit interval (product, Gödel, and Lukasiewicz) and weighted sums, the
combinations as finite ordinal sums of the previous conjunctors.

The original model of neuron could have been extended by considering sim-
pler units, each one dedicated to represent a different type of homogeneous rule
or propositional symbol; however, we have decided to extend the original generic

9

model of neuron, capable of adapting to perform different functions according
with its inputs. The advantage of this choice is related to the uniform (although
more complex) description of the units, and the attainment of a clearer network
than using simpler units. An analysis of the compromise between simplicity of
the units and complexity of the network will be the subject of future work.

References

1. C.V. Damásio and L. Moniz Pereira. Monotonic and residuated logic programs.
In Symbolic and Quantitative Approaches to Reasoning with Uncertainty, EC-
SQARU’01, pages 748–759. Lect. Notes in Artificial Intelligence, 2143, 2001.

2. A. Dekhtyar and V.S. Subrahmanian. Hybrid Probabilistic Programs, Journal of
Logic Programming 43(3):187–250, 2000

3. P. Eklund and F. Klawonn. Neural fuzzy logic programming. IEEE Tr. on Neural
Networks, 3(5):815–818, 1992.

4. S. Hölldobler and Y. Kalinke. Towards a new massively parallel computational
model for logic programming. In ECAI’94 workshop on Combining Symbolic and
Connectioninst Processing, pages 68–77, 1994.

5. S. Hölldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of logic
programs by recurrent neural networks. Applied Intelligence, 11(1):45–58, 1999.

6. L. V. S. Lakshmanan and F. Sadri. On a theory of probabilistic deductive
databases. Theory and Practice of Logic Progr., 1(1):5–42, 2001.

7. J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. A neural implementation
of multi-adjoint logic programming. Journal of Applied Logic, 2(3):301-324, 2004.

8. J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. Decomposing Ordinal
Sums in Neural Multi-Adjoint Logic Programs. IBERAMIA 2004, pages 717–726.
Lect. Notes in Artificial Intelligence 3315, 2004.

9. J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. A neural approach to
extended logic programs. In 7th Intl Work Conference on Artificial and Natural
Neural Networks, IWANN’03, pages 654–661. Lect. Notes in Computer Science
2686, 2003.

10. P. Vojtáš. Fuzzy logic programming. Fuzzy Sets and Systems, 124(3):361–370,
2001.

10

