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Abstract

We present several properties of the dif-
ferent semantics of ideals on an ordered
multilattice in order to solve theoretical
problems arisen from the use of multi-
lattices as underlying set of truth-values
for a generalized framework of logic pro-
gramming.

1 Introduction

In the recent years there has been many stud-
ies treating to weaken the structure of the un-
derlying set of truth-values for logic program-
ming. Residuated lattices as set of truth val-
ues were proposed by [5] and, simultaneously,
multi-adjoint lattices were introduced in [12].
Some papers use more restrictive structures,
such as bilattices or trilattices [10], whereas in
other papers, more general structures, such as
algebraic domains [14], have been proposed.
A common feature of all these approaches
is that they are based on the structure of
complete lattice, which imposes the existence
of the least upper bound and greatest lower
bound for every subset of the lattice.

Benado [1] and Hansen [7] proposed defi-
nitions of a structure so-called multilattice,
which dropped the uniqueness condition re-
garding upper and lower bounds and replaced
it by the “existence of minimal upper bounds
and maximal lower bounds”. This kind of
structure also arises in the research area con-
cerning fuzzy extensions of logic program-
ming: for instance, one of the hypotheses of
the main termination result for sorted multi-

adjoint logic programs [3] can be weakened
only when the underlying set of truth-values
is a multi-lattice (the question of providing a
counter-example on a lattice remains open).
In [11] a first approach to logic programming
based on multilattices was presented.

Our aim in this paper is to study the pos-
sibility of defining an ideal-based semantics
for multilattice-based logic programs. To be-
gin with, there are several proposals for the
definition of ideal in a multilattice; the com-
putational capabilities of each of these defi-
nitions have to be investigated, and the re-
lationship between the corresponding general
and restricted semantics have to be studied,
in the style of [9].

The structure of the paper is the following:
in Sections 2 and 3 theoretical results about
multilattices, the definition of extended logic
programs, and its restricted and fixed-point
semantics are recalled. Later in Section 4,
the alternative notions of ideals for a multilat-
tice are presented, and ideal-based semantics
is introduced in Section 5. then, in Section 6
a comparison between the restricted and the
different ideal-based semantics is presented.
Finally, in the last section we draw some con-
clusions and prospects for future work.

2 Preliminary results

Recall that a lattice is a poset such that the
set of upper (lower) bounds has a unique min-
imal (maximal) element, that is, a minimum
(maximum). In a multilattice, this property
is relaxed in the sense that minimal elements



for the set of upper bounds should exist, but
the uniqueness condition is dropped.

Definition 1 A complete multilattice is a
partially ordered set, 〈M,≤〉, such that for
every subset X ⊆ M , the set of upper
(lower) bounds of X has minimal (maximal)
elements, which are called multi-suprema
(multi-infima).

Example 1 The first example of multi-lattice
that one thinks is the following one which we
call M6.
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Regarding computational properties of multi-
lattices, it is interesting to impose certain con-
ditions on the sets of upper (lower) bounds of
a given set X.

Definition 2 We say that a multilattice is
consistent if any upper (lower) bound is
greater (less) than a minimal (maximal).

Another reasonable condition to require on a
multilattice is that it should not contain in-
finite sets of mutually incomparable elements
(also called antichains). Consistent multilat-
tices without infinite antichains have interest-
ing computational properties, such as the sets
of multi-suprema or multi-infima for totally
ordered subsets (also called chains) always
have a supremum and an infimum.

We will assume in the rest of the paper that
our underlying multilattices are complete,
consistent and without infinite antichains.

3 Extended logic programs

In this section we recall a first approximation
of the definition of an extended logic program-
ming paradigm in which the underlying set of
truth-values is assumed to have structure of
multilattice which was presented in [11]. The
proposed schema is an extension of the resid-
uated logic programs of [5].

The definition of logic program is given, as
usual, as a set of rules and facts.

Definition 3 An extended logic program is
a set P of rules of the form A← B such that:
(1) A is a propositional symbol of Π, and (2)
B is a formula of F built from propositional
symbols and elements of M by using mono-
tone operators.

An interpretation is an assignment of truth-
values to every propositional symbol in the
language.

Definition 4 An interpretation is a mapping
I: Π → M . The set of all interpretations is
denoted I.

Note that by the unique homomorphic ex-
tension theorem, any interpretation I can be
uniquely extended to the whole set of formu-
las (the extension will be denoted as Î). The
ordering ≤ of the truth-values M can be ex-
tended point-wise to the set of interpretations
as usual.

A rule of an extended logic program is satis-
fied whenever the truth-value of the head of
the rule is greater or equal than the truth-
value of its body. Formally:

Definition 5 Given an interpretation I, a
rule A ← B is satisfied by I iff Î(B) ≤ I(A).
An interpretation I is said to be a model of
an extended logic program P iff all rules in P
are satisfied by I, then we write I |= P.

Every extended program P has the top inter-
pretation as a model; regarding minimal mod-
els, it is possible to prove the following lemma.

Lemma 1 Given an extended logic pro-
gram P, there exist minimal models for P.

An interesting technical problem arises when
trying to extend the definition of the immedi-
ate consequences operators to the framework
of multilattice-based logic programs. Note
that all the suprema involved in the usual def-
inition of TP do exist provided that we are
assuming a complete lattice structure on the
underlying set of truth-values; however, this
needs not hold for a multilattice.



In order to work this problem out, we consider
the following definition:

Definition 6 Given an extended logic pro-
gram P, an interpretation I and a proposi-
tional symbol A; we can define TP(I)(A) as:

multisup
(
{I(A)} ∪ {Î(B) | A← B ∈ P}

)
The definition of TP proposed above gener-
ates some coherence problems, in that the re-
sulting ‘value’ is not an element, but a sub-
set of the multilattice. A possible solution to
this problem would be to consider a choice
function ()∗ which, given an interpretation,
for any propositional symbol A selects an ele-
ment in TP(I)(A); this way, TP(I)∗ represents
actually an interpretation. In the following
lemma, the models of P are characterised in
terms of TP.

Lemma 2 The following statements are
equivalent:

1. I is a model of P.

2. TP(I)(A) = {I(A)} for all A ∈ Π.

3. TP(I)∗ = I for all choice function.

4. I ∈ TP(I), (abusing notation this means
that I(A) ∈ TP(I)(A) for all A ∈ Π).

Note that item 4 above states that an inter-
pretation I is a model of P if and only if
it is a fixed point of TP, viewed as a non-
deterministic operator.

Theorem 1 Let I be a minimal model of P,
then we can construct a Kleene-like sequence
of interpretations which converges to I.

Once we have a semantics for our multilat-
tices we can wonder whether it is possible to
define an “ideal”-like semantics, in the style
of [9]. The set of ideals of a lattice turns out
to have good computational properties, for in-
stance, it forms a complete lattice, we can de-
fine a fixed-point semantics for them where
the immediate operator of consequences is
continuous, and under suitable circumstances
Ir = sup Im where Ir is the least model of a

program computed by its fixed-point seman-
tics and Im is its least model computed by the
ideal fixed-point semantics.

4 Ideals of multilattices

As stated above, we are interested in studying
the set of ideals of a multilattice, so that we
can define an ideal-semantics as in [9]; how-
ever, the definition of ideal in a multilattice is
not canonical. For instance, one can find the
notion of s-ideals introduced by Rach̊unek, or
the l-ideals of Burgess, or the m-ideals given
by Johnston [13, 8]. In this section, we study
the differences between the various definitions
and propose some new alternatives.

To begin with, let us recall the definition of
ideal of a lattice:

Definition 7 A nonempty subset D of a lat-
tice L is said to be an ideal of L if it is down-
ward closed and for all a, b ∈ D we have that
a ∨ b ∈ D.

For a multilattice, as stated above, at least
the following extensions of the concept of ideal
can be found:1

Definition 8 Given a multilattice M and a
non-void subset D of M , we say that D is:

• An s-ideal if and only if it is downward
closed and for every a, b ∈ D we have that
UB({a, b}) ∩D 6= ∅.

• An l-ideal if and only if for every a, b ∈ D
we have that LB(UB({a, b})) ⊆ D.

• An m-ideal if and only if for every a, b ∈
D such that sup{a, b} exists we have that
LB(sup{a, b}) ⊆ D.

It is not difficult to check that, in the par-
ticular case of a lattice, all definitions above
collapse to the usual definition of ideal of a
lattice. Moreover, for the general case of a
multilattice M , if Iα(M) denotes the set of
α-ideals, where α ∈ {l,m, s}, we clearly have

Is(M) ⊆ Il(M) ⊆ Im(M). (1)
1We use UB (resp. LB) to denote the set of upper

(resp. lower) bounds of a subset.



Example 2 The lattice of l-ideal and m-
ideals of M6 is the following:
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Recall the following interesting relationship
between sublattices and ideals of a lattice,
see [6, 2].

Lemma 3 Let A be a sublattice of a lattice L,
then A is an ideal of L if and only if for every
a ∈ A and x ∈ L we have that a ∧ x ∈ A.

In order to obtain a similar result for multilat-
tices, we introduce the definition of submulti-
lattice of a multilattice M .

Definition 9 Let M be a multilattice and
∅ 6= B ⊆M , we say that B is a submultilat-
tice of M if it inherits the multilattice struc-
ture when using the restriction of the multi-
suprema and multinfima to B.

Notice that there are two reasonable possibil-
ities of considering the restriction of the op-
erators multisup and multinf:

• A submultilattice B of M is said to be full
(or f-submultilattice) if for every a, b ∈ B
we have that all the multisuprema and
multinfima of {a, b} in M are in B.

• A submultilattice B of M is said to be
restricted (or r-submultilattice) if for ev-
ery a, b ∈ B we have that at least one
multisupremum and one multinfimum of
{a, b} in M is in B.

It is obvious that every f-submultilattice is a
r-submultilattice, but not vice versa.

The following lemma gives us a relationship
between (f- or) r-submultilattices and each
type of ideal:

Lemma 4 Let B be a (f- or) r-submultilattice
of multilattice M then, B is an (s- or l- or) m-
ideal if an only if for every b ∈ B and x ∈M
we have that multinf{b, x} ⊆ B.

Proof. Let B be a r-submultilattice B, for the
case of f-submultilattices the proof is equal.

Firstly, we suppose that B is an (s- or l- or)
m-ideal then the property is clearly satisfied
since every such ideal is downward closed.

Reciprocally, by the chain of inclusions (1), it
is enough to prove that B is an s-ideal, that is,
B is downward closed and for every a, b ∈ B
we have that UB({a, b}) ∩B 6= ∅.

It is straightforward that B is downward
closed, since for b ∈ B, and every x ∈M such
that x ≤ b we have multinf{b, x} = {x} ⊆ B
by our hypothesis.

Now, let a, b ∈ B, as B is a r-submultilattice,
we have that at least an element c of
multisup{a, b} is in B, hence c ∈ UB({a, b})∩
B 6= ∅. �

From the previous result one could be
tempted to say that all three types of ideals
for multilattices coincide. This is not true, as
the inclusions in (1) are, in general, strict:

• In M6 we have that {⊥, a, b} is an l-ideal
but it is not an s-ideal.

• In the following multi-lattice we have
that {⊥, a, b} is an m-ideal but it is not
an l-ideal.
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An interesting consequence of Lemma 4 is
that, in difference with what happens with
lattices, not every l-ideal or m-ideal is nec-
essarily a (f- or) r-submultilattice, otherwise
all three types of ideals would coincide. How-
ever, every s-ideal of a consistent multilattice
is a r-submultilattice but not necessarily a f-
submultilattice.



Lemma 5 Let D be a s-ideal of a consistent
multilattice M , then D is a r-submultilattice.

Proof. Given a, b ∈ D, we must prove that
multisup{a, b} ∩ D 6= ∅ and multinf{a, b} ∩
D 6= ∅.

The last one is trivial from the downward
closed property. For the other one, as D is
a s-ideal, we consider c ∈ UB({a, b}) ∩ D
then, from the consistent of M , there exists
d ∈ multisup{a, b} such that d ≤ c and, as D
is downward closed and c ∈ D, we obtain that
d ∈ multinf{a, b} ∩D. �

In the following example we show that the
result above does not hold if the initial mul-
tilattice is not consistent.

Example 3 In the figure we have a non-
consistent multilattice, the subset D =
{⊥, a, b, c1, c2, c3, . . .} is an s-ideal, but we can
check easily that multisup{a, b} ∩ D = ∅,
hence it is not a submultilattice.
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Example 4 An s-ideal is not always a f-
submultilattice, for example in the (consis-
tent) multilattice M6 we have that {⊥, a, b, c}
is an s-ideal but not a f-submultilattice.

Another interesting property on the frame-
work of ideals of lattices is the following
result, which relates the kernel of a join-
homomorphism (the inverse image of ⊥) with
ideals.

Theorem 2 (Birkhoff [2]) If Φ: L1 −→ L2

is an join-homomorphism between lattices
then ker(Φ) is an ideal.

In the statement, a join-homomorphism be-
tween lattices is an application which pre-

serves joins. The extension to the framework
of multilattices is the following:

Definition 10 Let M1 and M2 be multilat-
tices; a mapping Φ: M1 −→M2 is said to be a
multisup-homomorphism if for every B ∈M1

and b ∈ multisup{B}, we have that Φ(b) ∈
multisup{Φ(B)}.

With these definitions we can translate the
theorem above to multilattices.

Theorem 3 If Φ: M1 −→ M2 is a multisup-
homomorphism between multilattices, then
ker(Φ) is an (s- or l- or) m-ideal.

Proof. By the chains of inclusions (1) we only
have to prove the result for m-ideals.

Let us consider a, b ∈ ker(Φ) such that
sup{a, b} exists we have to prove that
LB(sup{a, b}) ⊆ ker(Φ).

Firstly we will prove that sup{a, b} ∈ ker(Φ)
and using this result we will prove that c ∈
ker(Φ) for all c ∈ LB(sup{a, b}).

Since a, b ∈ ker(Φ) we have Φ(a) = Φ(b) =
⊥ so multisup{Φ(a),Φ(b)} = ⊥. As Φ
is a multisup-homomorphism we have that2

Φ(sup{a, b}) ⊆ multisup{Φ(a),Φ(b)} = ⊥ so
sup{a, b} ∈ ker(Φ).

Now, consider c ∈ LB(sup{a, b}) we have that

Φ(multisup{c, sup{a, b}}) =
= Φ({ sup{a, b}}) = {⊥}

Since Φ is a multisup-homomorphism we ob-
tain that

{⊥} = Φ(multisup{c, sup{a, b}}) ⊆
⊆ multisup{Φ(c),Φ(sup{a, b})}

then

⊥ ∈ multisup{Φ(c),Φ(sup{a, b})}

hence Φ(c) = ⊥ and c ∈ ker(Φ). �

Now that we have shown that the proposed
definitions of ideals for a multilattice are
friendly to most of the properties of ideals of
a lattice, let us concentrate now on the al-
gebraic structure of the sets of every type of
ideal.

2Notice that we write sup instead of multisup since
sup{a, b} exists and hence is the only multisup.



5 Ideal semantics

Assume that the set of ideals Iα(M) is or-
dered by set-inclusion, then it is easy to check
that Il(M) and Im(M) are complete lattices.
On the other hand, Is(M) is a complete mul-
tilattice (provided that M is complete and in-
finite antichains do not exist) [8].

The structure of complete lattice of some sets
of ideals enables us to provide an ideal-based
fixpoint semantics for extended programs in
terms of the Knaster-Tarski theorem.

In this section we provide an ideal-based se-
mantics for the extended programs. To begin
with, we will consider α-ideals (where α de-
notes either l or m, since Il(M) and Im(M)
form a complete lattice), and our interpreta-
tions will attach an ideal to any propositional
symbol:

Definition 11 An interpretation is a map-
ping I: Π → Iα(M). The set of all interpre-
tations is denoted I.

The ordering ≤ of the truth-values M can be
extended point-wise to the set of interpreta-
tions I as usual; and also endows I with a
complete lattice structure.

Now, we cannot apply the homomorphic ex-
tension theorem as usual, since the connective
operators are interpreted as functions in M ,
not between ideals. Thus, we have to explic-
itly define how to extend a given interpreta-
tion to any body-formula:

• Given I and a ∈M , we define Î(a) as the
least α-ideal containing a.

• Given I, atoms A1, . . . , An, and any
isotone n-ary function @ we define
Î(@(A1, . . . , An)) as

⊎{
@(a1, . . . , an) | ai ∈ I(Ai), i ∈ {1, . . . , n}

}
where

⊎
computes the least α-ideal generated

by its arguments.

Note that @ can be seen as an operator in Iα

which sends the ideals I(A1), . . . , I(An) to the
ideal defined above.

Remark 1 Notice that
⊎

is not defined for
s-ideals: for instance, in M6 there is not a
least ideal containing {a, b}, but two minimal
ideals. This is a consequence of Is(M) not
being a lattice.

As in the restricted case, a rule of an extended
logic program is satisfied whenever the truth-
value of the head of the rule is greater or equal
than the truth-value of its body. Formally:

Definition 12 Given an interpretation I, a
rule A ← B is satisfied by I if and only if
Î(B) ⊆ I(A). An interpretation I is said to
be a model of an extended logic program P if
and only if all rules in P are satisfied by I,
then we write I |= P.

After defining a semantics for the different
ideals of a multilattice we are going to provide
our ideal-based framework with a fixpoint se-
mantics and study if it has similar properties
to the ideal fixed semantics for lattices in or-
der to compute the least ideal-model of our
programs.

Taking the usual definition of immediate op-
erator of consequences TP, we have that the
transcription of this to our lattice of ideals is
the following:

Definition 13 Given an extended logic pro-
gram P, an interpretation I and a proposi-
tional symbol A; the immediate operator of
consequences TP is defined about I and A as

TP(I)(A) =
⊎( ⋃

A←B∈P
Î(B)

)

As we are working on a lattice structure we
can apply the results of [12], and obtain that:

1. TP is an isotone operator.

2. An interpretation I is a model if and only
if TP(I) ≤ I.

3. TP is a continuous operator if and only if
all the operators @ involved in the bodies
are continuous (as operators in Iα).

4. If TP is continuous, then it has a least
fixed point that can be attained after at
most ω iterations.



6 Restricted vs ideal semantics

In this section we study the relationship be-
tween the different semantics we have intro-
duced. We are interested in whether we can
obtain minimal models of the restricted se-
mantic via the minimum model of the differ-
ent ideals semantics.

The following theorem gives us an interest-
ing relationship between the least model of
the l-ideal semantics and the minimal models
provided by the restricted semantics.

In the theorem below we will write TP (resp.
LP) for the immediate consequences operator
of the restricted (resp. the l-ideal) semantics,
and vS for the Smyth ordering between sub-
sets, i.e. X vS Y if and only if for all y ∈ Y
there exists x ∈ X such that x ≤ y.

Theorem 4 Consider a program P and a
propositional symbol A, then for all ordinal α
we have that LP

↑α(A) vS TP
↑α(A).

This result justifies considering the (multi-
suprema of the) least l-model in order to ob-
tain a minimal model of the restricted seman-
tics, but this in general is not possible, as the
following example shows:

Example 5 If we consider the multilattice
M6 and the program P:

B ← a; A← B; C ← B

B ← b; A← c; C ← d

The minimal models in the restricted seman-
tics are M r

1 and M r
2 defined as:

M r
1 (A) = c; M r

2 (A) = >
M r

1 (B) = c; M r
2 (B) = d

M r
1 (C) = >; M r

2 (C) = d

But the least l-model M l is defined as

M l(A) = {⊥, a, b, c}
M l(B) = {⊥, a, b}
M l(C) = {⊥, a, b, d}

Clearly the least l-model satisfies the theorem
above but neither of the two possible restricted

interpretations computed in terms of the mul-
tisuprema of M l is a model of the program.

The behaviour in the previous example is the
same in the case of m-ideals, since in M6 the
set of l-ideals and m-ideals coincide.

7 Conclusions

The study of the possible relationships be-
tween the restricted semantics and the ideal
semantics provided by the different definition
of ideals in the literature leads to two inter-
esting problems to be in the future:

• Further investigate the possibility of pro-
viding a set-based fixpoint semantics (not
necessarily based on ideals) as an alter-
native way to reach a minimal model of
the restricted semantics.

• Consider alternative approaches, such
as a procedural semantics following the
ideas underlying the tabulation proof
procedure introduced in [4].
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donnés. Acta Univ. Palack. Olomuc., Fac.
Rer. Natur. 45 (Math. 14), pages 77–81,
1974.

[14] W. Rounds and G.-Q. Zhang. Clausal logic
and logic programming in algebraic domains.
Information and Computation, 171:183–200,
2001.


