
A tabulation procedure for
first-order residuated logic programs∗

C.V. Damásio
cd@di.fct.unl.pt

Centro Inteligência Artificial
Univ. Nova de Lisboa.

Portugal

J. Medina
jmedina@ctima.uma.es
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Abstract

Residuated logic programs have shown
to be a generalisation of a number of
approaches to logic programming under
uncertainty. Regarding automated de-
duction, a tabulation procedure was re-
cently introduced for the propositional
version. In this paper, we introduce
a sound and complete tabulation-based
proof procedure for the first-order ex-
tension of residuated logic programs.

1 Introduction

Several different approaches to the so-called
inexact or fuzzy or approximate reasoning
have been proposed in the recent years, these
approaches involve either fuzzy or annotated
or probabilistic or similarity-based logic pro-
gramming [1,2, 9–11,15–17,19,20].

Monotonic and residuated logic programs
have shown to be a generalisation of a num-
ber of the approaches above. In this paper, we
will focus on the framework of residuated logic
programming. The semantics of a residuated
program is characterised, as usual, by the
post-fixpoints of the immediate consequence
operator TP, which is proved to be monotonic
and continuous under very general hypothe-
ses.
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(cf. http://rewerse.net) and by the Spanish Project
TIC2003-9001-C02-01.

In this paper we aim at the use of tabulation
(tabling, or memoizing), a technique which is
receiving increasing attention in the logic pro-
gramming and deductive database communi-
ties [3, 4, 17, 18]. Tabulation has better ter-
mination properties and can be substantially
more efficient than the SLD resolution usually
found in Prolog systems. In fact, for some
dramatic cases query evaluation with tabula-
tion mechanisms takes polynomial time while
Prolog systems take exponential time. Exist-
ing Prolog systems like XSB and YAP comple-
ment ordinary Prolog query evaluation with
tabulation mechanisms increasing declarativ-
ity of developed programs/knowledge bases.
For this paper we are more interested in the
better termination properties of tabulation
since the use of many-valued character of our
truth-value space introduces substantial com-
plexity in soundness and completeness results.
Efficiency is also obtained, but requires fur-
ther enquiry and optimization of the basic
procedure presented in this paper.

In this work, we provide a tabulation goal-
oriented query procedure for first-order mono-
tone and residuated logic programs, which
generalises the given one for the propositional
case in [7]. The underlying idea is, essentially,
that atoms of selected tabled predicates as
well as their answers are stored in a table.
When an identical atom is recursively called,
the selected atom is not resolved against pro-
gram clauses; instead, all corresponding an-
swers computed so far are looked up in the
table and the associated answer substitutions
are applied to the atom. The process is re-
peated for all subsequent computed answer



substitutions corresponding to the atom.

The structure of the paper is as follows: in
Section 2, the syntax and semantics of our
logic programs are summarized; Section 3 in-
troduces a non-deterministic procedure for
tabulation. The soundness and completeness
of the tabulation procedure are stated in Sec-
tion 4, length restrictions do not allow to in-
troduce the proof of the claims. The paper
finishes with some conclusions and pointers
to future work.

2 Syntax and semantics

In this section the essentials of first order
monotonic logic programming are reviewed.
The reader might consult [5] for the proposi-
tional version or [13] for a first-order (multi-
adjoint) language.

The mathematical structure underlying resid-
uated logic programs is that of residuated
lattice, which provides an abstraction of the
usual conjunction and implication and the
modus ponens inference rule. The formal def-
inition is given below:

Definition 1 A residuated lattice L is a tu-
ple (L,←, &) satisfying the following items:

1. 〈L,�〉 is a bounded lattice, i.e. it has bot-
tom and top elements, denoted 0 and 1;

2. (L, &, 1) is a commutative monoid;

3. (&,←) is an adjoint pair in 〈L,�〉; i.e.

(a) Operation & is increasing in both ar-
guments,

(b) Operation ← is increasing in the
first argument and decreasing in the
second,

(c) For any x, y, z ∈ P , we have

x � (y ← z) if and only if (x & z) � y

Definition 2 A program over a residuated
complete lattice 〈L,←,⊗〉 is a finite set of
rules A← B satisfying:

1. The head of the rule A is an atom.

2. The body formula B is a formula built
from atoms or elements of the lattice
B1, . . . , Bn (with n ≥ 0) by the use of
arbitrary monotonic operators, also de-
noted by B[B1, . . . , Bn].

A query is an atom intended as a question ?A
prompting the system.

In the following, we will use the term resid-
uated program as a short name for definite
program over a complete residuated lattice.

An interpretation is a mapping I from the
Herbrand base of the program to L. More-
over, since elements of the lattice can be used
in the body of the rules, it should be noticed
that they are interpretated by themselves, i.e.
I(a) = a for all a ∈ L.

Note that each of these interpretations can be
uniquely extended to the set of body formulas,
in this case it is denoted Î. The ordering �
on the underlying lattice can also be easily ex-
tended pointwise to the set of interpretations,
inheriting a structure of complete lattice.

Definition 3

1. An interpretation I satisfies A ← B
if and only if Î (Bη) � I(Aη) for all
grounding substitution η.

2. An interpretation I is a model of P iff
all its rules are satisfied by I.

The immediate consequences operator, given
by van Emden and Kowalski, can be easily
generalised to the framework of residuated
logic programs.

Definition 4 Let P be a residuated program
over a complete lattice L. The immediate
consequences operator TP maps interpreta-
tions to interpretations and, for an interpre-
tation I and a ground atom A, TP(I)(A) is
defined as

sup{Î(Bη) | Cη ← Bη ∈ G(P) and A = Cη}

where G(P) denotes the grounding of P.
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The semantics of a residuated logic program
can be characterised, as usual, by the post-
fixpoints of TP; that is, an interpretation I is
a model of a residuated logic program P iff
TP(I)(A) � I(A) for all ground atom A.

The TP operator is proved to be monotonic
and continuous under very general hypothe-
ses, see [12], and it is remarkable that these
results are true even for non-commutative and
non-associative conjunctors. In particular, by
continuity, the least model can be reached in
at most countably many iterations of TP on
the least interpretation, denoted TP ↑

ω. In
what follows, we will assume this behaviour
for all our programs, together with finite de-
pendency.

3 The tabulation Procedure

In this section we describe a simple version of
the first-order tabulation proof procedure for
residuated logic programs which allows to ob-
tain more easily the proofs of soundness and
completeness.

R1: Create New Tree.

Given an atom A, let P(A) be the finite set of
rules 〈Cj ← Bj〉 of P, with variables renamed
apart, such that there exists a substitution θj

satisfying Cjθj = Aθj, where j = 1, . . . ,m.

Construct the following tree with root A

A : {A : 0}

Aθ1 ← B1θ1 . . . Aθm ← Bmθm

and append it to the current forest. If the
forest does not exist, then create a new forest
containing this single tree.

R2: New Subgoal.

Select a non-tabulated atom C occurring in
a leaf of some tree (note that non-tabulated
means that there is no tree in the forest with
root containing a variant of C), then create a
new tree as indicated in Rule 1, and append
it to the forest.

R3: Answer Return.

Select in any non-root node an atom C which
is tabulated (i.e. there is a tree with root C ′

which is a variant of C). Let C ′θ′ : r be an
element of the answer list of C ′, which unifies
with C, and was not consumed before. Let
Θ be the most general unifier of C and C ′θ′.
Then, add a new successor node

Aθ ← B[. . . , C, . . . ]

AθΘ← B[. . . , r, . . . ]Θ

R4: Value Update.

Given a leaf in the tree for an atom C, having
the form Cθ ← B[s1, . . . , sm]θ, where B does
not contain atoms. Then, evaluate the cor-
responding arithmetic formula in the body of
the rule B[s1, . . . , sm], assume that its value
is, say, s. If there is a variant of Cθ with
same value s in the answer list of C then we
do nothing, otherwise we add the new answer
Cθ : s.

R5: Answer merging.

Let A1 : s1 and A2 : s2 be two instances in an
answer list, which unify with mgu θ. Then,
add the answer A1θ : sup{s1, s2} whenever
A1θ : sup{s1, s2} is not in the answer list
(modulo renaming of variables).

Moreover, if the answer list contains two vari-
ants A1 : s1 and A2 : s2 for which s1 � s2 then
A1 : s1 is removed from the list.

Remark: Note that a list of “computed”
answers is attached to the root of each tree
in the forest, in terms of a substitution and
a value in L. The answer list of a root C is
denoted by AL(C).

Recall that the only rules which change the
values in the answer list of the roots of the
trees in the forest are R4 and R5.

A non-deterministic procedure for
tabulation

Now, we can state the general non-
deterministic procedure for calculating the
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answer to a given query by using a tabulation
technique in terms of the previous rules.

Initial step Create the initial forest by ap-
plying R1 to the query.

Next steps Non-deterministically select an
atom and apply one of the rules R2, R3,
R4 or R5.

There are several improvements that can be
made to the basic tabulation proof procedure,
for instance, by considering subsumption-
based tabulation instead of variants, but we
are not concerned with efficiency in this pa-
per, but in showing soundness and complete-
ness.

4 Soundness and Completeness

We start by taking care of the soundness proof
of the tabulation proof procedure. In intuitive
terms, it is shown that every answer in the
answer list in a tree for some atom is a correct
answer.

Definition 5

1. Given a program P and a query A, a com-
puted answer for A in P is a pair (θ, ϑ)
where θ is a substitution and ϑ a value in
L such that Aθ : ϑ belongs to the answer
list of the tree for A.

2. Given a program P and a query A, a cor-
rect answer for A in P is a pair (θ, ϑ)
where θ is a substitution and ϑ a value
in L such that ϑ ≤ M(Aθη) for all Her-
brand models M of P and grounding sub-
stitution η.

We can give an equivalent definition of correct
answer in terms of the TP operator as follows:
(θ, ϑ) is a correct answer for A in P if for every
grounding substitution η we have that ϑ ≤
TP ↑

ω(Aθη).

Theorem 1 (Soundness) Let P be a pro-
gram and a tabulation forest for a given query.
Then, every computed answer for a tabulated
atom A in the forest is a correct answer for A

in P.

In order to prove completeness, we need a
suitable extension of the well-known lifting
lemma. In its statement, we need to intro-
duce the notion of super-forest F′ of a given
forest F: every tree in the forest F is subsumed
by another tree in F′ which, moreover, whose
nodes are labelled by formulas more general
than those in F.

In addition, we say that computed values are
preserved by the super-forest if for every el-
ement Qθη : s in the answer list of Qθ in F

there exists a substitution η′ such that Qη′ : s

is the answer list for Q in F′.

Lemma 1 (Lifting lemma) Let P be a pro-
gram, Q an atom and θ a substitution. Given
a finite tabulation forest F for Qθ, there ex-
ists a tabulation super-forest for Q which pre-
serves computed answers in F.

Definition 6 Given a program P, a termi-
nated forest for P and a query, and a ground-
ing substitution η, a computed answer for A

relative to η in a tree for A, denoted rη(A), is
the supremum of

{ri | Aθi : ri ∈ AL(A) where Aθi and Aη unify}

Note that, by repeated application of Rule 5
and assuming finite termination of the forest
construction, there must exist some answer
Aθ : r in the tree for A which unifies with the
ground atom Aη.

Theorem 2 Consider a program P and a fi-
nite terminated forest for a ground atom A.
Then TP ↑

n(A) ≤ rε(A) for all n ∈ N,
where ε denotes the identity substitution.

Theorem 3 Let P be a program P, let η be
a grounding substitution and consider a finite
terminated forest for an atom A. Then

TP ↑
n(Aη) ≤ rη(A) for all n ∈ N

As a consequence of the definition of ω-th it-
eration step, we obtain straightforwardly that

TP ↑
ω(Aη) ≤ rη(A)

Corollary 1 (Completeness) Let P be a
program, a terminated forest for a given query
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and a tabulated atom A in the forest. For ev-
ery correct answer (η, ϑ) for A, where η is
grounding, the inequality ϑ ≤ rη(A) holds.

5 A working example

Let us consider an example which illustrates
the tabulation procedure at work. Recall the
well-known Gödel,  Lukasiewicz and product
t-norms on the real unit interval:

I(&P )(x, y) = x · y

I(&G)(x, y) = min(x, y)

I(&L)(x, y) = max(0, x + y − 1)

Assume the query ?P (x) against the following
program:

P (a) ← 0.8 &G Q(a, x) (1)

P (a) ← 0.7 &G S(y) (2)

P (x) ← 0.9 &G T (x) (3)

Q(a, b) ← 0.9 (4)

S(a) ← 0.6 &G T (a) (5)

S(b) ← 0.7 &L P (x) (6)

T (a) ← 0.8 &P S(x) (7)

T (b) ← 0.9 &L Q(a, x) (8)

To begin with, the procedure applies R1 and
generates the initial tree in Fig. 1. Now, this
tree evolves and grows as an application of the
non-deterministic procedure. In order to clar-
ify the application of the rules, we will con-
sider rules R4 and R5 as soon they are appli-
cable, the choice of atoms in R2 and R3 will
be made on a lexicographical basis, and new
information in the answer list is used as soon
as possible.

The next step consists in an application of R2,
in which the selected atom is Q(a, x1). Im-
mediately R3 applies, and the answer list is
updated as shown in Fig. 2.

The recently computed valued for Q(a, b) is
consumed in Fig. 1. This generates node (ii)
and, by R4, the answer list is updated by the
computed result 0.8 for P (a).

Now, we consider S(y1) and apply R2: the
tree in Fig. 3 is created; then, node (iii) is

generated as an application of R3. As a result,
a new computed value S(b) : 0.5 is appended
to the answer list according to R4.

The value S(b) : 0.5 is consumed again in
Fig. 1: node (iv) is generated and the answer
list is updated with the value P (a) : 0.5. Rule
R5 removes this new computed value, since is
smaller than the current P (a) : 0.8.

Rule R2 is applied again, and generates a tree
for T (x1), which is shown in Fig. 4. Node (v)
is generated by consuming the answer corre-
sponding to Q(a, b) in Fig. 2, then the answer
list is updated with T (b) : 0.9.

This value is used in Fig. 1 in order to gener-
ate node (vi) and update the answer list with
P (b) : 0.9

There are still some atoms occurring in leafs,
so R2 could still be applicable. Note that not
all the atoms create a new tree in the forest,
for instance, no new subgoal is generated from
atom S(x) in Fig. 4, since a variant of it has
already been created. In fact, we can apply
R3 and consume the answer S(b) : 0.5, gener-
ating node (vii) and updating the answer list
with the value T (a) : 0.4.

This new computed answer cannot be applied
to substitute node T (a) in Fig. 3, since it be-
longs to the answer list of T (x1), which is not
a variant of T (a). Instead, it generates a new
leaf, node (viii), in the tree of Fig. 1, the de-
tail is shown in Fig. 5. The computed value
obtained for P (a) is 0.4, which is appended to
the answer list, and then removed by applica-
tion of R5.

Now, the occurrence of T (a) in Fig. 3 creates
a new tree, since it has not a tabulated variant
(see Fig. 6). The leaf S(x) is tabulated, hence
we can use R3 and extend the branch with
node (ix); the answer list is then updated with
T (a) : 0.4.

Once again, the recent computer answer al-
lows to extend one tree in the forest; in this
case, the tree in Fig. 3 generates node (x)
and computes the answer S(a) : 0.4. There
are three possible applications of R3 with this
new value, in Fig. 1 nothing happens, since
the new computed value is already in the an-
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(i) P (x) : {P (x) : 0,P (a) : 0.8,P (b) : 0.9}

(ii) P (a)← 0.8 &G Q(a, x1)

P (a)← 0.8 &G 0.9

P (a)← 0.7 &G S(y1)

(iv)P (a) ← 0.7 &G 0.5

P (x1)← 0.9 &G T (x1)

(vi) P (b)← 0.9 &G 0.9

Figure 1: Tabled tree for P (x).

Q(a, x1) : {Q(a,x1) : 0,Q(a,b) : 0.9}

Q(a, b)← 0.9

Figure 2: Tabled tree for Q(a, x1).

S(y1) : {S(y1) : 0,S(b) : 0.5,S(a) : 0.4}

S(a)← 0.6 &G T (a)

(x) S(a)← 0.6 &G 0.4

S(b)← 0.7 &L P (x)

(iii) S(b)← 0.7 &L 0.8

Figure 3: Tabled tree for S(y1).

T (x1) : {T (x1) : 0,T (b) : 0.9,T (a) : 0.4}

T (a)← 0.8 &P S(x)

(vii) T (a)← 0.8 &P 0.5

T (b)← 0.9 &L Q(a, x)

(v) T (b)← 0.9 &L 0.9

Figure 4: Tabled tree for T (x1).

P (x1)← 0.9 &G T (x1)

(vi) P (b)← 0.9 &G 0.9 (viii) P (a)← 0.9 &G 0.4

Figure 5: Detail from the initial tree.

T (a) : {T (a) : 0.4}

T (a)← 0.8 &P S(x)

(ix) T (a)← 0.8 &P 0.5

Figure 6: Tabled tree for T (a).
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swer list, in Fig. 4 and Fig. 6 a new computed
valued T (a) : 0.32 is inserted in the answer
list. Rule R5 discards the new computed val-
ues since they are smaller than the currently
computed ones, hence the procedure termi-
nates.

6 Conclusions and Future Work

A tabulation goal-oriented query procedure
for first-order residuated logic programs has
been introduced in order to generalise the
given one for the propositional case in [7].
Note that this approach can be easily adapted
so that it can be applied to any multi-
adjoint program. Then, after introducing the
non-deterministic procedure for tabulation, a
thorough example is presented containing the
most relevant features of the procedure. So
far the authors are not aware of any other ap-
proach to the development of tabulation pro-
cedures for the extended framework of multi-
adjoint logic programming;

However, some related approaches have been
published quite recently. For instance, the
development of a fold/unfold based transfor-
mation system for optimizing multi-adjoint
logic programs has been presented in [14]. In
this paper, a set of strongly correct trans-
formation rules is presented (strongly correct
means here that the semantics of computed
substitutions and truth degrees is preserved)
which is able to significantly improve the exe-
cution of goals against transformed programs.
The fold/unfold methodology suggests a par-
allelism with partial evaluation of programs,
which is essentially what is done in every tree
of the computational forest.

There are a number of open issues regard-
ing the basic procedure given here. To be-
gin with, a interesting issue from a practical
point of view is related to the efficiency of
the method. The basic procedure presented
here should be improved by means of some
modifications to the rules (subsumption in-
stead of variants, updating values instead of
simply copying new ones, . . . ). Subsequently,
new forms of rules will be considered whose
behaviour should be proved equivalent to the
basic ones.

On the other hand, note that termination of
the procedure has been assumed in the state-
ment of the completeness theorems. This
problem is not an easy one even in the propo-
sitional case, as shown in [8]. Even for con-
tinuous operators in the bodies, the tabula-
tion procedure might not terminate. Suffi-
cient conditions for termination of the pro-
cedure are our target for continuing research
on these topics.

A third line of research would be to consider
an extension of this procedure for antitonic
logic programs [6], which generalise the frame-
work of monotonic and residuated logic pro-
grams to allow for rules with arbitrary anti-
tonic bodies over general complete lattices, of
which normal programs are a special case.
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