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1 Introduction

Galois connections are ubiquitous; together with adjunctions, their close rela-
tives, occur in a number of research areas, ranging from the most theoretical
to the most applied. In a rather poetic tone, the preface of [8] reads, Galois
connections provide the structure-preserving passage between two worlds of our
imagination; and we should add that these two worlds can be so different that
the slightest relationship could be seldom ever imagined.

The term Galois connection was coined by Øystein Ore [29] (originally,
spelled connexion) as a general type of correspondence between structures, ob-
viously named after the Galois theory of equations which is an example linking
subgroups of automorphisms and subfields. Ore generalized to complete lattices
the notion of polarity, introduced by Birkhoff [4] several years before, as a fun-
damental construction which yields from any binary relation two inverse dual
isomorphisms. Later, when Kan introduced the adjoint functors [19] in a categor-
ical setting, his construction was noticed to greatly resemble that of the Galois
connection; actually, in some sense, both notions are interdefinable. The im-
portance of Galois connections/adjunctions quickly increased to an extent that,
for instance, the interest of category theorists moved from universal mapping
properties and natural transformations to adjointness.

When examining the literature, one can notice a lack of uniformity in the use
of the term Galois connection, mainly due to its close relation to adjunctions and
that, furthermore, there are two versions of each one. In this paper, after recalling
the different interpretations usually assigned to the term Galois connection, both
in the crisp and in the fuzzy case, we briefly survey on several of their applications
in Computer Science and, specifically, in Soft Computing.
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2 Galois Connections vs Adjunctions

This section is devoted to establish the different definitions of Galois connection,
their characterization and the relation among them. For this purpose, the results
will be formulated in the most general framework of preordered sets, that are
sets endowed with a reflexive and transitive binary relation.

For a preordered set A = (A,≤), its dual set is Aop = (A,≥). We denote
a↓ = {x ∈ A : x ≤ a} and a↑ = {x ∈ A : x ≥ a}. Let f : (A,≤) → (B,≤) be a
map between preordered sets.

– f is isotone if a ≤ b implies f(a) ≤ f(b), for all a, b ∈ A.
– f is antitone if a ≤ b implies f(b) ≤ f(a), for all a, b ∈ A. .

In the particular case in which A = B,

– f is inflationary (also called extensive) if a ≤ f(a) for all a ∈ A.
– f is deflationary if f(a) ≤ a for all a ∈ A.
– f is idempotent if f ◦ f = f .
– f is a closure operator if it is inflationary, isotone and idempotent.
– f is a kernel operator if it is deflationary, isotone and idempotent.

For a more detailed study of closure and kernel operators we refer to [7].

Definition 1 (Galois Connections/Adjunctions). Let A = (A,≤) and B =
(B,≤) be preordered sets, f : A→ B and g : B → A be two mappings. The pair
(f, g) is called a1

– Right Galois Connection between A and B, denoted by (f, g) : A⇀↼B, if

a ≤ g(b) if only if b ≤ f(a) for all a ∈ A and b ∈ B.

– Left Galois Connection between A and B, we write (f, g) : A⇁↽B, if

g(b) ≤ a if only if f(a) ≤ b for all a ∈ A and b ∈ B.

– Adjunction between A and B, denoted by (f, g) : A � B, if

a ≤ g(b) if only if f(a) ≤ b for all a ∈ A and b ∈ B.

– Co-Adjunction between A and B, denoted by (f, g) : A 
 B, if

g(b) ≤ a if only if b ≤ f(a) for all a ∈ A and b ∈ B.

All of the previous notions can be seen in the literature, in fact, one can
even find the same term applied to different notions of connection/adjunction.
Although it is true that the four definitions are strongly related, they do not
have exactly the same properties; hence, it makes sense to specifically describe
1 The arrow notation for the different versions is taken from [31].



what is the relation between the four notions stated above, together with their
corresponding characterizations.

The following theorem states the existence of pairwise biunivocal correspon-
dences between all the notions above. The transition between the two types
of adjunctions (connections) relies on using the opposite ordering in both pre-
ordered sets, whereas the transition between adjunctions to connections and vice
versa relies on using the opposite ordering in just one of the preordered sets.

Theorem 1. Let A = (A,≤) and B = (B,≤) be preordered sets, f : A→ B and
g : B → A be two mappings. Then, the following conditions are equivalent

1. (f, g) : A⇀↼B
2. (f, g) : Aop⇁↽Bop.
3. (f, g) : A � Bop.
4. (f, g) : Aop 
 B

Observe that, as a direct consequence of this theorem, any property about Galois
connections can be extended by duality to the other kind of connections.

Remark 1. Obviously, the ordering in which the mappings appear in the pair
determines the kind of Galois connection or adjunction. Thus,

1. (f, g) is a right (left, resp.) Galois connection between A and B if and only
if (g, f) is a right (left, resp.) Galois connection between B and A.

2. (f, g) is an adjunction between A and B if and only if (g, f) is a co-adjunction
between B and A.

Any preordered set (A,≤) induces an equivalence relation in A defined as:

a1 ≈ a2 if and only if a1 ≤ a2 and a2 ≤ a1 for a1, a2 ∈ A. (1)

The notions of maximum and minimum in a poset can be extended to preordered
sets as follows: an element a ∈ A is a p-maximum (p-minimum resp.) for a set
X ⊆ A if a ∈ X and x ≤ a (a ≤ x, resp.) for all x ∈ X. The set of p-maximum
(p-minimum) of X will be denoted as p-maxX (p-minX, resp.). Observe that,
in a preordered set, different elements can be p-maximum for a set X, but, in
this case, a1, a2 ∈ p-maxX implies a1 ≈ a2.

Theorem 2. Let A = (A,≤),B = (B,≤) be two preordered sets, f : A→ B and
g : B → A be two mappings. The following conditions are equivalent:

i) (f, g) : A⇀↼B.
ii) f and g are antitone maps, and g ◦ f , f ◦ g are inflationary maps.
iii) f(a)↓ = g−1(a↑) for all a ∈ A.
iv) g(b)↓ = f−1(b↑) for all b ∈ B.
v) f is antitone and g(b) ∈ p-max f−1(b↑) for all b ∈ B.
vi) g is antitone and f(a) ∈ p-max g−1(a↑) for each a ∈ A.

Theorem 1 and Theorem 2 provide characterizations for the different Galois
connections/adjunctions that are summarized in Table 1.



Table 1. Summary of definitions and equivalent characterizations

Galois Connections
Right Galois Connections between A and B Left Galois Connections between A and B

(f, g) : A ⇀↼ B (f, g) : A ⇁↽ B
b ≤ f(a)⇔ a ≤ g(b) f(a) ≤ b⇔ g(b) ≤ a

for all a ∈ A and b ∈ B for all a ∈ A and b ∈ B
f and g are antitone and f and g are antitone and

g ◦ f and f ◦ g are inflationary g ◦ f and f ◦ g are deflationary
f(a)↓ = g−1(a↑) for all a ∈ A f(a)↑ = g−1(a↓) for all a ∈ A

g(b)↓ = f−1(b↑) for all b ∈ B g(b)↑ = f−1(b↓) for all b ∈ B
f is antitone and f is antitone and

g(b) ∈ p-max f−1(b↑) for all b ∈ B g(b) ∈ p-min f−1(b↓) for all b ∈ B
g is antitone and g is antitone and

f(a) ∈ p-max g−1(a↑) for all a ∈ A f(a) ∈ p-min g−1(a↓) for all a ∈ A

Adjunctions
Adjunction between A and B co-Adjunction between A and B

(f, g) : A � B (f, g) : A 
 B
f(a) ≤ b⇔ a ≤ g(b) b ≤ f(a)⇔ g(b) ≤ a

for all a ∈ A and b ∈ B for all a ∈ A and b ∈ B
f and g are isotone, f and g are isotone,

g ◦ f is inflationary and f ◦ g is deflationary g ◦ f is deflationary and f ◦ g is inflationary
f(a) ↑= g−1(a↑) for all a ∈ A f(a)↓ = g−1(a↓) for all a ∈ A

g(b)↓ = f−1(b↓) for all b ∈ B g(b)↑ = f−1(b↑) for all b ∈ B
f is isotone and f is isotone and

g(b) ∈ p-max f−1(b↓) for all b ∈ B g(b) ∈ p-min f−1(b↑) for all b ∈ B
g isotone and g is isotone and

f(a) ∈ p-min g−1(a↑) for all a ∈ A f(a) ∈ p-max g−1(a↓) for all a ∈ A

Theorem 3. Let A = (A,≤),B = (B,≤) be two preordered sets, f : A → B
and g : B → A be two mappings. If (f, g) : A �
 B, where �
 ∈ {⇀↼,⇁↽,�,
},
then, (f ◦ g ◦ f)(a) ≈ f(a), for all a ∈ A, and (g ◦ f ◦ g)(b) ≈ g(b) for all b ∈ B.
Moreover,

1. If (f, g) is a left and right Galois connection (adjunction and co-adjunction
resp.) then (g ◦ f)(a) ≈ a for all a ∈ A and (f ◦ g)(b) ≈ b for all b ∈ B.

2. If (f, g) is a (left or right) Galois connection and a (co-) adjunction then
f(a1) ≈ f(a2) for all a1, a2 ∈ A with a1 ≤ a2, and g(b1) ≈ g(b2) for all
b1, b2 ∈ B with b1 ≤ b2.

Moreover, for any preordered set A = (A,≤), the quotient set A/≈ with the
relation defined as “[a1] ≤ [a2] iff a1 ≤ a2” is a partial ordered set (poset) denoted
as A/≈. Theorem 2 allows to translate Galois connections to the quotient posets
as follows.

Theorem 4. Let A = (A,≤) and B = (B,≤) be two preordered sets and let �
 ∈
{⇀↼,⇁↽,�,
}. If (f, g) : A �
 B then (f≈ , g≈) : A/≈ �
 B/≈ where f≈([a]) =
[f(a)] and g≈([b]) = [g(b)] for all a ∈ A and b ∈ B.

Since any equivalence relation is a preorder, Galois connections between two sets
endowed with equivalence relations can be considered. But the properties that
we obtain on these cases are not significative as the following corollary shows.

Corollary 1. Let A = (A,≤),B = (B,≤) be two preordered sets, f : A → B
and g : B → A be two mappings.



1. (f, g) is a left and right Galois connection (adjunction and co-adjunction,
resp.) if and only if f≈ and g≈ are inverse mappings (g≈ = f−1

≈
).

2. (f, g) is a right and left Galois connection, and adjunction and a co-adjunction
if and only if both relations ≤ are equivalence relations and f≈ and g≈ are
inverse mappings.

Example 1. Consider the set P of propositional logic programs on a finite set
{p1, p2, . . . , pn} of propositional symbols, and Bn the set of chains of n digits,
which will be interpreted as assignments of truth-value to the corresponding
propositional symbol. Define P1 ≤ P2 if and only if their least models satisfy
lm(P1) ⊆ lm(P2). This relation is reflexive and transitive, but not antisymmetric.

We define a mapping f : P → B∗ by assigning to each program P the chain
of Boolean values corresponding to the least model of P . Conversely, a mapping
g : B∗ → P assigns to each chain in B∗ the (trivial) program consisting just of
the fact corresponding to the propositional symbols with truth-value 1. It is not
difficult to check that (f, g) is both an adjunction and a co-adjunction. ut

In the particular case of posets, from Theorem 3 and Theorem 2 , we obtain:

Theorem 5. Let A = (A,≤) and B = (B,≤) be posets. If (f, g) : A �
 B where
�
 ∈ {⇀↼,⇁↽,�,
} then g ◦ f ◦ g = g and f ◦ g ◦ f = f and therefore

– If (f, g) : A⇀↼B then g ◦ f and f ◦ g are closure operators.
– If (f, g) : A⇁↽B then g ◦ f and f ◦ g are kernel operators.
– If (f, g) : A � B then g◦f is a closure operator and f ◦g is a kernel operator.
– If (f, g) : A 
 B then g◦f is a kernel operator and f ◦g is a closure operator.

3 Fuzzy Galois Connections

Since Lotfi Zadeh introduced Fuzzy Set Theory by considering the unit interval
as truthfulness/membership degree structure, a wide range of algebraic struc-
tures has been used to this aim. The most usual structure in this context is
that of residuated lattice, L = (L,∨,∧, 1, 0,⊗,→), introduced in the 1930s by
Dilworth [9] and used in the context of fuzzy logic by Goguen [14]. Thus, an
L-fuzzy set is a mapping from the universe set to the membership values struc-
ture X : U → L where X(u) means the degree in which x belongs to X. Given
X and Y two L-fuzzy sets, X is said to be included in Y , denoted as X ⊆ Y ,
if X(u) ≤ Y (u) for all u ∈ U . An L-fuzzy binary relation on U is an L-fuzzy
subset of U × U , ρ : U × U → L, and it is said to be:

– reflexive if ρ(a, a) = 1 for all a ∈ U .
– transitive if ρ(a, b)⊗ ρ(b, c) ≤ ρ(a, c) for all a, b, c ∈ U .
– symmetric if ρ(a, b) = ρ(b, a) for all a, b ∈ U .
– antisymmetric if ρ(a, b) = ρ(b, a) = 1 implies a = b, for all a, b ∈ U .

An L-fuzzy preordered set is a pair (U, ρU ) in which ρU is a reflexive and transitive
L-fuzzy relation. A (crisp) preordering can be given from (U, ρU ) by considering



its 1-cut (a ≤U b iff ρU (a, b) = 1). If ρU is antisymmetric then (U, ρU ) is said to
be an L-fuzzy poset and, in this case, (U,≤U ) is a (crisp) poset. From now on,
when no confusion arises, we will omit the prefix “L-”.

For any fuzzy preordered set U = (U, ρU ), its dual fuzzy preordered set is
defined as Uop = (U, ρ−1

U ) where ρ−1
U (a, b) = ρU (b, a) for all a, b ∈ U .

For every element a ∈ U , the fuzzy extension of upper and lower closure a↑
and a↓ : U → L are given by a↓(u) = ρU (u, a) and a↑(u) = ρU (a, u) for all u ∈ U.

A p-maximum (resp. p-minimum) for a fuzzy set X is an element a satisfying

– X(a) = 1 and
– X ⊆ a↓ (resp. X ⊆ a↑).

Observe that p-minimum and p-maximum elements are not necessarily unique.
If the fuzzy relation is antisymmetric, then p-maximum (minimum, resp.) is a
singleton.

Let A = (A, ρA) and B = (B, ρB) be fuzzy preordered sets. A mapping
f : A→ B is said to be

– isotone if ρA(a1, a2) ≤ ρB(f(a1), f(a2)) for each a1, a2 ∈ A.
– antitone if ρA(a1, a2) ≤ ρB(f(a2), f(a1)) for each a1, a2 ∈ A.

Moreover, a mapping f : A→ A is said to be

– inflationary if a ≤A f(a) for all a ∈ A.
– deflationary if f(a) ≤A a for all a ∈ A.

The definition of idempotent mapping, closure operator and kernel operator
follows in the same way as crisp case.

Definition 2 (Fuzzy Galois Connections/Adjunctions). Let A = (A, ρA),
B = (B, ρB) be fuzzy preordered sets, f : A→ B and g : B → A be two mappings.

– (f, g) : A⇀↼B, if ρA(a, g(b)) = ρB(b, f(a)) for all a ∈ A and b ∈ B.
– (f, g) : A⇁↽B, if ρA(g(b), a) = ρB(f(a), b) for all a ∈ A and b ∈ B.
– (f, g) : A � B, if ρA(a, g(b)) = ρB(f(a), b) for all a ∈ A and b ∈ B.
– (f, g) : A 
 B, if ρA(g(b), a) = ρB(b, f(a)) for all a ∈ A and b ∈ B.

Remark 2. Theorem 1 can be straightforwardly extended to the fuzzy case and,
therefore, any property given for fuzzy Galois connection can be translated to
the other cases.

As far as we know, all the fuzzy extension of the notions of Galois connections
(and adjunctions) in the literature are given on the particular case of considering
the fuzzy poset (with the properties induced by the truthfulness values structure)
in which elements are fuzzy sets and the fuzzy relation is related to the assertion
"to be a subset of" in a fuzzy setting (see Equation 2).



Example 2. Let L = (L,∨,∧, 1, 0,⊗,→) be a complete residuated lattice and U
be the universe set. Then (LU ,∪,∩, U,∅,⊗,→) is a complete residuated lattice
where (X∪Y )(u) = X(u)∨Y (u), (X∩Y )(u) = X(u)∧Y (u), ∅(u) = 0, U(u) = 1,
(X ⊗ Y )(u) = X(u)⊗ Y (u) and (X → Y )(u) = X(u)→ Y (u) for all u ∈ U .

The L-fuzzy binary relation “to be a subset of” is defined as follows

S(X,Y ) =
∧

u∈U

(
X(u)→ Y (u)

)
(2)

Thus, the inclusion of fuzzy sets ⊆ can be obtained form S as follows: X ⊆ Y if
and only if S(X,Y ) = 1. Observe that (LU ,⊆) is a complete lattice.

Let f : A→ B be a mapping, f : LA → LB and f−1 : LB → LA defined as

f(X)(b) =
∨
{X(x) | f(x) = b} f−1(Y )(a) = Y (f(a)) (3)

for all b ∈ B, a ∈ A. Then, (f, f−1) : (LA, S) � (LB , S).

Notation 1 From now on, we will use the following notation just introduced in
(3): for a mapping f : A → B and a fuzzy subset Y of B, the fuzzy set f−1(Y )
is defined as f−1(Y )(a) = Y (f(a)), for all a ∈ A.

Example 3 (See [2]). Let L = (L,∨,∧, 1, 0,⊗,→) be a complete residuated lat-
tice. Let A,B be two sets and I : A × B → L be an L-fuzzy relation. For all
X ∈ LA and Y ∈ LB , define

X4(b) =
∧
a∈A

(
X(a)→ I(a, b)

)
Y 5(a) =

∧
b∈B

(
Y (b)→ I(a, b)

)
The pair (4,5 ) is a fuzzy Galois connection between (LA, SA) and (LB , SB). ut

Theorem 6. Let L = (L,∨,∧, 1, 0,⊗,→) be a complete residuated lattice, A =
(A, ρA),B = (B, ρB) be L-fuzzy preordered sets and f : A → B and g : B → A
be two mappings. The following conditions are equivalent:

i) (f, g) : A⇀↼B.
ii) f and g are antitone maps, and g ◦ f , f ◦ g are inflationary maps.
iii) f(a)↓ = g−1(a↑) for all a ∈ A.
iv) g(b)↓ = f−1(b↑) for all b ∈ B.
v) f is antitone and g(b) ∈ p-max f−1(b↑) for all b ∈ B.
vi) g is antitone and f(a) ∈ p-max g−1(a↑) for each a ∈ A.

Proof. According to Remark 2, it suffices to prove that i), ii), iii) and v) are
equivalent. Observe that f(a)↓(b) = ρB(b, f(a)) and g−1(a↑)(b) = ρA(a, g(b)) by
the definition (see Notation 1) then i) and iii) are trivially equivalent.

i) ⇒ ii) Let a ∈ A. As ρB is reflexive, 1 = ρB(f(a), f(a)) and by hypothesis,
ρA(a, g(f(a))) = ρB(f(a), f(a)) = 1, thus, g◦f is inflationary. Given a1, a2 ∈
A, it holds that ρA(a1, a2) = ρA(a1, a2)⊗ 1 = ρA(a1, a2)⊗ ρA(a2, g(f(a2))).
Being ρA transitive, ρA(a1, a2) ≤ ρA(a1, g(f(a2))) = ρB(f(a2), f(a1)). That
is, f is antitone. Similarly, we prove that f ◦g is inflationary and g is antitone.



ii) ⇒ v) f is antitone, by the hypothesis. For all b ∈ B, since f ◦ g is infla-
tionary, 1 = ρB(b, f(g(b))) = f−1(b↑)(g(b)). On the other hand, since ρA

is transitive, g(b)↓(a) = ρA(a, g(b)) ≤ ρA(a, g(f(a))) ⊗ ρA(g(f(a)), g(b)).
As g ◦ f is inflationary and g antitone, g(b)↓(a) ≤ 1 ⊗ ρA(g(f(a)), g(b)) =
ρA(g(f(a)), g(b)) ≥ ρB(b, f(a)) = f−1(b↑)(a).

v) ⇒ i) It is sufficient to prove that ρB(b, f(a) ≥ ρA(a, g(b)). Firstly note that
f−1(b↑)(g(b)) = 1 is equivalent to f ◦ g being inflationary. Then,

ρB(b, f(a)) ≥ ρB(b, f(g(b)))⊗ ρB(f(g(b)), f(a))
= 1⊗ ρB(f(g(b)), f(a)) ≥ ρA(a, g(b))

ut

Remark 2 and Theorem 6 provide similar characterizations for the different
fuzzy Galois connections/adjunctions that are summarized in Table 1.

As we have mentioned at the beginning of this section, any fuzzy preordered
set A = (A, ρA), defines a (crisp) preordered set Ac = (A,≤A) where a ≤A b iff
ρA(a, b) = 1. It is also straightforward that the pair A/≈ = (A/≈, ρA≈) where ≈
is the equivalence relation given by

a ≈ b if and only if ρA(a, b) = ρA(b, a) = 1 (4)

and ρA≈ is defined as ρA≈([a], [b]) = ρA(a, b) is a fuzzy poset. Moreover, any
mapping f between fuzzy preordered sets defines a mapping f≈ between the
quotient poset in the same way as in Theorem 4.

Theorem 7. Let A = (A, ρA) and B = (B, ρB) be two fuzzy preordered sets and
two mappings f : A→ B and g : B → A. Then, for �
 ∈ {⇀↼,⇁↽,�,
},

1. (f, g) : A �
 B implies (f, g) : Ac �
 Bc.
2. (f, g) : A �
 B if and only if (f≈ , g≈) : A/≈�
 B/≈.

The following example shows that the converse of item 1 above is not true.

Example 4. Let L be the (product) residuated lattice ([0, 1], sup, inf, 1, 0, ·,→).
Let A = (A, ρA) such that A = {a, b}, ρA(a, a) = ρA(b, b) = 1, ρA(a, b) = 0.5 and
ρA(b, a) = 0.2 and let I be the identity mapping on A. Then (I, I) : Ac⇀↼Ac but
(I, I) is not a Galois connection between A and A because 0.5 = ρA(a, I(b)) 6=
ρA(b, I(a)) = 0.2. ut

Observe that, contrariwise to the crisp case, nontrivial fuzzy relations exist
that are both equivalencies and partial orders. They are known as fuzzy equalities
and are strongly reflexive (ρ(a, b) = 1 iff a = b), symmetric and transitive fuzzy
relations. Obviously, in these cases, antitone and isotone maps coincide. But
there exist nontrivial mappings between fuzzy posets (not fuzzy equalities) that
are both antitone and isotone as the following example shows.

Example 5. Let L be the (product) residuated lattice ([0, 1], sup, inf, 1, 0, ·,→).
Consider A = ({a, b, c}, ρ) such that ρ is the L-fuzzy preorder given by the table



below, then the map f : A → A with f(a) = f(c) = b and f(b) = a is antitone
and isotone.

ρ a b c
a 1 0.5 0.3
b 0.5 1 0.2
c 0.2 0.1 1

ut

Theorem 8. Let A = (A, ρA) and B = (B, ρB) be fuzzy preordered sets and
�
 ∈ {⇀↼,⇁↽,�,
}. If (f, g) : A �
 B then, for all a ∈ A, b ∈ B, the following
relations hold (f ◦ g ◦ f)(a) ≈ f(a) and (g ◦ f ◦ g)(b) ≈ g(b). Moreover,

– If (f, g) is both left and right Galois connection (resp., adjunction and co-
adjunction) then (g ◦ f)(a) ≈ a and (f ◦ g)(b) ≈ b for all a ∈ A and b ∈ B.

– If (f, g) is a (left or right) Galois connection and a (co-) adjunction then, for
all a1, a2 ∈ A, ρA(a1, a2) = 1 implies f(a1) ≈ f(a2) and, for all b1, b2 ∈ B,
ρB(b1, b2) = 1 implies g(b1) ≈ g(b2) .

Corollary 2. Let A = (A, ρA) and B = (B, ρB) be two fuzzy posets.

– If (f, g) : A⇀↼B then g ◦ f and f ◦ g are closure operators.
– If (f, g) : A⇁↽B then g ◦ f and f ◦ g are kernel operators.
– If (f, g) : A � B then g ◦ f is closure operator and f ◦ g is kernel operator.
– If (f, g) : A 
 B then g ◦ f is kernel operator and f ◦ g is closure operator.

4 Applications to computer science and soft computing

Out of the plethora of applications of Galois connections that can be found in
CS-related research topics, we have selected just a few to comment a little bit
about them. Applications range from the mathematics of program construction
to data analysis and formal concept analysis.

Program construction. Some authors propose the use of Galois connections
(actually, adjunctions), as suitable calculational specifications: in [25] one can see
how to simplify and easily handle data structures problems when using Galois
connections. On the other hand, [27] considers them as program specifications,
helping in the process of deriving and using an algebra of programming. Another
common usage is based on that a Galois connection is a correspondence between
two complete lattices that consists of an abstraction and concretisation functions.

Constraint Satisfaction Problems (CSPs). In this context, a well-known
Galois connection between sets of relations and sets of (generalized) functions
was used in [18] to investigate the algorithmic complexity of CSPs. Continuing
this idea, [6] established a link between certain soft constraint languages and
sets of certain sets determined by algebraic constructs called weighted polymor-
phisms, resulting in an alternative approach to the study of tractability in valued
constraint languages. This approach was recently used in [20] generalizing the
notions of polymorphisms and invariant relations to arbitrary categories.



Logic. There are strong links between Galois connections and logic. The first
one arose in Lawvere’s paper on the foundational value of category theory. This
is made explicit in [30] which formally defines a Galois Connection (adjunction)
between sets of sentences and classes of semantic structures.

In [17] the Information Logic of Galois Connections (ILGC) is introduced as
a convenient tool for approximate reasoning about knowledge. Actually, they use
adjunctions introduced as generalized rough approximation operations based on
information relations. ILGC turns out to be the usual propositional logic together
with two modal connectives. This natural inclusion of modal connectives in the
framework, enables the study of such as intuitionistic logic [33, 11].

Mathematical morphology. Galois connections can be seen as well in the
mathematical structure of morphological operations, in the research area known
as mathematical morphology. In [15] the authors note the duality between the
morphological operations of dilation and erosion, and identify them as the com-
ponents of an adjunction (by the way, making the proper distinction between
Galois connections and adjunctions). Originally, mathematical morphology was
applied on binary images, but later extended to grayscale by applying techniques
from the fuzzy realm, specifically, using fuzzy Galois connections (adjunctions);
a survey on classical and fuzzy approaches of mathematical morphology can be
found in [28]. Later, in [22] a further generalization based on lattices is given
aimed at unifying morphological and fuzzy algebraic systems. The benefits of
considering the different links, in terms of Galois connections, that can be es-
tablished is exploited in [5], clarifying the links between different approaches in
the literature and giving conditions for their equivalence. Recently, mathemat-
ical morphology is being studied using ideas and results from formal concept
analysis [1].

Information processing and data analysis. Another use of Galois connec-
tions (adjunctions) can be seen in [12], where Galois connections are generalized
from complete lattices to flow algebras (an algebraic structure more general than
idempotent semirings, in which distributivity is replaced by monotonicity and
the annihilation property is ignored).

Another interesting application can be found in the theory of relational sys-
tems: in [16] it was shown that every Galois connection between complete lattices
determines an Armstrong system (a closed set of dependencies). More recently,
[21] proved the converse, for any given Armstrong system it is possible to define
a Galois connection which generates the original Armstrong system.

In [32] the author focuses on the different applications of Galois connections
(both types, termed polarities and axialities) to different theories of qualita-
tive data analysis. Specifically, the paper studies some links between axialities
(adjunctions) and the area of data analysis.

Formal concept analysis (FCA). The notion of polarity, given by Birkhoff,
is precisely that used by Ganter and Wille in order to define the derivation



operators in crisp FCA. In this context, it is well-known that the concept lattices
induced by Galois connections and by adjunctions are naturally isomorphic.
Authors indistinctly use one or the other approach, for instance [26] considers
the problem of attribute reduction by using axialities (adjunctions) inspired by
the reduction method in rough set theory.

The introduction of fuzzy Galois connections [2] lead to the systematic de-
velopment of fuzzy FCA. In this framework, the fuzzy concept lattices generated
from Galois connections and from adjunction need not be isomorphic. In [3] it
is shown that the expected isomorphism depends largely on the way the notion
of a complement is defined, the usual based on a residuum w.r.t. 0, is replaced
by one based on residua w.r.t. arbitrary truth degrees.

Different extensions of fuzzy FCA consider even more general frameworks,
some of them use a sub-interval rather than a precise value of the lattice to refer
to what extent an object satisfies an attribute [10, 23]. Usually, these extensions
require to provide a sound minimal set of algebraic requirements for interval-
valued implications in order to obtain a Galois connection. Anyway, there are
approaches in which this vicissitude can be circumvented [24].

5 Conclusions

We have surveyed some applications of Galois connections and adjunctions in
Computer Science and Soft Computing. The greater generality of the fuzzy case,
which allows to see a single crisp notion from very different perspectives, suggests
that it is worth to consider these notions either in a more general setting or by
weakening its requirements [13].
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