
An Unfolding-based Preprocess for

Reinforcing Thresholds in Fuzzy Tabulation

P. Julián1, J. Medina2, P. J. Morcillo3, G. Moreno3, and M. Ojeda-Aciego4

1 Dept. of Information Technologies and Systems. University of Castilla-La Mancha
Email: pascual.julian@uclm.es

2 Department of Mathematics. University of Cadiz.
Email: jesus.medina@uca.es

3 Department of Computing Systems. University of Castilla-La Mancha.
Email: gines.moreno@uclm.es,pmorcillo@dsi.uclm.es

4 Department of Applied Mathematics. University of Málaga.
Email: aciego@uma.es

Abstract. We have recently proposed a technique for generating thresh-
olds (filters) useful for avoiding useless computations when executing
fuzzy logic programs in a tabulated way. The method was conceived
as a static preprocess practicable on program rules before being ex-
ecuted with our fuzzy thresholded tabulation principle, thus increasing
the opportunities of prematurely disregarding those computation steps
which are redundant (tabulation) or directly lead to non-significant solu-
tions (thresholding). In this paper we reinforce the power of such static
preprocess—which obviously does not require the consumption of ex-
tra computational resources at execution time—by re-formulating it in
terms of the fuzzy unfolding technique initially designed in our group for
transforming and optimizing fuzzy logic programs.
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1 Introduction

The fields of logic programming and fuzzy logic have shown its complementarity
for more than two decades [2, 4, 9, 11]. In this work we continue our efforts
to provide a refined and improved fuzzy query answering procedure for multi-
adjoint logic programming MALP [10, 11]. Roughly speaking, the general idea
is that, when trying to perform a computation step by using a given program
ruleR, we firstly analyze if such step might contribute to reach further significant
solutions (not yet tabulated, saved or stored). After recalling the static approach
introduced in [5], the main contribution starts in Section 3, where we focus on
a new refinement in order to improve the existing static preprocessing step.

The MALP approach5 considers a language, L, containing propositional vari-
ables, constants, and a set of logical connectives. In our fuzzy setting, we use

5 Visit http://dectau.uclm.es/floper/ and http://dectau.uclm.es/fuzzyXPath/

for downloading related tools [1,12].



implication connectives (←1,←2, . . . ,←m) together with a number of aggrega-
tors. They will be used to combine/propagate truth values through the rules.
The general definition of aggregation operators subsumes conjunctive opera-
tors (denoted by &1, &2, . . . , &k), disjunctive operators (∨1,∨2, . . . ,∨l), and av-
erage and hybrid operators (usually denoted by @1, @2, . . . , @n). Aggregators
are useful to describe/specify user preferences: when interpreted as a truth
function they may be considered, for instance, as an arithmetic mean or a
weighted sum. The language L will be interpreted on a multi-adjoint lattice,
〈L,�,←1, &1, . . . ,←n, &n〉, which is a complete lattice equipped with a collec-
tion of adjoint pairs 〈←i, &i〉, where each &i is a conjunctor6 intended to provide
a modus ponens-rule w.r.t. ←i. In general, the set of truth values L may be the
carrier of any complete bounded lattice but, for simplicity, in the examples of
this work we shall select L as the set of real numbers in the interval [0, 1].

A rule is a formula A←i B, where the head A is an propositional symbol and
the body B is a formula built from propositional symbols B1, . . . , Bn (n ≥ 0),
truth values of L and conjunctions, disjunctions and aggregations. Rules with
an empty body are called facts. A goal is a body submitted as a query to the
system. Roughly speaking, a MALP program is a set of pairs 〈R; α〉, where R is
a rule and α is a value of L, which might express the confidence which the user
of the system has in the truth of the rule R (note that the truth degrees in a
given program are expected to be assigned by an expert).

The standard procedural semantics of the multi–adjoint logic language L is
based on the notion of admissible step (which can be seen as a fuzzy extension
of classical SLD-resolution) whose definition is also crucial for describing the
unfolding transformation [7]. Hereafter, C[A] denotes a formula where A is a sub-
expression (usually a propositional symbol) which occurs in the (possibly empty)
context C[], whereas C[A/A′] means the replacement of A by A′ in context C[]. In
the following definition, we always consider that A is the selected propositional
symbol in goal Q.

Definition 1 (Admissible Steps). Let Q be a goal, which is considered as a

state, and let G be the set of goals. Given a program P, an admissible computation
is formalized as a state transition system, whose transition relation →AS ⊆
(G × G) is the smallest relation satisfying the following admissible rules:

1. Q[A]→ASQ[A/v&iB] if there is a rule 〈A←iB; v〉 in P and B is not empty.

2. Q[A]→ASQ[A/v] if there is a fact 〈A←i; v〉 in P.

It is obvious that if we exploit all propositional symbols of a goal, by applying
admissible steps as much as needed, then the goal becomes a formula (with
no propositional symbols) which can then be directly interpreted in the multi–
adjoint lattice L and thus obtaining the desired fuzzy computed answer (or f.c.a.,
in brief) for that goal.

Although the procedural principle we have just seen suffices for executing
MALP programs, there exists a much more efficient mechanism for solving

6 An increasing operator satisfying boundary conditions with the top element.



queries as occurs with the thresholded tabulation procedure proposed in [5, 6]
that we are going to resume in the following section.

2 Fuzzy Thresholded Tabulation with Static Preprocess

Tabulation arises as a technique to solve two important problems in deductive
databases and logic programming: termination and efficiency. The datatype we
will use for the description of the proposed method is that of a forest, that is, a
finite set of trees. Each one of these trees has a root labeled with a propositional
symbol together with a truth-value from the underlying lattice (called the current

value for the tabulated symbol); the rest of the nodes of each of these trees are
labeled with an “extended” formula in which some of the propositional symbols
have been substituted by its corresponding value.

The following descriptions are considered in order to prune some useless
branches or, more exactly, for avoiding the use (at execution time) of those
program rules whose weights do not surpass a given “threshold” value.

– Let R = 〈A←iB; ϑ〉 be a program rule.
– Let B′ be an expression with no atoms, obtained from body B by replacing

each occurrence of a propositional symbol by ⊤.
– Let v ∈ L be the result of interpreting B′ under a given lattice.
– Then, Up_body(R) = v.

Apart from the truth degree ϑ of a program rule R = 〈A←iB; ϑ〉 and the max-
imum truth degree of its body Up_body(R), in the multi-adjoint logic setting,
we can consider a third kind of filter for reinforcing thresholding. The idea is to
combine the two previous measures by means of the adjoint conjunction &i of the
implication←i in ruleR . Now, we define the maximum truth degree of a program

rule, symbolized by function Up_rule, as: Up_rule(R) = ϑ&i(Up_body(R)).
As shown in [5], such filters can be safely compiled on program rules after

applying an easy static preprocess whose benefits will be largely redeemed on
further executions of the program. So, for any MALP program P, we can obtain
its extended version P+ (for being used during the “query answering” process)
by adding to its program rules their proper threshold Up_rule(R) as follows:

P+ = {〈A←iB; ϑ;Up_rule(R)〉 | R = 〈A←iB; ϑ〉 ∈ P}.

Example 1. Consider the following extended program P+ (with mutual recur-
sion) recasted from [5], where the filter associated with each program rule coin-
cides with its weight.

R1 : 〈 p ←P q ; 0.6 ; 0.6 〉
R2 : 〈 p ←P r ; 0.5 ; 0.5 〉
R3 : 〈 q ← ; 0.9 ; 0.9 〉
R4 : 〈 r ← ; 0.8 ; 0.8 〉
R5 : 〈 r ←L p ; 0.9 ; 0.9 〉



A more interesting case could be represented by a new extended program P′+
similar to the previous one but simply replacing its second rule by:
R′

2 : 〈p ←P (r&P 0.9) ; 0.55; 0.495 〉 (note the presence of a truth degree in
its body, which justifies why in this case the Up_rule(R′

2
) value is fortunately

lower than the weight of the rule).

Operations for tabulation with thresholding using extended programs

The tabulation procedure requires four basic operations: Root Expansion, New
Subgoal/Tree, Value Update, and Answer Return. In the first case we take profit
of the filters for thresholding compiled on extended programs, whose further use
will drastically diminish the number of nodes in trees (note that by avoiding the
generation of a single node, the method implicitly avoids the generation of all its
possible descendants as well). New Subgoal is applied whenever a propositional
variable is found without a corresponding tree in the forest. Value update is
used to propagate the truth-values of answers to the root of the corresponding
tree. Finally, answer return substitutes a propositional variable by the current
truth-value in the corresponding tree. Let us formally describe such operations:

Rule 1: Root Expansion. Given a tree with root A : r in the forest, if there
is a program rule R = 〈A←iB; ϑ;Up_rule(R)〉 ∈ P+ not consumed before and
verifying Up_rule(R) � r, append the new child ϑ&iB to the root of the tree.

Rule 2: New Subgoal/Tree. Select a non-tabulated propositional symbol C
occurring in a leaf of some tree (this means that there is no tree in the forest
with the root node labeled with C), then create a new tree with a single node,
the root C : ⊥, and append it to the forest.

Rule 3: Value Update. If a tree, rooted at C : r, has a leaf B with no proposi-
tional symbols, and B→IS

∗s, where s ∈ L, then update the current value of the
propositional symbol C by the value of supL{r, s}.

Furthermore, once the tabulated truth-value of
the tree rooted by C has been modified, for all
the occurrences of C in a non-leaf node B[C]
such as the one in the left of the figure below
then, update the whole branch substituting the
constant u by supL{u, t} (where t is the last tab-
ulated truth-value for C, i.e. supL{r, s}) as in
the right of the figure.

...

B[C]

B[C/u]

...

...

B[C]

B[C/ sup
L
{u, t}]

...

Rule 4: Answer Return. Select in any leaf a propositional
symbol C which is tabulated, and assume that its current value
is r; then add a new successor node as the figure shows:

B[C]

B[C/r]

Example 2. Let us see now how our method proceeds when solving query ?p
w.r.t. the extended program P+ of Example 1.



(i) p : ⊥ → 0.54

(ii) 0.6 &P q

(vi) 0.6 &P 0.9

(vii) 0.54

(iii) 0.5 &P r

(xi) 0.5 &P 0.8

(xii) 0.4

(iv) q : ⊥ → 0.9

(v) 0.9

(viii) r : ⊥ → 0.8

(ix) 0.8 (x) 0.9 &L p

(xiii) 0.9 &L 0.54

(xiv) 0.44

Fig. 1. Example forest for query ?p w.r.t. the extended program P+.

The initial tree consisting of nodes (i), (ii), (iii) is generated, see Figure 1. Then
New Subgoal is applied on q, a new tree is generated with nodes (iv) and (v), and
its current value is directly updated to 0.9. By using this value, Answer Return

extends the initial tree with node (vi). Now Value Update generates node (vii)
and updates the current value of p to 0.54. Then, New Subgoal is applied on
r, and a new tree is generated with nodes (viii), (ix) and (x). Value Update

increases the current value to 0.8. By using this value, Answer Return extends
the initial tree with node (xi). Now Value Update generates node (xii). The
current value is not updated since its value is greater than the newly computed
one. Finally, Answer Return can be applied again on propositional symbol p in
node (x), generating node (xiii). A further application of Value Update generates
node (xiv) and the forest is terminated, as no rule performs any update.

In order to illustrate the advantages of our improved method, consider now
our second extended program P′+ of Example 1, where remember that we have
replaced the second program rule by: R′

2 : 〈p ←P (r&P 0.9) ; 0.55; 0.495 〉. It
is important to note now that even when the truth degree of the rule is 0.55, its
threshold decreases to Up_rule(R′

2
) = 0.55 ∗ 0.9 = 0.495 < 0.54, which avoids

extra expansions of the tree as Figure 2 shows.

(i) p : ⊥ → 0.54

(ii) 0.6 &P q

(v) 0.6 &P 0.9

(vi) 0.54

(iii) q : ⊥ → 0.9

(iv) 0.9

Fig. 2. Example threshold forest for query ?p w.r.t. the extended program P′+

3 Improving the Static Preprocess with Fuzzy Unfolding

Program transformation is an optimization technique for computer programs
that starting with an initial program P0 derives a sequence P1, . . . , Pn of trans-



formed programs by applying elementary transformation rules (fold/unfold)
which improve the original program. The basic idea is to divide the program
development activity, starting with a (possibly naive) problem specification writ-
ten in a programming language, into a sequence of small transformation steps.
Unfolding [3, 13] is a well-known, widely used, semantics-preserving program
transformation rule. In essence, it is usually based on the application of opera-
tional steps on the body of program rules. The unfolding transformation is able
to improve programs, generating more efficient code. Unfolding is the basis for
developing sophisticated and powerful programming tools, such as fold/unfold
transformation systems or partial evaluators, etc.

On the other hand, as revealed in the examples of the previous sections, the
presence of truth degrees on the body of fuzzy program rules is always desirable
for optimizing the power of thresholding at tabulation time. In [7], we show that
it is possible to transform a program rule into a semantically equivalent set of
rules with the intended shape. The following definition is recalled from [7], but
we have slightly simplified it in the sense that here we deal with propositional
(instead of first order) MALP programs:

Definition 2 (Fuzzy Unfolding). Let P be a program and let R : 〈A ←i

B; α〉 ∈ P be a program rule which is not a fact. Then, the fuzzy unfolding of

program P with respect to rule R is the new program: P′ = (P − {R}) ∪ U
where U = {〈A←i B

′; α〉 | B →AS B
′}.

It is important to note in the previous definition that the set of unfolded rules

U is not a singleton in general. For instance, assume a program P with the
following two rules R1 : 〈p ←; 0.5〉 and R2 : 〈p ←P p; 1〉. Note that the first
rule does not admit unfolding since there are no propositional symbols on its
body (it is a “fact”), but R2 can be unfolded by using both rules for obtaining
U = {R2−1 : 〈p ←P 0.5 ; 1〉, R2−2 : 〈p ←P 1 &P p ; 1〉}. 7 Now the unfolded
program P′ is composed by the following set of rules defining p (note that we
have replaced the original rule R2 by the transformed rules R2−1 and R2−2):

R1 : 〈 p ← ; 0.5 〉
R2−1 : 〈 p ←P 0.5 ; 1 〉
R2−2 : 〈 p ←P 1 &P p ; 1 〉

Assume now that we add more rules to the previous program P (note that the
tabulation procedure would never end if the program is infinite) as follows:

R1 : 〈 p ← ; 0.5 〉
R2 : 〈 p ←P p ; 1 〉
R3 : 〈 p ←P q1 ; 0.7 〉
R4 : 〈 q1 ←P q2 ; 0.7 〉
R5 : 〈 q2 ←P q3 ; 0.7 〉
R6 : 〈 q3 ←P q4 ; 0.7 〉

...

7 Note that in this step the body of R2−2 is not computed, although the interpretation
of 1 &P p is clearly p, since this part is made in the tabulation procedure.



Now, by unfolding rule R2 we obtain three transformed rules, the two ones
seen before (i.e., R2−1 and R2−2) as well as R2−3 : 〈p ←P 0.7 &P q1 ; 1〉.
Two more examples: the unfolding of this last rule (using R4) replaces R2−3 by
R2−3−4 : 〈p ←P 0.7 &P 0.7 &P q2 ; 1〉, whereas the unfolding of R3 (using
again R4) replaces such rule by R3−4 : 〈p ←P 0.7 &P q2 ; 0.7〉.

On the other hand, let us remember that the static preprocess described in [5]
and resumed at the beginning of the previous section, simply consists in generat-
ing extended programs where each program rule R is annotated with its proper
Up_rule(R) value in order to increase the opportunities of bounding branches
when applying thresholded tabulation. Now, our new proposal reinforces the
static preprocess (since the new annotated Up_rule(R) values tends to be lower
and thus, more powerful) by applying several unfolding steps (at least one) on
program rules before generating the extended program P+. The question now is
when to stop the application of unfolding steps.

To answer this question, let us first introduce a new concept. Assume that,
for a given propositional symbol p, we define the truth degree τp ∈ L as the
infimum one among the weights of the rules with head p in the original program
P. For instance, in our previous example we have that τp = inf{0.5, 1, 0.7} = 0.5,
τq1

= 0.7, τq2
= 0.7 and so on. Then, after applying the first unfolding step

on each program rule R ∈ P we obtain a new set of transformed rules, say R′

i,
1 ≤ i ≤ n, such that no more unfolding steps are applied on each rule R′

i if
obviously it has no propositional symbols on its body (as occurs with R2−1) or
one of the following conditions hold:

– Up_rule(R′

i) ≤ Up_rule(R). This situation is represented by rule R2−2 in
our example (since Up_rule(R2−2) = Up_rule(R2) = 1), and its is useful for
preventing an infinite unfolding loop on rules whose Up_rule values cannot
be improved by unfolding.

– Up_rule(R′

i) ≤ τp. This case is really the more interesting one in our tech-
nique, as revealed in rules R2−3−4 and R3−4 since:
• Up_rule(R2−3−4) = 1 ∗ 0.7 ∗ 0.7 ∗ 1 = 0.49 < 0.5 = τp.
• Up_rule(R3−4) = 0.7 ∗ 0.7 ∗ 1 = 0.49 < 0.5 = τp.

We have just seen how the unfolding process finishes in our example, which let
us now to generate the following extended program P+:

R1 : 〈 p ← ; 0.5 ; 0.5 〉
R2−1 : 〈 p ← 0.5 ; 1 ; 0.5 〉
R2−2 : 〈 p ←P 1 &p p ; 1 ; 1 〉
R2−3−4 : 〈 p ←P 0.7 &p0.7 &p q2 ; 1 ; 0.49 〉
R3−4 : 〈 p ←P 0.7 &p q2 ; 0.7 ; 0.49 〉
R4−5 : 〈 q1 ←P 0.7 &p q3 ; 0.7 ; 0.49 〉
R5−6 : 〈 q2 ←P 0.7 &p q4 ; 0.7 ; 0.49 〉

...

It is not difficult to check that, by following our improved thresholded tabulation
technique, the rule R3−4 is not considered in the computation of p and no loops



arise in this program. Therefore, the unique solution 0.5 for our initial query ?p,
which is obtained in a small number of computation steps.

4 Conclusions and Future Work

In this paper we have taken profit of our previous advances on fuzzy unfolding
in order to reinforce the power of the static preprocess we described in [5], with
the new aim of increasing the performance of the fuzzy thresholded tabulation
procedure conceived in [6] for the fast execution of MALP programs. We are
nowadays lifting our results to the first order case and implementing the method
drawn in this paper into the FLOPER platform [12].
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