
A neural approach to extended logic programs?

Jesús Medina, Enrique Mérida-Casermeiro, and Manuel Ojeda-Aciego

Dept. Matemática Aplicada. Univ. Málaga, Spain.
{jmedina,merida,aciego}@ctima.uma.es

Abstract. A neural net based development of multi-adjoint logic programming
is presented. Transformation rules carry programs into neural networks, where
truth-values of rules relate to output of neurons, truth-values of facts represent
input, and network functions are determined by a set of general operators; the
output of the net being the values of propositional variables under its minimal
model. Some experimental results are reported.

1 Introduction

One of the advantages of the use of neural networks is its massively parallel architecture-
based dynamics which are inspired by the structure of human brain, adaptation capa-
bilities, and fault tolerance. The latter provides the ability of dealing with modeling
and control aspects of complex processes, as well as with uncertain, incomplete and/or
inconsistent information, being fuzzy logic a powerful mathematical tool for its study.

Fuzzy logic systems are capable to express nonlinear input/output relationships by a
set of qualitative if-then rules, and to handle both numerical data and linguistic knowl-
edge, especially the latter, which is extremely difficult to quantify by means of tradi-
tional mathematics. Neural networks, on the other hand, has an inherent learning ca-
pability, which enables the networks to adaptively improve their performance. In this
work, we introduce a hybrid approach to handling uncertainty, which is expressed in the
rich language of multi-adjoint logic but is implemented by using ideas borrowed from
the world of neural networks.

Multi-adjoint logic programming, which was introduced in [6] as a refinement of
residuated logic programming, allows for very general connectives in the body of the
rules; moreover, sufficient conditions for the continuity of its semantics are known. The
handling of uncertainty inside our logic model is based on the use of a generalised
set of truth-values, usually a (finite or infinite) subset of the real unit interval [0, 1],
instead of the Boolean constants {v, f}. Such an approach is interesting for applica-
tions, for instance, consider a situation in which connectives are built from the users
preferences, it is likely that knowledge is described by a many-valued logic program
where connectives have many-valued truth functions and aggregation operators (such
as arithmetic mean or weighted sum) where different implications could be needed for
different purposes, and different aggregators are defined for different users, depending
on their preferences.

? Partially supported by Spanish DGI project BFM2000-1054-C02-02.



In this paper, following ideas in [7], we present a neural net based implementation
of the fixpoint semantics of multi-adjoint logic programming, introduced in [6], with
the advantage that, at least potentially, we can calculate in parallel the answer for any
query. The implementation using neural networks needs some preprocessing of the ini-
tial program to transform it in a homogeneous program; the ideas under this definition
are based on the results in [1].

2 Preliminary definitions

Multi-adjoint logic programming is a general theory of logic programming which al-
lows the simultaneous use of different implications in the rules and rather general con-
nectives in the bodies; a preliminar version was presented in [6], where models of these
programs were proved to be post-fixpoints of the immediate consequences operator,
which turned out to be monotonic under very general hypotheses. In addition, the con-
tinuity of the immediate consequences operator was studied, and some sufficient con-
ditions for its continuity were obtained.

To make this paper as self-contained as possible, the necessary definitions about
multi-adjoint structures are included in this section. For motivating comments on the
multi-adjoint stuff the interested reader is referred to [6].

The first interesting feature of multi-adjoint logic programs is that a number of dif-
ferent implications are allowed in the bodies of the rules. Formally, the basic definition
is given below:

Definition 1. Let 〈L,�〉 be a complete lattice. A multi-adjoint lattice L is a tuple (L,�
,←1, &1, . . . ,←n, &n) satisfying the following items:

1. 〈L,�〉 is bounded, i.e. it has bottom and top elements;
2. >&i ϑ = ϑ &i> = ϑ for all ϑ ∈ L for i = 1, . . . , n;
3. (←i, &i) is an adjoint pair in 〈L,�〉 for i = 1, . . . , n; i.e.

(a) Operation &i is increasing in both arguments.
(b) Operation←i is increasing in the first argument and decreasing in the second.
(c) For any x, y, z ∈ P , x � (y ←i z) holds if and only if (x &i z) � y holds.

The need of the monotonicity of operators←i and &i is clear, if they are to be inter-
preted as generalised implications and conjunctions. The third property in the definition
can be adequately interpreted as a generalised modus-ponens rule.

Originally, the multi-adjoint paradigm was developed for multi-adjoint lattices, how-
ever, for the sake of simplicity, in this specific implementation we will restrict our atten-
tion to [0, 1]. As example of adjoint pairs in this lattice, we have the product (←P , &P ),
Gödel (←G, &G) and Łukasiewicz (←L, &L) adjoint pairs; which are defined as

x←P y = min(1, x/y) x &P y = x · y

x←G y =

{

1 if y ≤ x

x otherwise
x &G y = min(x, y)

x←L y = min(1− x + y, 1) x &L y = max(0, x + y − 1)



Definition 2. A multi-adjoint program is a set of weighted rules 〈F, ϑ〉 satisfying the
following conditions:

1. F is a formula of the form A ←i B where A is a propositional symbol called the
head of the rule, and B is a well-formed formula built from propositional symbols
B1, . . . , Bn (n ≥ 0) by the use of monotone operators in the multi-adjoint Ω-
algebra, which is called the body formula.

2. The weight ϑ is an element (a truth-value) of [0, 1].

Facts are rules with body > (which usually will not be written),1 and a query (or goal)
is a propositional symbol intended as a question ?A prompting the system.

Regarding the implementation as a neural network, it will be useful to give a name
to a specially simple type of rule: the homogeneous rules.

Definition 3. A weighted formula is homogeneous if it has one of the following forms:

〈A←i &i(B1, . . . , Bn), ϑ〉 〈A←i @(B1, . . . Bn),>〉 〈A←i B1, ϑ〉

where the Bi are propositional symbols.

The homogeneous rules represent exactly the simplest type of (proper) rules we
can have in our program. In some sense, homogeneous rules allow a straightforward
generalization of the standard logic programming framework, in that no operators other
than←i and &i are used.

Definition 4. An interpretation is a mapping I from the set of propositional symbols Π
to the lattice 〈L,�〉.

The fixed point semantics provided by the immediate consequences operator, given
by van Emden and Kowalski [8], is generalised to the framework of multi-adjoint logic
programs, as shown below:

Definition 5. Let P be a multi-adjoint program. The immediate consequences operator,
T L

P
: IL → IL, maps interpretations to interpretations, and for I ∈ IL and A ∈ Π is

defined by
T L

P
(I)(A) = sup

{

ϑ &i Î(B) | 〈A←i B, ϑ〉 ∈ P

}

As usual, it is possible to characterise the semantics of a multi-adjoint logic program
by the post-fixpoints of TP; that is, an interpretation I is a model of a multi-adjoint logic
program P iff TP(I) v I . The TP operator is proved to be monotonic and continuous
under very general hypotheses, see [6].

Once we know that TP can be continuous under very general hypotheses, then the
least model can be reached in at most countably many iterations beginning with the
least interpretation denoted M, that is, the least model is T ω

P
(M).

In the next section we present a model of neural network which allows to evaluate
the TP operator and, therefore, by iteration will be able to approximate the actual values
of the least model up to any prescribed precision.

1 We will consider one designated implication to be used for the representation of facts, which
is denoted←. This designated implication will be also used in the procedure of translation of
a program into a homogeneous one.



3 Obtaining a homogeneous program

In this section we present a procedure for transforming a given multi-adjoint logic pro-
gram into a homogeneous one.

Handling rules. We will state a procedure for transforming a given program in another
(equivalent) one containing only facts and homogeneous rules. It is based on two types
of transformations:

T1. A weighted formula 〈A←i &j(B1, . . . ,Bn), ϑ〉 is substituted by the formulas:

〈A←i A1, ϑ〉 〈A1 ←j &j(B1, . . . ,Bn),>〉

where A1 is a fresh propositional symbol, and 〈←j , &j〉 is an adjoint pair.
For the case 〈A ←i @(B1, . . . ,Bn), ϑ〉 in which the main connective of the body
of the rule happens to be an aggregator, the transformation is similar:

〈A←i A1, ϑ〉 〈A1 ← @(B1, . . . ,Bn),>〉

where A1 is a fresh propositional symbol, and← is a designated implication.
T2. A weighted formula 〈A ←i Θ(B1, . . . ,Bn), ϑ〉, where Θ is either &i or an aggre-

gator, and a component Bk is assumed to be either of the form &j(C1, . . . , Cl) or
@(C1, . . . , Cl) is substituted by the following pair of formulas, respectively:
• 〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉 and 〈A1 ←j &j(C1, . . . , Cl),>〉
• 〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉 and 〈A1 ← @(C1, . . . , Cl),>〉

The procedure to transform the rules of a program so that all the resulting rules are
homogeneous, is based in the two previous transformations as follows:

1. Apply T1 to rules 〈A ←i Θ(B1, . . . ,Bn), ϑ〉 such that either Θ = &j with i 6= j,
or Θ = @ and ϑ 6= >.

2. Apply T2 to rules 〈A ←i Θ(B1, . . . ,Bn), ϑ〉 such that either Θ = &i, or Θ = @
and ϑ = >.

Handling facts. After the exhaustive application of the previous procedure we can as-
sume that all our rules are homogeneous. Regarding facts, it might happen that the pro-
gram contained facts about the same propositional symbol but with different weights.

Assume all the facts about A are 〈A ← >, ϑj〉, con j ∈ {1, . . . , l}, then the fol-
lowing fact is substituted for the previous ones: 〈A ← >, ϑ〉 where ϑ = sup{ϑj | j ∈
{1, . . . , l}}.

The new program obtained from P after the homogenization of rules and facts is
denoted P

∗. Note that in this new program there are new propositional symbols.

Preservation of the semantics. It is necessary to check that the semantics of the initial
program has not been changed by the transformation. The following results will show
that every model of P

∗ is also a model of P and, in addition, the minimal model of P
∗

is also the minimal model of P.

Theorem 1. Every model of P
∗ is also a model of P.

Theorem 2. The minimal model of P
∗ when restricted to the variables in Π is also the

minimal model of P.



4 Model of neural network

Using neural networks in the context of logic programming is not a novel idea; for
instance, in [1] it is shown how fuzzy logic programs can be transformed into neural
nets. In [2] the fixed point of the TP operator for aciclic logic programs is constructed.
This result is later extended in [3] to deal with the first order case. Our approach in this
paper is interesting since our logic is much richer than classical or the usual versions of
fuzzy logic in the literature, although we only consider the propositional case.

The set of operators to be implemented will consist of the three most important
adjoint pairs defined previously. Note that every continuous t-norm is expressible as an
ordinal sum of them [4]. We will implement a family of weighted sums defined as:

@(n1,...,nm)(p1, . . . , pm) =
n1p1 + · · ·+ nmpm

n1 + · · ·+ nm

Each process unit is associated to either a propositional symbol of the initial pro-
gram or an homogeneous rule. The state of the i-th neuron at time t is expressed by
its output Si(t) and the state of the network is expressed by the state vector S(t) =
(S1(t), S2(t), . . . , SN (t)). The initial state for neurons associated to propositional sym-
bols is ϑA if there is a fact 〈A, ϑA〉 in the program and zero for any other component.

Regarding the user interface, there are two types of neurons, visible or hidden, the
output of the visible neurons is the output of the net, whereas the output of the hidden
neurons is only used as input values for other neurons. The set of visible neurons is
formed by those associated with propositional symbols of the initial program, the others
are hidden neurons.

The connection between neurons is denoted by a matrix of weights W, in which
wij indicates the existence or absence of connection from unit i to j; if the neuron i is
associated with a weighted sum then wij represents the weights associated to input j.
In the internal register of neuron i are allocated the i-th row of the matrix W, the initial
truth-value vi, together with a signal mi that indicates whether the neuron is associated
to either a fact or a rule. So the net is a distributed information system.

Therefore, we have two vectors: one storing the truth-values v of atoms and homo-
geneous rules, and another m storing the type of the neurons in the net.

The signal mi indicates the functioning mode of the neuron. If mi = 1, then the
neuron is associated to a propositional symbol (visible neuron). Its next state is the max-
imum value among all the operators involved in its input and the initial truth-values vi.
More precisely:

Si(t + 1) = max

{

vi, max
k/wik>0{Sk(t)}

}

When a neuron is associated to the product, Gödel, or Łukasiewicz implication,
respectively, then the signal mi is set to 2, 3, and 4, respectively.

The output of the neuron mimics the behaviour of the implication in terms of the
adjoint property when a rule of type mi has been used; specifically, the output in the
next instant will be:

– Product implication, mi = 2: Si(t + 1) = vi

∏

k/wik>0 Sk(t)



– Gödel implication, mi = 3: Si(t + 1) = min
{

vi, mink/wik>0{Sk(t)}
}

– Łukasiewicz implication, mi = 4: Si(t+1) = max{vi +
∑

k/wik>0(Sk(t)−1), 0}

Neurons associated to aggregation operators have signal ti = 5. Its output is:

Si(t + 1) =
∑

k

w′
ikSk(t) where w′

ik =
wik

∑

r wir

Example 1. The non homogeneous rule 〈p←P @(3,7)(q, r), 0.5〉 is decomposed into:

α = 〈h← @(3,7)(q, r), 1〉 β = 〈p←P h, 0.5〉

The neurons corresponding to the new propositional symbol h and to homogeneous
rules α and β are hidden neurons.

Note that in the n-th iteration, the output of neuron of the rule α is Sα(n) =
@(3,7)(Sq(n − 1), Sr(n − 1)), and this output is used by the rule β in the next iter-
ation to obtain Sβ(n + 1) = 0.5 · Sα(n). ut

The following result relates the behavior of the components of the state vector with
the immediate consequence operator.

Theorem 3. Given a homogeneous program P, we have that T n
P

(M)(A) = SA(2n−2)
for all propositional symbol A and n ≥ 1.

5 Representing a homogenous program by a neural net

Each neuron in the net represents either a symbol of the initial program P or a new rules
of the homogeneous program P

∗. The different types of neurons are described below:

1. A propositional symbol: Its type is mi = 1. The initial truth-value vi is set either to
0 (by default) or to the truth-value if A is a fact.
The i-th row of the matrix of weights has all components set to 0 but those corre-
sponding to rules whose head is the given propositional symbol, in which case has
value 1.

2. Product implication: These neurons correspond to a homogeneous product rule.
Its internal registers are mi = 2, vi uses the truth-value of the rule in vi, and the
corresponding row in the matrix of weights is fixed with all components 0, except
those assigned to propositional symbols involved in the body, which are set to 1.

3. Gödel implication: Similar to the previous case with mi = 3.
4. Łukasiewicz implication: Similar to the previous case with mi = 4.
5. Weighted sums: These neurons are related to rules of the type:

〈p← @(n1,n2,...,nk)(q1, q2, . . . , qk), 1〉

So the truth-value is always one and it is unimportant which type of implication is
used since all of them assign the same value to the head.
The register of this type of neurons is set with truth-value vi = 1, its type is mi = 5,
and the vector wi• indicates the weights (wij ≥ 0) of the rest of neurons on the
output of the weighted sum.



In order to show the power of the neural implementation of the TP-operator, we
present a more complex example.

Example 2. Consider the program with the following rules

〈s1 ←P t1, 0.6〉 〈p1 ←G r1&Ls1, 0.9〉 〈x1 ←P @(5,2,1)(p1, x2, x3), 0.8〉

〈r1 ←G q1, 0.7〉 〈p2 ←P r2&P s2&P t2, 0.8〉 〈x2 ←P @(5,3,1)(p2, x1, x3), 0.9〉

〈r2 ←P q2, 0.6〉 〈p3 ←P r3&P s3, 0.8〉 〈x3 ←P @(5,3,3)(p3, x1, x2), 0.9〉

〈r3 ←P q3, 0.7〉 〈x←P @(4,3,2)(x1, x2, x3), 0.9〉

and facts 〈t1, 0.4〉, 〈q1, 0.5〉, 〈s2, 0.5〉, 〈q2, 0.5〉, 〈t2, 0.7〉, 〈q3, 0.5〉, 〈s3, 0.6〉.
In this example the propositional symbols p1, p2 and p3 can be considered as the

same economic characteristic in each country when only are considered internal market
information and x1, x2 and x3 can be considered as that economic characteristic when
relationship among countries are being considered. Finally x can be shown as a global
economic one.

Since there exist non homogeneous rules the program is transformed into:

〈p1 ←L r1&Ls1, 0.8〉 〈r1 ←L q1, 0.7〉
〈s1 ←P t1, 0.6〉 〈h1 ←P @(5,2,1)(p1, x2, x3), 1〉
〈x1 ←P h1, 0.8〉 〈p2 ←P r2&P s2&P t2, 0.8〉
〈r2 ←P q2, 0.6〉 〈h2 ←P @(5,3,1)(p2, x1, x3), 1〉
〈x2 ←P h2, 0.9〉 〈p3 ←P r3&P s3, 0.8〉
〈r3 ←P q3, 0.7〉 〈h3 ←P @(5,3,3)(p3, x1, x2), 1〉
〈x3 ←P h3, 0.9〉 〈h←P @(4,3,2)(x1, x2, x3), 1〉
〈x←P h, 0.9〉

So, the network will have thirty-three neurons. The first eighteen are associated to
propositional symbols: p1, q1, r1, s1, t1, x1, p2, q2, r2, s2, t2, x2, p1, q3, r3, s3, x3,
x, and the remaining ones are associated to the homogeneous rules.

The internal registers of the network are fixed as follows:

m = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 3, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2)

v = (0, 0.75, 0, 0, 0.8,0, 0, 0.8, 0, 0.8, 0.7, 0, 0, 0.7, 0, 0.8,

0, 0,1, 1, 1, 1, 0.9, 0.7, 0.8, 0.9, 0.8, 0.75, 0.9, 0.8, 0.95, 0.9, 0.9)

W is a 33 × 33 matrix with all components zeroes except those below:

w1,23 = 1 w3,24 = 1 w4,25 = 1 w6,26 = 1 w7,27 = 1 w9,28 = 1 w12,29 = 1
w13,30 = 1 w15,31 = 1 w17,32 = 1 w18,33 = 1 w19,1 = 5 w19,12 = 2 w19,17 = 1
w20,6 = 3 w20,7 = 5 w20,17 = 1 w21,6 = 3 w21,12 = 3 w21,13 = 5 w22,6 = 4
w22,12 = 3 w22,17 = 2 w23,3 = 1 w23,4 = 1 w24,2 = 1 w25,5 = 1 w26,19 = 1
w27,9 = 1 w27,10 = 1 w27,11 = 1 w28,8 = 1 w29,20 = 1 w30,15 = 1 w30,16 = 1
w31,14 = 1 w32,21 = 1 w33,22 = 1

The network gets stabilized in 130 steps, giving the values of the minimal model T ω
P

(M)
for each propositional symbol of the initial program.



6 Concluding remarks and future work

A new neural model has been introduced, which implements the fixpoint semantics of
the multi-adjoint logic programming paradigm, which is a new approach to the treat-
ment of reasoning under fuzzy data and/or uncertainty. As a result, it is possible to
obtain the truth-values of all propositional symbols involved in the program in a par-
allel way. Due to space limitations, only a subset of connectives are implemented, but
the framework can easily be modified to deal with other types of fuzzy rules and/or
connectives.

As future work, we will extend the framework by adding learning capabilities to the
net, so that it will be able to adapt the truth-values of the rules in a given program to fit a
number of observations. Following this idea, a neural net implementation for abductive
multi-adjoint logic programming [5] is planned.

References

1. P. Eklund and F. Klawonn. Neural fuzzy logic programming. IEEE Trans. on Neural Net-
works, 3(5):815–818, 1992.

2. S. Hölldobler and Y. Kalinke. Towards a new massively parallel computational model for logic
programming. In ECAI’94 workshop on Combining Symbolic and Connectioninst Processing,
pages 68–77, 1994.

3. S. Hölldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of logic programs by
recurrent neural networks. Applied Intelligence, 11(1):45–58, 1999.

4. E.P. Klement, R. Mesiar, and E. Pap. Triangular norms. Kluwer academic, 2000.
5. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A multi-adjoint logic approach to abductive

reasoning. . Lect. Notes in Computer Science 2237, pages 269–283, 2001.
6. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming with continuous

semantics. Lect. Notes in Artificial Intelligence 2173, pages 351–364, 2001.
7. E. Mérida-Casermeiro, G. Galán, and J. Muñoz Pérez. An efficient multivalued Hopfield

network for the traveling salesman problem. Neural Processing Letters, 14:203–216, 2001.
8. M. H. van Emden and R. Kowalski. The semantics of predicate logic as a programming

language. Journal of the ACM, 23(4):733–742, 1976.


